SynDEx Reference Manual

A graph oriented methodology and its system level CAD softwa for the
optimization of distributed real-time embedded applications

Yves Sorel
INRIA Rocquencourt,
BP 105 - 78153 Le Chesnay Cedex, France
yves.sorel@inria.fr
www.syndex.org

Contents

L1 Contedt

ed implementation: adequati
Principles e 19
- . 19

3.5 Executives generation
3.5.1 From implementation graph to executiongrapho 24
ition gra] 25

o-gode e e

1 Introduction

1.1 Context

The software in complex applications found in domains sughutomobile, aeronautics, telecommunica-
tions, etc, is growing rapidly. On the one hand it increasimgplaces mechanical and analog devices which
cost a lot and are too sensitive to failures, and on the ottwed kit offers to the end-users new functionalities
which may easily evolve. These applications share theviaig main features:

e automatic-control and discrete-eventhey include control laws, possibly using signal and image
processing, as well as discrete events, in order to schéddese control laws through finite state
machines;

e critical real-time constraints:they must satisfy input sampling rates (periodicity) odaleadlines,
otherwise the application may fail leading to a human, egiokld or financial disaster, later on we
shall use real-time by default;

e embedding constraintghey are mobile and rely on limited resources because ofhwesge, energy
consumption, and price limitations;

o distributed and heterogeneous hardware architecttiney are distributed in order to provide enough
computing power through parallelism, but also for the psgyof modularity, and to keep the sensors
and actuators close to the computing resources. Furtherrfearlt tolerance imposes redundant ar-
chitecture to cope with hardware components failures. Eneyalso heterogeneous because different
types of resources, processors, specific integrated ir@AS1C, FPGA), and communications (link,
bus), are necessary to implement the aimed functionalitfele satisfying the constraints. The reader
must be aware that distributed real-time systems are caradity more difficult to tackle than central-
ized ones (only one type of resource), it is the reason whynibst significant results in the literature
are given for this latter case.

Taking all these features into account is a great challetihge,only a formal (based on mathematics)
methodology may properly achieve. Indeed, typical methmd®d on the one hand on specification graph-
ical languages such as SADT (Structured Analysis and DeBaghnique), and on the other hand on C
programming and RTOS (Real-Time Operating System) forrttigeémentation, are not efficient enough to
cope with the complexity of the target applications, maindgause there is a gap betweengpecification
step and themplementatiorstep. However, this does not mean that the application dhaet be carried
out with respect to the constraints, but that the developemele will have a too long duration, essentially
due to the real-time tests which must cover as many casessaiblgo

Therefore, we propose a two steps approach without any ghirey significantly the development
cycle time:

o a formal specification of the application, allowing verificas very early in the developement cycle
in order to eliminate logical errors, i.e. in terms of eventder;

e an optimized implementation guaranteeing the formal pitagseproved during the specification. This
approach relies on graph transformations from the spetificap to the automatic code generation,
noticeably reducing real-time tests.

In this paper we will focus only on the second step by preagrdi summary of several research works
carried out last past years on this subject. Concerning ttiestep, we rely on the well known denotational
semantics of synchronous languages [1] such as Esteraétel 8&gnal or Statecharts. They all offer a formal
framework where it is possible to demonstrate useful ptesewhen specifying applications with critical

3

real-time constraints. Nowadays, commercial tools priaganodern GUI (Graphical User Interface), based
on this semantics, are available on the market. More and mdtsstries in the fields we are interested in,
use this approach in order to specify complex applicatidfe. example, it is well known that several car
manufacturers use Statemate (the tool based on Stat§dhantder to specify their embedded systems, for
sequencing control laws involved for controlling the eregam the brakes, as well as for managing the events
triggered by the user when executing common tasks such asngper closing a door, turning the ignition
key, signaling direction modifications, etc ... SimilaiBcade (the tool based on Lustre) is used to specify
avionics applications. The crucial issue in both casestisadlg a matter of ordering the different operations
necessary to perform each specified functionality. The sk consists in implementing these operations
through software and hardware. At this high level of speaifin, thus very early in the development cycle,
itis possible to verify logical properties such that an eweiti never occur, or will occur only if another event
occurred a specified number of times. In this paper the tsremtis used in a broad sense, ho assumption
is made whether it refers to a periodic or to an aperiodicaigmoth types of signal are considered as a
set of events. These formal verifications are based on “raaustking” techniques [2] using BDD (Binary
Decision Diagram)[[3] for solving these combinatorial geshs. It is important to understand that only
properties in terms of event ordering are demonstratedisnfthmework, and therefore it is not possible
to say that the real-time constraints were satisfied. Howékey prevent from a large amount of errors
found in real-time applications. At this specification lewee may carry out a functional simulation where
the hardware is not actually considered. It is worth notimat in the typical methods mentioned before,
these logical errors are usually discovered during reag-tiests, consequently it is very difficult to find their
causes at the application specification level, mainly beeaf the gap between the specification and the
real-time implementation. This has an heavy price that thaufacturers are tired to pay, it is the reason
why they are ready to invest in new methods and their assattabls.

1.2 Goals

Assuming that an application specification has been peddmvith a language verifying the aforementioned
semantics, and that some logical properties have been derat, the goal of the AAA methodology is
to optimize the implementation of this specification. Thata say, that the implementation will satisfy
the specification in terms of functionalities, and will sétithe real-time and embedding constraints, while
the logical properties shown previously are maintainedis Bipproach increases the dependability of the
application, especially if fault tolerance is specifiedrat level of the application.

AAA stands for Algorithm Architecture Adequation, adeqaatmeaning an efficient mapping of the
algorithm onto the architecture.

In order to achieve our goals, we chose very soon in our relsasorks the “off-line” approach for
optimizing implementations. Indeed, the implementatibmarm application specification onto an hardware
architecture corresponds to a resource allocation prabldmare are two possible resource allocation poli-
cies : “on-line” or “off-line”. It is now generally admittethat “off-line” policies are better suited for critical
real-time, that is to say, when it is mandatory that reaktitonstraints are met, because otherwise dramatic
consequences may occur. These policies have two main agwntfirst they are deterministic and second
they induce very low executive overhead. Thus, even if tlaggeoaches are more difficult to implement
and may be costly in resources, they must be applied in cod®rdid these consequences which may have
an higher price. For the rest of this paper we will assume tmlbis case. Of course, when real-time
constraints are not critical more simple policies are used.

1.3 Definitions

In order to avoid ambiguities, it is necessary to be precismutdefinitions such as application, physical
environment, reactive system, algorithm, architecturglémentation, and finally adequation which will be
used afterwards.

In the AAA methodology, ampplicationis a system composed of two sub-systems in interaction. The
first one calledgphysical analog environmenis controlled by the second one called thgital controller,
because it is assumed to be based on computers. This latteeastive systend] meaning that it must
mandatorily react to the variatioms$(t) of the physical environment state (discrete input for thetiasler
through the analog to digital converter (ADC) of a sens@s,an integer) in order to produce a contydt)
for the physical environment (discrete output of the cdtgrgrovided to the physical environment through
the digital to analog converter (DAC) of an actuator) anda state for the controlleX(t). X(t) andY (t)
define respectively input events and output events conswameédroduced by the reactive system. Both
X(t) andY (t) are functions of the physical environment state and theigus\state of the controllel)(t),
X(t) andY(t) may be vectors) given by the equatldn 1.

(Y (1), X(t) = fU(1),X(t-1)) (1)

Real-time systems are, first of all, reactive systems forctvlai maximum delay must be imposed be-
tween an input event arriving into the system and an outpaiteproduced by the system, in reaction to
this input event. Usually, an output event is obtained franin@ut event processed by operations on which
precedence constraints may be imposed.

There are two kinds of real-time constraints: tagncycorresponds to the duration of a reaction be-
tween an input event and the output event the input triggeletcadencecorresponds to the periodicity
of an input (i.e. the duration between two consecutive reas). The latency refers to the elapsed time
between an input and the resulting output, whereas the cadefers to the sampling rate of an input. In
the general case more than one latency or/and cadenceaintsstire specified.

The reactive system is composed of two parts, the hardw#esl @achitectureand the software called
algorithm We use the term architecture because we are mainly inter@sthe structure of the hardware.
More precisely, we considenulticomponent architectutgecause its structure, which provig#sysical par-
allelism, usually includes sensor and actuator, “programmable coes” or processors: RISC (Reduced
Instruction Set), CISC (Complex Instruction Set), DSP (figSignal Processor), microcontroller (incor-
porating ADC/DAC, real-time clock, etc...), and “non pragrmable components” (application specific
integrated circuit ASIC possibly reconfigurable like FPGA&) interconnected through communication re-
sources. A multicomponent is heterogeneous due to thestyp&e of components, but also different types
of processors and integrated circuits may be used as wellifasedt types of communication resources.

An algorithm is the result of the transformation of an apgiicn specification, which may be more
or less formalized, in a software specification adaptedstdigital processing by a computer or a specific
integrated circuit. More precisely, as defined by TuringdB]algorithm is dinite sequence of operations
(total order) that must be processed in a finite time and witiniee hardware support. We need here to
extend this notion of algorithm in two directions. On the ¢traed we have to take into account the infinite
repetition of reactive systems, and on the other hand we twatake into account parallelism, which is
necessary for the distributed implementation of an algorit However, for each reaction, the number of
necessary operations to produce the control for the pHysizdronment must be finite because real-time
constraints must be satisfied. Consequently, instead dibhdader (sequence of operations) we prefer a
partial order which describegmtential parallelism often called “inherent parallelism”. It is different from
the physical parallelism provided by the hardware. It isthvaioting that when we speak of an algorithm, it
possibly means that it is a set of algorithms, rather thanigueralgorithm.

Embedding constraintsorrespond to the number of processors and communicasonnees, the amount

of memories for a multicomponent, the number of combinatdtinctions in an integrated circuit, its sur-
face, or its power consumption, etc...

Theimplementatiorof a given algorithm onto a given multicomponent architezwonsists in allocating
the architecture resources to the operations defining tiegigim. Architecture resources are mainly the
sequencer of a processor and of a communication resoutdegi ione (otherwise the processor sequencer
is borrowed), and the memories (program and data). Thenaftapilating, resetting the different proces-
sors and loading the different programs, after resettimgsitecific integrated circuits (note that it is only
necessary to allocate their memory because they are natgonogable, i.e. they have been designed only
to perform a specific operation), the application may be fiire implementation of a given algorithm onto
a specific integrated circuit architecture which is to deiae, also consists in allocating the architecture
resources to the operations defining the algorithm. In thé® @rchitecture resources are combinatorial and
sequential circuits created from the algorithm specificageeking for a compromise between the surface
occupied by these circuits and the real-time constrairtte.ifiplementation of an algorithm on a multicom-
ponent corresponds to dardware/software codesignhere the part of the algorithm distributed onto the
processors and the part distributed onto the integrateditsy corresponding to the partitioning, are decided
a priori by the user.

Finally, anadequationconsists in searching, among all the possible mappingsedditiorithm onto the
architecture, for the one which corresponds t@ptimized implementatioWWe use this notion of optimized
implementation although it is impossible to guarantee éimabptimal solution has been found for this kind
of problems (multicomponent or integrated circuit) whidmplexity is said NP-hard (i.e. non polynomial
relatively to the number of algorithm operations and asgititre resources). Hence, it is preferable to obtain
rapidly an approximate solution than an optimal solutioriclvhmay take too much time compared to the
human life. The search for an optimized implementation ierted by, on the one hand the real-time
constraints (latency and cadence), and on the other harehibedding constraints (hardware resources).
If the real-time constraints are impossible to satisfy wiiie potential parallelism is completely exploited
relatively to the physical parallelism, it is necessary todify the algorithm itself in order to increase its
potential parallelism. Note that the adequation is anftitergrocess where the architecture influences the
algorithm and vice versa.

The document is organized as follows: we first present howpéaify an application, that is, the func-
tionalities it is supposed to perform, corresponding to mation of algorithm, the hardware components
that can be used, corresponding to our notion of architecamd the real-time and embedding constraints.
Then, we present the AAA methodology based on graphs moaletkd algorithm, the architecture, and on
graph transformations for the possible implementatiomstha executable codes. We present the optimiza-
tion techniques corresponding to the adequation. Finadfore concluding, we briefly present the system
level CAD software SynDEXx associated to the AAA methodology

2 Application specification

In order to specify an application it is necessary to desdit#functionalities, the hardware which may be
used in order to implement these functionalities, and fintile real-time and embedding constraints the
application has to satisfy.

2.1 Functionalities

Functionalities stand for the operations the applicatias to perform, but also when it is useful, for the data
transfers between operations and/or the informationstabeuelative execution order of the operations and
of the data transfers.

Usually, high level languages, often said “application domoriented”, are used in order to specify the
functionalities the application must perform. Such a laggiis the “entry point” of a programming envi-
ronment (workshop) usually based on a graphic user intef@tJl) which simplifies the user’s work. There
are several possibilities for these languages, but prigsmsideling languages based on object oriented ap-
proach, are the most popular. UML! [6] is the best known of ¢éhalsject oriented languages, and several
commercial programming environments (tools) are proposdtch are more or less application domain
oriented. AIL (Automobile Architecture Implementationiguage) is an example of such a programming
environment defined by the French car manufacturers anddensy and based on a specialization of UML.

However, although these languages are very useful for faps@n purposes because of modularity,
reutilization, genericity, etc, they do not offer a “dertaaal semantics” allowing formal verifications, and
as it will be underlined later on, optimizations. On the othand, even though synchronous languages are
not object oriented languages they have a denotationalrd@saallowing to verify properties in terms of
events ordering, very early in the development cycle. Thihé reason why in the AAA methodology we
chose that the algorithms, directly issued from the apinaspecification, have this semantics. Neverthe-
less, there are works in progress which aim to interface UNth #he synchronous languages Esterel and
Signal, in order to associate in a unified framework the besbth worlds.

2.2 Hardware

We address two kinds of hardware: the programmable comp®aed the non programmable components.
The first kind of components corresponds to general purpasegsors of type RISC and CISC, to proces-
sors oriented towards signal and image processing (DSR) naicrocontrollers, used in complex computers
(parallel machines, multiprocessors) when they are caaddbrough a shared memory or a network using
message passing, and thus providing physical parallelisach processor executes a program performing
a part or the whole specified application. The second kintesponds to ASIC (Application Specific Inte-
grated Circuit), a potentially infinite set of logic gatesnected together in order to perform the specified
application, or to FPGA (Field Programmable Gate Array)matéd set of logic gates the interconnection
of which may be configured more or less rapidly in order to qrenfthe specified application, or only a
part of the application if the number of gates of the FPGA issufficient. ASICs and FPGAS both provide
physical parallelism at the level of each logical gate. Batfus of components may be mixed leading to a
multicomponent. The communications between the diffecentponents, whatever their kinds are, must be
carefully taken into account in order to offer the best peniances because they are crucial in complex mul-
ticomponent architectures. Indeed, it is well known thawvadays performances of parallel architectures
strongly depend on the performances of their communicatiechanisms.

For a programmable component, we are mainly interested isefjuencer because it will execute se-
guentially the set of the application operations that haenkdistributed onto this component. This means
that the potential parallelism of the algorithm must be liya@duced to match with the physical parallelism
of the given architecture. Similarly, the set of data trarsfbetween operations distributed onto different
sequencers, is going to be executed sequentially by the coiation sequencer, if it exists, belonging to
a communication resource, or otherwise by borrowing theaimns sequencer. In the first case operations
and communications may be executed in parallel whereagisdbond case they may not.

Regarding the development process of the applicationyidish noting that the first kind of component
induces flexibility and low cost, whereas the second onedesglperformance but high cost.

2.3 Constraints

As mentioned before, two kinds of constraints may be spekifieal-time and embedding ones. Usually,
application specification languages do not provide suchkipiiies, so these constraints are specified at the

level of the implementation process. Nevertheless, therevarks in progress aiming at specifying at least
real-time constraints at the level of the application sjeation [4]. For example, in the AIL language it

is possible to specify latency constraints between a searwban actuator. Generally these constraints are
called “end-to-end”. Similarly, it is possible to specifypariod for each sensor. Embedding constraints
are usually taken into account in the CAD tools for the spediftegrated circuits. There are only few
approaches which allow to take into account accuratelypéis of hardware resources in the case of multi-
component architectures.

3 The AAA methodology for optimized implementation

The AAA methodology is based on graphs in order to model tigerahm as well as the architecture.
Therefore, a possible implementation of an algorithm omtcagchitecture may be specified as a graph
transformation. The adequation amounts to choose amotigeatiossible implementations (graphs trans-
formations), the one which satisfies real-time and embegddaonstraints, corresponding to the optimized
implementation. Finally, the code generation is an ultangitaph transformation leading to a distributed
real-time executive for the multicomponents and to a stina¢thardware description, e.g. structural VHDL,
for the specific integrated circuits. This graph orientegdrapch relies on a formal framework where it is
possible to describe and verify all the steps from the spatifin to the real-time execution of the appli-
cation. This allows to ensure a high level of dependabili#gduse there is actually no gap between these
steps.

Moreover, if fault tolerance is specified at the level of thpplacation by the user who describes the
redundant computation and communication resources, theraiso possible to automatically add redun-
dant operations and data dependences to the algorithm,grdypth are taken into account during the im-
plementation and the optimization, guaranteeing the beha¥ the application if the specified hardware
components fail. This issue will not be addressed here hauinterested reader may consllt[8, 9].

3.1 Algorithm model
3.1.1 Control and data flow graphs

There are two main approaches for specifying an algorittmacontrol flow and the data flow. In both cases
the algorithm may be modeled by a directed graph [10]. It ésrtteaning given to the edges, which will
differentiate both approaches. Briefly, we remind the reduat a graphV,E) is a pair of sets, the set of
verticesV and the set of edgds, each edge = (v,w) being a pair of vertices, and th&nC V x V. Directed
means that the order of the vertices in the paiw) is considered, whereas in non directed graphs it is not.
A “program flow chart” is a typical example of control flow gtapusually used before programming
with an imperative language like C. Each vertex of such algrapresents an operation which consumes
from, and produces data into variables during its executowl each edge represents an execution prece-
dence relation between the two operations. Actually, ae éxlg sequence control which corresponds either
to an unconditional (back or forth) or to a conditional briaing. This latter is the basic mechanism when
an operation or a subgraph of operations must be conditiforexkample by the result of a test (“if ... then
...else...”). The notion of iteration or loop (“for i=1 to wd. . "), related to unconditional back branching,
corresponds to eemporal repetition(in opposition tospatial repetitionused later on) of an operation, or of
a subgraph of operations. A “state chart” is another comynoséd control flow graph, where each vertex
represents one of the possible states, and each edge réprageansition, from one state to another one,
triggered by the arrival of an event. Each transition leadsxecute an operation which consumes from and
produces data into variables. In both cases the set of aflsedegfines a total order on the execution of all
operations. There is no potential parallelism directlyc#iped in this model, although it might be extracted

from a data dependence analysis through the variables ichvthe operations read and write data. How-
ever, in the general case this analysis is very complicateldnaay conclude that no potential parallelism
is available in this control flow graph. Moreover, there isratationship between the order in which the
operations must be executed, and the order in which thesatapes consume (read) from and produce
(write) their data into the variables. Another way to spegbtential parallelism consists in composing
several control flow graphs which will communicate throubhared variables. This approach is similar to
CSP (Communicating Sequential Processes) [11].

In the basic data flow graph [12] each vertex represents aratige which consumes data before its
execution and produces data after its execution, thusdutiag a relationship between the order in which
the operations must be executed and the order in which thEesatins consume and produce their data.
The data produced by an operation and consumed by anoth@oamesponds to a data transfer. Note that
the notion of variable does not exist in this model; it is es@ld by the notion of data transfer or “data
flow”. This approach is also called “unique assignment” diraj the problem related to shared variables.
Each edge representslata dependendaducing an execution precedence relation between twatipes.

An operation which does not need to transfer data to anofheration is not connected by an edge to this
operation. Consequently, the set of edges defines a padel elation on the execution of all the operations
[13,[14], defining in turn the potential parallelism of thealflow graph. Thdevel of potential parallelism

of a data flow graph depends on the lack of data dependened¢isetsl to all the possible data dependences
in the graph. There are two kinds of potential parallelisiata potential parallelismusually called “data
parallelism” when the operations without data dependeaceshe same (i.e. the same operation is applied
to different data), andperation potential parallelisprusually called “task parallelism” when operations are
different. Furthermore, because edges represents dasfers, hyper-edges (n-uples of vertices) are needed
rather than edges (pairs of vertices) when it is necessapdoify that a data produced by an operation is
consumed by more than one operation, corresponding to aliftsion. This category of graph is called
“hyper-graph”. Finally, a data flow graph is “acyclic’ meagithat any path in the graph, formed by a
succession of vertices and edges, must not have the sareeiids which would produce a cycle. Cycles
must be avoided because they introduce indeterministiavdehin the graph execution.

3.1.2 Factorized conditioned data dependence graph

The algorithm model [15, 16, 17] used in the AAA methodolodipvas to specify potential parallelism,

to ensure coherence between the execution order of thetmperand the way they consume and produce
data, to avoid shared variables which are the source of raumearrors. This model is an extension of the
basic data flow model in three directions. First we need teaepfinitely and finitely a data flow graph
pattern in order to take into account respectively the neaetspect of the real-time systems and potential
data parallelism. Second we need to specify “states” whemdigpendences are necessary between infinite
repetitions. Third we must be able to condition the executibseveral alternative data flow graphs accord-
ing to the value transfered bycantrol dependenceMoreover, this model follows the synchronous language
semantics/[1], that is, physical time is not taken into actouRegarding one reaction of the system, that
is, one data flow graph pattern of the infinite repetitions timeans that each operation produces its output
events instantaneously with the consumption of its inpuésnes which must be present altogether. Conse-
quently it means that this data flow graph pattern is instetasly executed. The successive executions of
the data flow graph pattern introduces a notion of “logicatant”, using an additional precedence depen-
dence (without data) between each repetition of the datadlawh pattern which ensures that a reaction
will complete before another one begins. Each input or dutpan operation carries an infinite sequence
of events taking values which is called a “signal”. The unidmll the signals define a “logical time”, such
that physical time elapsing between events is not congidéni@ally in order to limit the complexity of the
graph, our model ifactorized that is, only the repeated data flow graph pattern is reptegdenstead of all

its repetitions (infinite or finite), leading tofactorized conditioned data dependence graph

When an application is running, the reactive system (cdiatrof equatior 1) is infinitely repeated in-
teracting with a physical environment through, let us sagitaplify, one sensor and one actuator. In order
to specify the maximum of potential parallelism, it is p&dsito “unroll” this infinite temporal repetition
(iteration) in an infinite spatial repetition, assumingtthaexists an infinity of sensors and actuators. This
allows to model the algorithm corresponding to the corgradls an infinitely repeated data flow graph pat-
tern. However, in order to simplify its large specificatiginis only necessary to describe one instance of
this data flow graph repetition, and then it is saifinitely factorized When an instance of the factorized
data flow graph needs a data produced by an operation begptogaprevious instance corresponding to an
inter-repetition data dependence, this induces a cycletwinust be mandatory avoided (acyclic graph) by
introducing a specific vertex callatklay It is equivalent to the well knows " used in control and signal
processing theory. The set of all the delays memorizes gwitim state. Actually a delay is equivalent to
two vertices containing a memory: one vertex without predsor and one vertex without successor. The
value contained in the memory of the latter vertex is copmeithé other memory at the end of each reaction
(data flow graph pattern execution). Moreover, another rdge of the data flow approach, is that the
algorithm state is clearly localized in the delay vertiogbereas in the control flow approach it is spread
out in all the variables. This issue is especially importahen dealing with control and signal processing
algorithms where state must be carefully mastered. It i3 péssible to repeat spatially an operation, or
a subgraph of operations| times (finitely), but represented as a single graph with allaidicating the
number of repetitions, and then is s&ldimes factorizedWhen each operation, or subgraph of operations,
concerns different data, this spatial repetition providigs potential parallelism. This is the data flow equiv-
alent of unconditional back branching in control flow grater i=1 to n do ..."). If data dependences
between the consecutive repetitions are necessary (gpetition data dependences), this would cause cy-
cles when factorizing, therefore a specific vertex caltethte must also be introduced, equivalent to the
delay necessary for infinite repetition seen previoushthis case there is no potential parallelism because
each inter-repetition data dependence induces an exequiszedence. Note that factorized specification
does not change anything about the semantics of the spéofficé is only a way of simply represent com-
plex graphs but potentially with parallelism. Later on dgrithe implementation process, it will sometimes
be necessary to transform a spatial repetition in a tempeypatition, or vice versa depending on the type of
optimization the designer aims at. Finally, a vertex may dieditioned by the value transfered on its con-
trol dependence if it owns one. This conditioned vertex ecded as a set of alternative data flow graphs
and the value transfered on the control dependence inditiaeone to execute during the reaction. This
is the data flow equivalent of conditional branching in cohflow graph (“if ...then ...else ...” or more
generally “case ...of...").

Therefore, the algorithm which corresponds to the decoitippf the controller (equationl 1) in a set
of data dependent operations, is modeled by a factorizedittmmed data flow graph where each atomic
(impossible to distribute on several resources) vertegiiher an operation performing computations (cal-
culations) without side effect (the output only dependshefinput, no internal state, no internal sensor or
actuator), or dactorizer There are four types of factorizer. For each instance osgatial repetition, the
Fork (F) provides separately each element of the vector it has intinfthe Diffuse (D) operates like a
fork but all the elements of the output vector are identidates there is a unique data in input. Thein
(J) takes the result of each instance of the spatial repet#r@hprovides as output the vector composed of
the separate elements. Finally tkerate (1) provides inter-repetition data dependences (tempopaititeon
equivalent to a finite iteration).

The figure 1 presents the algorithm graph performingtenative matrix-vector produatorresponding
to the infinite repetition of a matrix-vector produetV. The input vectors which has three elements,
is produced by a sensor, and the input 3 matrix is produced via a delay by the result of the matrix-
vector products_1 performed during the previous- 1 infinite repetition. The result of each matrix-vector

10

product is also sent to an actuator (data diffusion). Thedigupresents the subgraph performing one of
the three matrix-vector products. It corresponds to thegetitions of the scalar produdt The figure
presents the subgraph performing one of the three scatdugis. It corresponds to three repetitions
of the operations multiply-accumulate. This subgraph hesetinter-repetition data dependences in order
to perform an accumulation from the result of the sum peré&afrduring the previous repetition, locally
preventing from potential parallelism specification.

1

Figure 3: Subgraph V (3 times repetition of multiply-accuate)

There are two ways for obtaining such an algorithm specifinalOn the one hand the user may directly
input the factorized conditioned data flow graph throughgtaphical interface of the system level CAD
software SynDEXx as explained in sectidn 4. On the other handdy import this graph from one of the ap-
plication specification languages interfaced with SynDike, presently one of the synchronous languages

11

Esterel and Signal, SyncCharts a state diagram language dGtatecharts, Scicos a free software control
theory oriented language close to Simulink, CamlFlow and #wo image processing languages, and AlL
close to Titus.

3.2 Architecture model
3.2.1 Multicomponent

The most typically used models for the specification of paralr distributed computer architectures, are
PRAM (Parallel Random Access Machine) and DRAM (DistrilbuRandom Access Machine) [18]. The
first model corresponds to a set of processors communicdttaythrough a shared memory, whereas the
second model corresponds to a set of processors with its at@maemory (distributed memory), communi-
cating through message passing. Although these modelsivbeusufficient for describing the distribution
(allocation) and the scheduling of the algorithm operatimrihe case of homogeneous architecture, they are
not precise enough for dealing with heterogeneous ar¢hitesand with the distribution and the scheduling
of the communications which are, as mentioned before, aktior real-time performances. Furthermore,
we also need to take into account specific integrated ciraaihsidered as non programmable components
possibly communicating with other components whatever #ieds are. The main difference between a
programmable component and a non programmable compoisanity the fact that only a unique operation
may be distributed (allocated) on a non programmable coemipmwhereas on a programmable component
a set of operations, which must be scheduled, may be disdbu

Thus, our heterogeneous multicomponent maddel [19] is anted graph, where each vertex is a se-
guential machine (automaton with output) and each edgeadsiaection between the output of a sequential
machine and the input of another sequential machine, thusirig a network of automata [20]. There
are five types of vertices: thaperatorfor sequencing computation operations, tdeenmunicatorfor se-
guencing communication (DMA channel), thneemoryfor memorizing data or program, and finally the
bus/mux/demuxBMD) with or without arbiter for selecting from and diffusing data toward a memory.
When there is an arbiter in a bus/mux/demux/arbiter, thisisralso a sequential machine deciding which
resource will access to a memory, which is, in this case, eedh@source. The bus/mux/demux and the
memory are considered as degenerated automata. Thereaatgpws of memories: RAM memory with
random access for storing data or program, and SAM with se@l@ccess for storing data, maintaining
their order, when they must be communicated from an opecatarcommunicator to another operator or a
communicator. The different types of vertices may not beneated in whatever manner, a set of connection
rules must be verified [19]. For example two operators musbedlirectly connected and identically for
two communicators. In order to communicate data, an openaiist be at least connected to a RAM or a
SAM, connected in turn to another operator. When computatamd communications must be decoupled,
communicators must be inserted, between operator and rgemloatever its type is. Heterogeneous ar-
chitecture does not only mean that vertices have differbatacteristics, for example different execution
durations for a given operation executed on an operator @tatdansfered through a communicator, but
also for example, that some operations may be executed gngpoime specific operators, or some data
must be transfered only by some specific communicators. dllues, among other possibilities related to
the architecture characterization described later ondtid3.2.2, to take into account specific integrated
circuits, which are only able to execute a unique operation.

A basic processor may be specified as a graph containing @matop one data RAM, and one program
RAM, all interconnected. If this processor has been desidaeparallel architecture, it may also contain
one or several communicators with the corresponding datil RASAM for communications. A direct
(without routing) communication resource between two pssors, may be specified as a linear graph com-
posed of the vertices n-uple (bus/mux/demux/arbiter, RANBAM, bus/mux/demux/arbiter). Typically,
the RAM vertex is used to model a communication by shared mgmadnereas the SAM vertex is used to

12

model a communication by message passing through a FIFOn\Weecomputations must be decoupled
from communications, some communicators must be addethtpéalthe n-uple (bus/mux/demux/arbiter,
communicator, RAM or SAM, communicator, bus/mux/demubiter). Arouteis a path in the architecture
graph connecting two operators. It is composed of a list obdadge, vertex) plus an edge. A communi-
cator allows data to cross through a processor without neguits operator (“store and forward”). Several
parallel routes may be specified in order to transfer dataanallel, but these routes may be of different
length (number of elements in the route).

This model, well adapted to the optimizations presentest ka in the paper, allows to specify architec-
tures with more or less details. But it is important to be amaat the more detailed the architecture will
be, the more the solution of the optimization problem wikgdime to be found.

The figurd 4 presents the detailed model of the DSP TMS320@40 Texas Instrument, obtained from
the Data-Book([2[1]. Here all the connections between thécesr are bi-directional, then for the sake of
readability we have represented each pair of arrows by asisggment. The CPU, including its sequencer,
its memory controller, and its arithmetic and logic unite aepresented by an operator. Since it is able to
simultaneously access two internRD(andR1) and/or externalRoc andRgyion) memories modeled by RAM
vertices, it is connected to two bus/mux/dembX éndb8) which select the appropriated memory. Because
these memories may also be accessed by one of the six DMA elsamodeled by communicatorSX to
C6), each communicator is connected to the memories by a busdemux/arbiter 9) which arbitrates
among the communicators. Each point-to-point commurtingpiort is modeled by a SAM which may be
accessed either by a DMA or by the CPU, here the operator. pheator and the communicators may
access the external RARy. using the arbiter of the bus/mux/demux/arbitetX). The operator and the
communicators may access the external RRiyb, using the arbiter of the bus/mux/demux/arbitbi Z).
Each of the six bus/mux/demuk(to b6) selects either a SAM or the external RARy(), for each of the
six communicatorsGl toC6). The bus/mux/demub(0) selects one of the six SAM accessed by the CPU.

The figurelb presents the model of a complex architecture osetpof four TMS320C40 communi-
cating, on the one hand by point-to-point links, and on agotiand by a shared memorgy(on). Then,
although the same type of processor (operator) is usedsrexaimple, this is an heterogeneous architecture
relative to the communications which are of different tydeach processor has its own local memdry().

The figurd_6 presents a less detailed version of the previmhstecture. It is obtained by encapsulating
in a unigue operator the graph given in figlire 4, leading to eersimple description of the architecture.

3.2.2 Architecture characterization

The optimization process described in detail in sedtiof 8.4ased on the multicomponent architecture
characterization, meaning that to each operator and comcaton is associated the set of operations it is
able to execute. Furthermore, to each operation is asedcitd execution duration, the amount of memory,
the power consumption, etc..., it requires. For examplexRe) of a DSP is able to execute a multiply-
accumulate operation in one clock cycle, and a FFT (Fastrleourransform) in several cycles. Similarly,
the DMA of a DSP associated to a point-to-point link is ablérémsfer data in a specific time, and an array
of the same data in a time proportional to the number of datiatsfer, plus a set-up time. The arbiter of a
bus/mux/demux/arbiter has a crucial role, it is charantetiby a table of priorities and a table of bandwidths
which has as much elements as connected edges. The valbhes@&lements are used to determine during
the optimizations which of the operators and/or communisawill access the memory and with which
bandwidth.

Each integrated circuit of the architecture is characterigeparately by associating to each vertex and
edge the execution duration relative to the chosen techgpolo

13

\ :

NN

\ \‘\\2
AN

bl Biob
RO,R1 : internal shared RAM memories -
RiocRglob : €xternal shared RAM memories

C0 a C6 : communicators

S1 a S6 : SAM memories

bl a b8, b10 : bus/mux/demux

b9, b11, b12 : bus/mux/demux /arbiter

Figure 4: TMS320C40 architecture graph

3.3 Implementation model

In this section we present how to describe all the possibfgementations of a given algorithm onto a given
multicomponent, in intention rather than in extensionnggraph transformations. Performing an imple-
mentation is mainly a matter of reducing the potential paliaim of the algorithm according to the physical
parallelism of the architecture. More precisely, it cotssisdistributingandschedulinghe operations of the
algorithm onto the architecture which has been alreadyacharized. We use the term distribution instead
of “placement” or “allocation”, which are commonly emplalen order to refer to distributed systems.

3.3.1 Distribution and scheduling

The distribution and the scheduling are formally detailedli6]. The distribution consists in performing

a partition of the initial algorithm graph, in as much elenseof partition as there are of operators in the
architecture graph. Then, each element of partition, i&hecorresponding subgraph of the algorithm
graph, is distributed onto an operator of the architectuegly This amounts to label each subgraph with
the name of the operator it has been distributed onto. Remethbt only a unique operation may be
distributed onto an operator representing a specific iatedrcircuit in the considered multicomponent.
Then, a partition of the data dependences of the algoritreplgbetween operations belonging to two
different elements of operations partition must be pertamn as much elements of partition as there are of
routes in the architecture graph. Each element of paritieneach set of corresponding data dependences
of the algorithm graph, is distributed onto a route of thehaecture graph. This amounts to label each set

14

: TMS320C40 - 1 - TMS320C40-2

* | operator

Figure 5: TMS320C40 quadri-processor architecture graph

of data dependences by the name of the route it has beeidlisttionto. Finally, for each data dependence
which connects two elements of operations partition (ipatition edge)communication operationsiust

be created and inserted. There are as much communicatioatiops as there are of communicators in
the route the data dependence has been distributed ontee tbtite does not contain any communicator,
like in a direct communication resource using a shared RAM,not necessary to create a communication
operation. Indeed, in this case the operator performs tteetdansfer. Altough, the drawback is that no
parallelism (decoupling) is possible between computatiamd communications, since the operator is also
required to perform data communications. Actually, eacimmainication operation is composed of two
vertices. In the case of a SAM it corresponds teeadvertex and aeceivevertex. Thesendis executed

by the communicator which sends the data to the SAM, andeteiveis executed by the communicator

operator 7@7 operator

operator 7@7 operator

Figure 6: Simplified TMS320C40 quadri-processor architecgraph

15

@ D
(actuator)

Figure 7: Basic example of an algorithm graph

(a)

‘processorl ~ processor2

® " [opt +Ri-Con] (5} oozl (R2 OB]

Figure 8: Basic examples of architecture graphs

which receives the data from the SAM. Similarly, in the caka BAM it corresponds to write vertex and
areadvertex.

The scheduling consists in transforming the partial ordehe corresponding subgraph of operations
assigned to an operator, in a total order. This “lineariratf the partial order” is necessary because the
operator is a sequential machine which executes sequegritial operations. Similarly, it also consists in
transforming the partial order of the corresponding sutlgraf communications operations assigned to a
communicator, in a total order. Actually, both amount to addes, callegirecedence dependencés the
initial algorithm graph.

Finally, memory allocation is also necessary in order te tiako account, on the one hand the program
memories used to store each operation, and on the other Iamdiffers necessary to transfer data from an
operation to another operation distributed onto the saraeatgr. Theralloc vertices must also be added for
each operation and for each edge in order to be distributemlitbe program and the data RAM connected
to the operator.

The distribution, the scheduling and the memory allocalienl to thamplementation graph

Figure[9 shows a simple implementation example of the dlgorigraph presented in figuké 7 onto
the architecture presented in figlide 8-b. Such an implertientgraph is automatically generated from
the results of the optimization heuristic given in the nes¢t®n. In this example we wam, B andC
to be executed b prl andD executed byOpr2. Consequently two pairs of communication operations
(sengp,receivggp and sengp,receivep) must be inserted and associatedCtoml andCon® in order
to realize data transfers on the shared S&NB-a). Allocation verticesdllocag, allocgp, allocac ...)
have also been added in order to model all required memoogadibns [(P-b). Since operatiomsand
C, which are not dependent, are distributed onto the samempean order of execution must be chosen
between them. Notice that in this example, in order to sipplie figures, we do not take advantage of the
potential parallelism between operatiBrandC. They should have been executed in parallel if distributed
onto different operators. Thus, we add a precedence dependelge betweeB andC, and a precedence
dependence edge betwesngp andsen@p because they are scheduled on the same communi@aidir,
and symmetrically a precedence dependence edge beteaswegp andreceivep executed oon?. This
corresponds to the bold arrows of figlite 9-c.

16

- processorl

[Opri R

a) Distribution: partitionning & communication vertices
B
,7IR1

1S
b) Distribution: insertion of allocation vertices

alloch alloc
B /IR1 B
N~ TRl
1B

/R

c) Scheduling (bold arrows) /s

Figure 9: Example of implementation graph

17

Hence to summarize, the set of all the possible implememsitof a given algorithm onto a given
architecture may be mathematically formalized in intemtias the composition of three binary relations:
namely therouting, the distribution and thescheduling Each relation is a mapping between two pairs of
graphs (algorithm graph, architecture graph), from the&gek G, on the setG, x Ggr. It also may be
seen as an external compositional law, where an architegraph operates on an algorithm graph in order
to give as a result a new algorithm graph, which is the inaiglorithm graph distributed and scheduled
according to the architecture graph. In this case this isgping from the seG, x Gy on the sets,).

Given an algorithm and an architecture graphs, there is & finimber of possible distributions and
schedulings[[22]. Indeed, it is possible to perform différpartitions with the same number of elements
(namely the number of operators), and for each subgraphreskio an operator, it is possible to perform
different linearizations, and identically for the commeation operations relative to the routes and the com-
municators. But this leads to a very high number of possiblalinations. However, it is necessary to
eliminate all the schedulings which do not preserve thecklgiroperties, remember in terms of ordering,
shown with the synchronous languages as mentioned befbigamounts to preserve the transitive closure
[22] of the partial order associated to the initial algamitigraph when the relation “scheduling” is applied.
Moreover, the partial order of the resulting algorithm drawhich corresponds to a reduction of the poten-
tial parallelism, must be compatible with the partial ordéthe initial algorithm graph. Note that there is
no such problem when the relation “distribution” is applied

Our implementation model, callddacro-RTL may be seen as an extension of the typical implementa-
tion model called RTL (Register Transfer Level) [23]. An agi#on of the algorithm graph corresponds to
amacro-instruction(a sequence of instruction instead of one instruction) arralinatorial circuit. A data
dependence corresponds tanacro-register(several memory cells). The consumption and the production
of data by an operation corresponds to a data transfer betreggsters through a combinatorial circuit.
This model encapsulates details relative to the instrostiget, the micro-programs, the pipe-line, and the
cache. In that way it filters these characteristics too diltfito take into account during the optimizations.
This model has a reduced complexity well adapted to the mgiichization algorithms we aim at, however
giving accurate optimization results.

3.3.2 Impact of the granularity and potential parallelism

A given algorithm offers a granularity relative to the numbg&operations (vertices) and data dependences
(edges) itis composed of, and a level of potential paralelielative to the lack of data dependences relative
to all its possible data dependences (pairs of verticesls dbvious that these two parameters are inter-
dependent. This issue has consequences in terms of passiidementations. If the number of operations
and data dependences is not sufficient enough relativehetaamber of hardware resources (computation
and communication sequencers), it is not possible to baleorgectly the load on each resource. Similarly,
if the level of potential parallelism is low, there is not eigh degree of freedom when reducing the potential
parallelism in order to match the physical parallelism & #nchitecture. On the contrary, if the number of
operations and data dependences is too high, then eachioperad data dependence encapsulates only
few details, because in this case it has generally a low cexitp| leading to a less efficient filtering of the
characteristics difficult to take into account. On the ottend, the high level of potential parallelism leads
to a huge number of possibilities when reducing the potepdigallelism in order to match the physical par-
allelism. The impact of the granularity and potential pl@tem is discussed in detail in [24] for an example
of image processing. It is shown that an a priori choice ofgtaularity and potential parallelism may be
modified if the real-time constraints are not satisfied. |s tase, some operations must be decomposed in
several operations, possibly with potential parallelism.

18

3.4 Optimized implementation: adequation
3.4.1 Principles

An adequation consists in searching, among all the possifgidementations of the algorithm onto the
architecture, for the one which corresponds to an optimizgdementation relatively to the real-time and
embedding constraints. The optimization problems consdlin this paper, that is, the minimization of the
latency and/or the cadence when the architecture is fixeltheminimization of the architecture resources,
are NP-hard problems [25].

Because it is impossible to obtain an exact solution in aorede time relatively to the human life, we
use heuristics which are rapid enough and give a solutiotoas as possible to the exact (optimal) solution.
In the case of complex applications involving control, sigand image processing, “rapid prototyping”
is necessary. Such heuristics are well suited in order tollsafest several variants of an implementation
relatively to the cost and the availability of the hardwapenponents, and also relatively to the addition of
new functionalities. It is the reason why we first use “defearstic greedy” heuristics, i.e. no random choice
and no back-tracking, and especially its “list schedulimgfsion because they rapidly give a result with a
good precision[[26]. A solution obtained with this kind ofunistics may be improved by back-tracking
[27], such that the choices are modified locally or globallyew elaborating a partial solution, according to
the so-called “neighborhood” techniques. However, thigllof heuristics is dramatically slower. Finally, in
order to improve again the quality of the solution, it may fbéurn used as an initial solution for stochastic
heuristics, i.e. where random choices allow to go from ohgtiem to another one. Actually these heuristics
are very slow, but are more precise mainly because they doad minima that the deterministic ones do
not avoid. Because we are dealing with heuristics, it is aitgresting to exploit the user’s skills, who is
able to restrict the search space by imposing distributioscheduling constraints in order to avoid “bad
tracks” leading to local minima.

The heuristics optimizing the latency are based on thei€afipaths” of the algorithm graph labeled
by the durations, not only of the operations relatively ® piossible operators but also of the data transfers
relatively to the communication resources, whereas thesims optimizing the cadence are based on its
“critical loops”, i.e. the cycles in the algorithm graph taiming delays, leading to pipe-lining and re-timing
by just moving these delays. To optimize simultaneously iaddpendently both latency and cadence is a
very difficult problem. It is the reason why usually, one igfbwhile the other is intended to be optimized.

3.4.2 Example of adequation heuristics

In this section we present an efficient deterministic grdistiyieuristics optimizing one latency which takes
accurately into account inter-processor communicatiohghvare often neglected [28]. Its efficiency has
been compared in_[27] relatively to heuristics of the sammeilfa We assume that there is only one input
at the beginning and one output at the end of the algorithmphg(i is easy to transform the graph if this
is not the case), and that the cadence is equal to the latEocyhe sake of simplicity, we do not take into
consideration the conditioning and the memory capacity.rddeer, subgraph repetitions are assumed to
be entirely defactorized. The reader interested in theseessmay consult [16], [19]. We have works in
progress to take into account several constraints e.graddaencies and cadences [7].

Here are the principles of the heuristics which tends to ttoasa global optimum from several local
optima while the distribution and the scheduling are penfedt simultaneously. It iterates on the €gtof
schedulableoperations in the algorithm graph. An operation not yet dalesl becomes schedulable when
all its predecessors, excluding the delays, have alreagly beheduled. InitialyOs is composed of all the
operations which are either input or which have only dela/pr@decessors. During an iteratioaf the
heuristics, one of the schedulable operatiorad an operatop onto which this operation will be sched-
uled, are chosen using a cost function detailed in the netiose p belongs to the set of operatorsof

19

the architecture graph. Consequently, some successardetome in turn schedulable. The iteration is
repeated untiDs = 0 and then, each operation has been distributed and schealiedn operator after

a complete exploration of the initial partial order asstemdato the algorithm graph, thus leading to a new
compatible partial order. When an operation is scheduléol @moperator after an operation which is not its
predecessor, this amounts to modify the initial partiabotay adding a new edge which is only an execution
precedence (no data is transfered since there were no etlgeeeboth operations). If an operatioris
scheduled onto an operatprand if its predecessa’ has been scheduled onto a different operatpit is
necessary to choose a routgoining p and p’ (a path in the architecture graph), and to create and insert
betweeno ando’ as much communication operations as there are of commigriaasources composing

r, and to schedule each communication operation onto thegmwnding communicator of the communica-
tion resourcan. When a communication operation is scheduled onto a conuation resource, this also
amounts to modify the initial partial order by adding a newgedavhich is only an execution precedence
(no data is transfered between both communication opesgtidt is worth noting that on each operator
and on each communicator of a communication resource wenodteotal order which is compatible by
construction (it is ensured that an operation is schedutdyl after its predecessor) with the initial partial
order. However, we obtain globally a partial order, the apiens on different operators as well as the com-
munications operations on different communicators mayxeewted in parallel, which is also compatible
with the initial partial order. This principle guarantebsatthe complete execution of the operations and of
the communications will never cause a deadlock.

Cost function

The goal of the heuristics consists in minimizing the lateand here the latency is equal to the critical path
of the algorithm graph labeled by the durations of the op@natand of the data transfers because we only
have one input at the beginning and one output at the end gf#d. The cost function is defined in terms
of the start and end dates of each operation. We denafgdyy) the execution duration of the operation
belonging to the algorithm grapBal, and byp the operator belonging to the architecture gr&ar which
execute®. (0) is the set of the successorsmfindl’ ~ (0) the set of its predecessors. For each schedulable
operation and for each operator where it is possible toiblige and schedule this operatidRthe partial
critical path,S(0) andE(0) (resp. S (0) et E~(0)) the earliest start and end dates of execution from the
beginning of the graph (resp. from the end of the graph),Fa the schedule flexibility are processed:

So) = Xerrr]a(x E(x) (or0ifl (o) =0)
E(0) = S0)+A4(o,p)
E~(0) = XrenraxS(x) (or0ifI(o) =0)
S (o) = E(0)+A(0)

R - e - mas)
F(oo = R—E(0o)—E (o)

Note the symmetry in the formulas, the dates are processaiilvedy to opposite directions and origins:
min S(0) =0= mci;nIE*(o). Note also that, often in the literature [28}= ASAPandR— S~ = ALAP. The
ocGal

oeGal
schedule flexibilityF (0) represents the freedom degree of an operation, i.e. a ti@eahinside whicho

may be executed without increasing the critical path.

When the heuristics considers an operatiprall its predecessors have already been distributed and
scheduled, but no successor has already been scheduled,. WienE~ andS~ are processed must be
defined independently of all operators. The execution duratf an operatioro which is not yet scheduled
is defined as the arithmetic mean of all its possible exesutizations on the sét(o) of the operators able

20

to executeo:
K(o) = {p € Gar|A(o, p) is defined
1

A0) = CardK(0)) Ao, p)

peK (o)

When an operation is scheduled onto an operatprit is scheduled after all the operations previously
scheduled ontg, its execution duratiosA(0) becomed\(o, p) , and for each predecesswrof o scheduled
onto an operatop’ # p, communication operations must be created and inserteeebab ando’. These
communication operations must also be distributed anddsitée. Consequentlyg(o) as well as the critical
pathRwill have greater or equal values (when no communicatiore¢ensary) but never smaller, becoming
S(0) andR in order to indicate that communications may have been takteraccount.

The cost functioro(o, p) called theschedule pressuris the difference between treehedule penalty
P(o) = R — R (critical path increase) and the schedule flexibikt{o) before the critical path increases:

o(o,p) = P(0) — F(0) = S(0) +A(o,p) +E~(0) — R

o(o, p) is an improved version of the commonly used cost funcidn) which is extended by(o).
Indeed, wher8(0) (taking into account possible communications) increaséscoming more and more
critical F(0) decreases until being null and then remains n&l{o) which until now was null begins to
increase. Finally (o, p) which is the composition df (0) andP(0), is a function which increases continu-
ously. Note thaf (0) depends ofiR (taking into account possible communications) which maglilferent
at each iteration of the heuristics, wheregs, p) does not depend dR which remains the same whatever
the iteration is. Then, it is not necessary to process theevafiR at each iteration.

Choice of the best operator

The best operator p(0) for a schedulable operatiamis either the operator on which, the user has con-
strained the operation to be executed (distribution caimgs), or the operator which gives the smallest
schedule pressure, i.e. the greater schedule flexibilidytla@ smaller schedule penalty (increase of critical
path). If several operators lead to the same results oneof th randomly chosen:

Ipm(0) | (0, pm(0)) = prgggrc(o, p)

On the other hand, the schedulable operation which is thé ingsnt to schedule onto its best operator,
is the operation with the greatest schedule pressure,auittestart date is greater than the date of another
schedulable operation which can be executed before. kisetison why practically it is necessary to restrict
Os to:

O,={0 €05 | Sn(d)< minEmn(0)}

0€0g

whereSy(0) andEy(0) are the respective values 8fo) andE (o) for o scheduled onto its best operator

Pm(0).
Finally, the operation chosen at each iterationisuch as:

Jom | 0(Om, Pm(Om)) = EQ%IXG(O, Pm(0))

If several operations lead to the same results one of thean@omly chosen. The chosen operator is
pm(om) the best operator on whidh, is scheduled.

21

Creation, distribution and scheduling of communications

When an operatiomw is scheduled onto an operatpy each data dependence between this operation and
one of its predecessors € [~ (0) already scheduled onto an operafor~ p, is aninter-operator data
dependencerFor each of these dependences, it is necessary to choaste auttch will support the transfer
of the data produced hy in the local memory ofY to the local memory op in order to be consumed hy
The transfer is achieved through the different commurocatesources composing the route.

The number of possible routes (path in the architecturehjraqay be large for complex architectures,
and consequently the choice of the best route may take amegytime because it is necessary to compare,
for a data dependence to transfer, all the possible casdstobdtion and scheduling in all the communi-
cators of the route. In order to reduce this time the heusgierforms an incremental choice usmgting
tables This method is described in details in [28]. Briefly, for bamperator the shortest routes (minimum
number of communication resources) between this operatbakthe other operators, is determined. These
shortest routes and the first communication resource ofdhig are memorized in its routing table. If there
are several possible routes between two operators withatime sninimum number of communication re-
sources, these routes, callgdrallel routes are memorized. Then, each time the heuristics has to ¢galua
the cost of an inter-operator data dependence, for eachtoperf the route p’, p) it chooses in the routing
table among the possible first communication resouna# the shortest routes from this intermediate op-
erator andp, the one which first completes the communication operatiobhis communication operation
may be either another communication operation which has pesviously scheduled onto because it has
to transfer the same data (this is the case of a data diffusimg the same first part of the route),ais a
new communication operation that must be created and @tserthe algorithm graph between the previous
communication operation in the route @rat the beginning of the route) anndc must be scheduled onin
by adding a precedence dependence between the last conatmumigperation scheduled ontobeforec,
andc. The heuristics proceeds like this untiis reached. This approach allows to take into account on the
one hand parallel routes in order to balance the load of thexamication resource, and on the other hand
the possibilities to reuse already routed communicatienglang to needlessly duplicate communications.

3.4.3 Resources minimization

In the previous section we assumed that the architectugghgsagiven and then, all the resources like
operators, communicators, etc, are also given, as welkagdly they are interconnected. In this case we aim
at exploiting the architecture resources as good as pessilowever, in some cases it is possible to decrease
the number of resources while satisfying the real-time waitds. Therefore, an iterative process may be
set up, where the user tries to decrease the number of resoamd verifies if the real-time constraints are
still met.

3.5 Executives generation

Here, we only present the main principles of the executiee®ation for multicomponent architecture. The
code executable in real-time, is the result of an ultimatmhrtransformation of the implementation graph
obtained after the optimized distribution and scheduliegadibed previously. The graph transformation and
the obtained code are detailed[in|[19] 30].

As soon as a distribution and a scheduling have been chdsanstto say determined “off-line”, it is
possible to automatically generate dedicated real-tirsgiliited executives. They are mainly static with a
dynamic part only for taking into account conditionings alhdepends of test values only known when the
application is executed in real-time. From the same infaiona, it is also possible to configure the fixed
priorities of a set of tasks scheduled by a standard RTO&, Viktx, Irmx, Virtuoso, Lynx, Osek, RT-Linux,
etc... However, this approach although it should allow tbe of COTS (Component Of The Shelf) which

22

may reduce costs, will obviously decrease the performahbgescreasing the overhead of the executives.
Note that in both cases we use an “off-line” approach, wélesito real-time applications which need to be
deterministic.

The dedicated executives are mainly based on the one ham@ @edquencing, possibly conditioned, of
the algorithm operations distributed on a particular pssog and on the other hand on an inter-component
communications system without any deadlock by constroctmsuring a global synchronization between
all the operations running on different processors. Thithésreason why we chose the hame SynDEX,
acronym for Synchronized Distributed Executives, for thetam level CAD software presented in section
[4 which implements the AAA methodology. Deadlocks due t@adkipendence cycles are detected during
the algorithm graph specification and during the graph foamstions, taking into account the architecture
graph, and leading to the implementation graph.

The algorithm graph specified by the user, possibly througiigh level language (perhaps perform-
ing verifications), is transformed during the optimizedtrisition and scheduling, avoiding cycles since
its partial order is reinforced without introducing any ke:c Similarly, the implementation graph is also
transformed in order to produce the executives, by addirntheédmplementation graph new vertices and
their corresponding edges. In order to satisfy the read-tiimaracteristics of the algorithm, each executive
includes an infinite repetition due to the reactive natur¢hef applications, and synchronizations which
ensure that the data communications will be executed, withoy deadlock, according to the scheduling
chosen by the optimization heuristics. This preservesabieal properties shown with the high level spec-
ification languages when some are used. The synchronizafierations guarantee execution precedence
between computation operations and communication opesatielonging to different sequences, sharing
data in mutual exclusive access. Each synchronizatioratiperuses a semaphore automatically generated.
In [19] it is shown with Petri nets that these semaphoresvalle executives to verify the partial order of
the initial algorithm graph.

There are as many generated executives as there are of gorcelSach executive file ismaacro-code
which is independent of the processor type. It is composedlist of macros which will be translated by a
macro-processor, for example the Gnu tool “m4”, using thereyriate definitions of macros, into a source
program (C, assembler, etc...). Then, each of these sotrgeams will be compiled and linked, and finally
loaded and executed on the target processor in order to ngaifime. The definition macros which are
dependent of the processor, are of two types. The first one exiensible set ofpplication definition
macrosdescribing the operations behavior, e.g. an addition orter.filThe second one is a fixed set of
system definition macratescribing the application support: loading and initatian of program memory,
management of data memories, sequencing (conditional rrc@hditional branchings respectively for con-
ditionings, and finite and infinite loops), inter-procesdata communications (send, receive, write, read),
synchronization inside a processor between a sequencargiutations and one or several sequences of
communications, synchronization between sequences aihcmications belonging to different processors,
and finally chronometric recording for operations and datadfers characterization. This latter set of defi-
nition macros is called thexecutive kernednd one is needed by processor.

The process of the executives generation is perfectly syte. It automates the work performed by
hand by a system programmer, leading to a very low overheatéwough they are automatically generated.

The executives generation is performed following four stf8]: (1) transformation of the optimized
implementation graph into an execution graph, (2) tramsé&ion of the execution graph into as many
macro-code as there are of processors, (3) transformatieach macro-code into a source file, (4) compi-
lation, download and execution of each source file.

23

3.5.1 From implementation graph to execution graph

This transformation consists in adding new types of verteoap, EndLoop andpre-ful | /suc-full,
pre-enpt y/ suc- enpt y vertices. This is done following two steps:

1. since the considered applications are reactive (i.e/ dhe in constant interaction with the environ-
ment that they control) the sequence of operations dis&ibonto each operator must be infinitely
repeated. For each sub-graph of the algorithm distributeo @n operator hoop vertex is added and
connected before the first operation of the sequence, d&ndlaop vertex is added and connected
after the last operation (Cf. figurel12),

2. when two operations distributed onto two different opmsaare data dependent, a communication
must be performed between these operators. The operatoh wkéecutes the producing operation
must cooperate with a communicator in order to send (resptemthe data to a SAM (resp. a
RAM), symmetrically another communicator must cooperatih Whe operator which executes the
consuming operation in order to receive (resp. read) the foam the SAM (resp. the RAM). When
considering one infinite repetition, for each pair operamnmunicator, operator and communicator
must be synchronized because both these sequencers shalatdhto send. This synchronization
is necessary in order to carry out the inter-partition edgptesented by a bold arrow on figliré 10.
It is implemented ompr ocessor 1 by replacing this edge with a linear sub-graph made of an edge
connected to are-ful | vertex which is itself connected tosaic- f ul | vertex (right part of figure
[13). Thepre-full (resp. suc-full) vertex is allocated on the same partition as the producing
(resp. consuming) operation of the initial inter-partitiedge.Pre-ful | andsuc-ful | vertices are
operations able to read-modify-write a binary semaphdieated into the memory shared by the
two sequencer partitions. $uc-ful | (which precedes theend operation) is executed before the
connectedbre-ful | (which follows the operatiorB) then thesuc-ful | waits for the end of the
pre-full execution which signals that the buffer containing the @gdtoduced by the operatidhis
full. This mechanism ensures a correct execution orderdxtvthe execution of the operatiBrand
the operatiorsend BD which sends the value produced Byo the operatiorD executed on another
processor 2. When considering two consecutive infinite repetitionss #lso necessary to avoid that
a producing operation overwrites the data which has not getlsent. For this purpose a pair of
suc-enpty, pre-enpty vertices is insertedPre-enpty is inserted after the consuming operation
send BDwhile suc-enpty is inserted before the producing operatirPr e- enpt y signals that the
sent of the data produced Byduring the previous repetition was terminated.

Symetrically, onpr ocessor 2 which receives and consumes with operatidithe result produced
by operationB executed omr ocessor 1, the synchronization represented by a bold arrow on figure
[11 is implemented by replacing this edge with a linear swpilgrmade of an edge connected to a
pre-full vertex which is itself connected tosaic-f ul | vertex (right part of figur€11). Similarly,
when considering two consecutive infinite repetitionpr e- enpt y is inserted after the consuming
operationDwhile suc- enpt y is inserted before the producing operatiav BD.

Notice that when a SAM is used to transfer the data betweendhmemunicators, no other synchro-
nizations is necessary since this type of memory ensurearaiwhre write-read synchronization. In
the case of a RAM, a synchronization, similar to the one betweperator and communicator, must
be added.

Figure[12 depicts a complete example of the execution grapdined after the transformation of the

implementation graph given in figuré 9.00p/ EndLoop vertices have been added @prl,Comil,Con®
andOpr2 operations. In order to simplify the graph, allocationtieers are not represented.

24

. processorl : . processorl

Oprt [HRaf[Comt}- | Oprt [HR1f[Comt}-

send BD
' EE

time

Figure 10: Principle of synchronizatiaend

Synchronization operations are fundamental in distribstgstems since they guarantee that each data-
dependence of the algorithm graph is implemented corred@they guarantee that all buffers, storing the
data, are always accessed in the order specified by the epéndences in a way that this order is satisfied
at runtime independently of the execution durations of therations. Moreover, they guarantee that no
data is lost. Therefore, the implementation optimizateren if it may be biased by inaccurate architecture
characteristics, is safe in the sense that it cannot indudi&ke human programmers, runtime synchroniza-
tion errors (such as deadlocks, or lost data). Indeed, suathsonizations are usually hand-written inside
the application code such that deadlocks may occur if thegdes misses one of them or does not write
them in the the correct order. Finally, since synchronimatiperations are added in order to guarantee the
partial execution order specified in the initial algorithmajgh, and because the implementation of our syn-
chronization reflects exactly our models, we do not havebleodue to run-time overhead (as consensus
waiting problem) induced by synchronization. The run-tioverhead induced by the synchronizations is
completely mastered and its cost can be taken preciselyactount by the optimization heuristics. The
proposed technique allows big savings thanks to a minimizaif the coding process which actually is
reduced to the one of the application operations. In additideads to a minimum debugging time.

3.5.2 From execution graph to macro-code

Once the executive graph has been built, the sub-graphbdistd onto each operator (processor) of the
architecture graph, is transformed into a sequence of rastaictions. The use of a macro-code enables
to mix easily different programming languages (C, Forttassembler, SystemC...) that can be found in
heterogeneous architecture.

The macro-code structure for an operat@r is sequentially composed of:

e macros allocating semaphores and buffers for each altwcaértex allocated to each RAM connected
to opr we generate aal | oc_(nane) macro.nane is generated from the operation name producing
the data,

e as many communication sequences as existing communicaorgected t@pr (only one commu-
nicator is connected to each operator in our example). Tddsience is generated between a pair
of Conirhread_, EndConThr ead_ macros. Such a sequence is built by exploration of the seguen
of totally ordered vertices allocated to the communicatantipon. For each vertex of the sequence

25

E
3
[
®
0
:

time

Figure 11: Principle of synchronizatiarty

we generate a corresponding macsen(d_, receive_, read_., wite_, pre_full, suc_full,
pre_enpy, suc_enpty). Inorder to distinguish a paipfe_, suc_) synchronizing a sequence of com-
munications with a sequence of computations from a aie (, suc_) synchronizing a sequence of
computations with a sequence of communications, we user §gai_, suc0_) for synchronizing a
sequence of communications with a sequence of computatodsa pairgr el_, sucl_) for synchro-
nizing a sequence of computations with a sequence of comigatioms. The arguments of these
macros are computed from the edges connected to their poreimg vertices.

e a unigue computation sequence. This sequence is genergtigden a pair ofhai n_, EndMain_
macros. Such a sequence is also built by exploration of theesee of totally ordered vertices
allocated to the operator partition. spawn_t hr ead_(coml) macro has in charge to run the commu-
nication threadtoml. This thread is executed under DMA interrupt (end of trarssfieterrupt) of the
main thread.

In order to generate an executable code whose partial ardensistent with the implementation graph,
it is important to remember that the translation/print gexcfollows exactly the order given to the vertices
distributed onto this operator.

In order to measure the real-time performances of an apiplicearried out with the AAA methodology,
it is possible to generate executives witironometric operationautomatically inserted before each com-
putation and each data communication. The real-time pegoces measure are performed in two steps:
first on each processor the real-time start and end dateseasumed and memorized using the real-time
clock of the processor, second at the end of the applicatisheamemorized values are transfered to one of
the processors with mass storage capabilities. These mesasay be compared to those computed by the
heuristics in order to determine the optimized distributimd scheduling. The difference between the real-
time measures and the computed measures, is represewifatie difference between the models used in
AAA and the reality. Moreover, these measures allow to deitez the execution duration of the operations
and data transfers, necessary to perform the architedtaracterization as described in secfion 3.2.2.

26

Y

time

Figure 12: Execution graph after transformation of implatagon graph of figurgl9

27

\/
(EndLodp

3.5.3 Macro-code to source files

Each macro-code is translated by a macro-processor intareescode depending on the language chosen for
the target operator. We use the free software Gnu-m4 maoaegsor (http://www.gnu.org/software/m4).

A macro is translated either into a sequence of in-lineduicsibns, or into a call to a separately compiled
function. These macros are classified in two sets corre$pgrnd two kinds of libraries. The first one is an
extensible set oapplication macroswhich support the algorithm operations. The second, datisg an
executive kernel, is a fixed set sfstem macrqoavhich support code downloading, memory management,
sequence control, inter-sequence synchronization,-agerator transfers, and runtime timing (in order to
characterize algorithm operations and to profile the apfitin).

Once the executive libraries have been developed for eaehdyprocessor, it takes only few seconds
to automatically generate, compile and download the de&di®e code for each target processor of the
architecture. It is then easy to experiment different dedires with various interconnection schemes.

3.5.4 Example of macro-code

Figure[13 is an example of code generation obtained by tamstion of the execution graph given in
figure12. This example will focus on processor pl (the codeaéessor p2 given in figute 14 is generated
symmetrically):

e generation of @emaphor es_ macro (lines 5-10) which allocates all the necessary searaphone
pair ful I _enpty for each communication. The semaphores are managpdehyandsuc_ synchro-
nization operations;

e generation o&l | oc_macros (lines 11-14) for each allocation vertex associtétAM R1 of figure
(the reader must remind that for readability allocatiorteseare not drawn on figute 112);

e the unique communicator sequence is generated betweernr afpdir ead_(SAM x, pl, p2) and
endt hread macros (lines 15 to 28), whei®Mis the type of the communication, is the name
of the communication gat@l, p2 are the communicating processors. Each communicatioexert
scheduled on the communicatwonl is translated into aend_ (lines 21 and 24) or aecv_ macro.
Each synchronization vertex is translated into the comeding macropre_(enpty/full) and
suc_(empty/fulI') in order to synchronize the communicator sequence with pleeador sequence,
and vice-versa the operator sequence with the communisatprence. The paimprel (full),
sucl_(full)) (lines 36 and 20) synchronizes the operator sequence wvattoimmunicator sequence
in the same repetition, whereas the gaire0_(enmpty), suc0_(enmpty)) (lines 22 and 34) synchro-
nizes the communicator sequence of the current repetititntiae operator sequence of the previous
repetition to guarantee that teend (line 21) in the previous repetition is terminated,;

¢ the unique operatooprl sequences its operations between a pairedh_ and endnai n_ macros
(lines 29 to 43). Each operation vertex is translated int@armwith the same nan#e B, C(lines 33,
35 and 38) taking the allocation vertice names as argument.

Then, theses files are translated into the language of et arocessor by the Gnu-m4 macro-processor
using a processor specific library containing the macraadefhs of each system macro, and the macro-
definitions of each application operation.

3.5.5 Example of macro-definition

Below is an example of macro-definition used by the macragssor Gnu-m4 to translate SynDEx macro-
instructional | oc_into C code.

28

Consider the macro-instruction:
alloc_(int,x,3)

To produce C code the definition of this macro is performeavim $teps:

e First step: (in syndex.m4x, standard library)

def(‘alloc_',
define(‘$2_type_ ', $1)dnl
define(‘$2 size ', ifelse($3,,1,%$3))dnl
ifdef(‘$1 alloc_', *‘$1 alloc_', ‘basicAlloc_')')(%$2)")

e Second step: (in U.m4x library, C-Unix specific library)
define(*basicAlloc_', ' _($ 1 _type_ $ 1[$ 1 _size];)

Consequently, the result given by Gnu-m4 for the above mimatouction is:
int x[3];

Similarly, the translation of send_macro may b&VA _confi g_.write_(al | oc_BD, si ze_of (al | oc_BD),
con®) if con? is the addresses of a RAM writable by a DMA channel of the ggsor. The implementa-
tion of synchronization macros is generally coded in as$getaimguage, since performance and context
switching minimization between the communication seqasrand the computation sequence are required.

4 SynDEx: system level CAD software

SynDEX is a system level CAD software, i.e. the tool assediatith the AAA methodology, for rapid
prototyping and optimization of distributed real-time esdded applications. It may be freely downloaded
at: www-rocg.inria.fr/syndex or syndex.org, and offenstigh a GUI the following functionalities:

e algorithm specification of the functionalities with a facted conditioned data flow graph or interface
with some high level specification languages,

e architecture specification of the multicomponent with &died graph,

e heuristics execution for the optimized distribution antestuling of the algorithm onto the architec-
ture,

e visualization of the heuristics results, as a timing diagorresponding to a simulation of the real-
time execution,

e generation of the distributed real-time executives, nyastihitic and without any deadlock. They are
built with a minimum overhead, from executive kernels, prely available for the following proces-
sors: ADSP216X(Sharc), TMS320C4X, TMS320C6X, i80C196,88832, MPC555, i80X86, and
workstations under UNIX and LINUX. Executive kernels arsigaported on other processors from
the existing ones.

The way to practically use the GUI of SynDEX is described snser Manual and examples are given
in its Tutorial.

29

5 Conclusion

We presented a formal methodology based on graphs, in ardgtimize the implementation of distributed
real-time embedded applications. SynDEX is a system leyd) Goftware based on this methodology.
When it is associated with a domain oriented language, theier of which provides the algorithm speci-
fication and allows monoprocessor simulation, if this |zaggiallows to verify logical properties the AAA
methodology guarantees that these properties are madt#imough all the steps of the implementation.
Moreover, the resulting distributed real-time embeddeadiegtion will behave like its monoprocessor simu-
lation while verifying, in addition, real-time and embeddiconstraints. This approach providing a seamless
software environment from the specification to the distebdureal-time embedded executable code, leads
to a high level of dependability which may even increase wheit tolerance is also specified in the same
environment. Moreover, mainly because real-time testseateced and because code is automatically gen-
erated, the development cycle duration of distributed-tiese# embedded applications is also drastically
reduced.

30

References

[1] Albert Benveniste and Gérard Berry. The synchronousra@gch to reactive and real-time systems.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

Proceedings of the IEEF9(9):1270-1282, September 1991.

E.M. Clarke, E.A. Emerson, and A.P. Sistlautomatic verification of finite-state concurrent systems
using temporal logic specification&CM TOPLAS, 8(2), 1986.

R.E. Bryant. Graph-based algorithms for boolean fuorctmanipulation. INEEE Transaction on
Computers, C-35(8):677-69August 1936.

David Harel and Amir Pnueli. On the development of reacigystems. In K. R. Apt, editokL,ogics
and Models of Concurrent SystenSpringer Verlag, New York, 1985.

A.M. Turing. On computable numbers, with an applicatiorthe entscheindungs problem. Pmoc.
London Math. So¢1936.

Grady Brooch, Ivar Jacobson, James Rumbaugh, and JinbBRugh.The Unified Modeling Language
User Guide (The Addisson-Wesley Object Technology SeAdslisson-Wesley, 1998.

R. Kocik. Sur I'optimisation des sysines distribas temps &el embarqés : application au proto-
typage rapide d’'un &hiculeélectrique semi-autonomePhD thesis, Université de Rouen, Spécialité
informatique industrielle, 22/03/2000.

A. Girault, H. Kalla, and Y. Sorel. A scheduling heurcsifor distributed real-time embedded systems
tolerant to processor and communication media failuréernational Journal of Production Research
42(14):2877-2898, July 2004.

A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algihm for automatically obtaining distributed
and fault-tolerant static schedules.Rroceedings of International Conference on DependableBys
and Networks, DSN’Q3an Francisco, California, USA, June 2003.

R. Balakrisnan and K. RanganathakTextbook of Graph Thearspringer, 2000.
C.A.R. Hoare.Communicating Sequential ProcessBsentice Hall, 1985.
J.B. Dennis. Data flow supercomputelSEE Computer13(11), 1980.

V. Pratt. Modeling concurrency with partial ordersiternational Journal of Parallel Programming
15(1), 1986.

I. Rival. The role of graphs in the theory of ordered satd its applications. INato Advanced Study
Institute on Graphs and Ordefl984.

Y. Sorel. Massively parallel systems with real time staints, the algorithm architecture adequation
methodology. InProceedings of Conference on Massively Parallel CompuBggtems, MPCS'94
Ischia, Italy, May 1994.

A. Vicard. Formalisation et optimisation des sggtes informatiques distribs tempsé&el embargés
PhD thesis, Université de Paris Nord, Spécialité infatioque, 5/07/1999.

A. Dias, C. Lavarenne, M. Akil, and Y. Sorel. Optimizedplementation of real-time image processing
algorithms on field programmable gate arraysPmceedings of Fourth International Conference on
Signal Processing, ICSP’98eijing, China, October 1998.

31

[18] A.Y. Zomaya.Parallel and distributed computing handbodicGraw-Hill, 1996.

[19] T. Grandpierre. Modélisation d’architectures paradles teterogenes pour la grération automa-

tique d'executifs distribés temps &el optimi€s PhD thesis, Université de Paris Sud, Spécialité
électronique, 30/11/2000.

[20] F. Gecseg.Products of automataEATCS Monographs on Theoretical Computer Science. Sering

[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

Verlag, 1986.

Texas Instruments. Tms320c4x user’s guide.

Oystein Ore.Theory of GraphsAMS, 1962.

C.A. Mead and L.A. Conwaylntroduction to VLSI system#ddison-Wesley, 1980.

Y. Sorel. Real-time embedded image processing agpgita using the algorithm architecture adequa-
tion methodology. IProceedings of IEEE International Conference on Image €ssing, ICIP'96
Lausanne, Switzerland, September 1996.

Michael R. Garey and David S. Johnsoomputers and intractability : a guide to the theory of
NP-completenesdV.H. Freeman, 1979.

Zhen Liu and Christophe Corroyer. Effectiveness ofristics and simulated annealing for the schedul-
ing of concurrent task. an empirical comparison.PRRLE’93, 5th international PARLE conference,
June 14-17pages 452—-463, Munich, Germany, November 1993.

A. Vicard and Y. Sorel. Formalization and static optration for parallel implementations. Rroceed-
ings of Workshop on Distributed and Parallel Systems, DARPSY Budapest, Hungary, September
1998.

T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimizapid prototyping for real-time embedded
heterogeneous multiprocessors.Pimceedings of 7th International Workshop on Hardwarei&aie
Co-Design, CODES'9%Rome, Italy, May 1999.

Y.K. Kwok and | Ahmad. Dynamic critical-path schedujin An effective technique for allocating
task graphs to multiprocessors. IEBEE Trans. on Parallel and Distributed Systems, 7(5): 5536
Munich, Germany, May 1996.

T. Grandpierre and Y. Sorel. From algorithm and araiitee specification to automatic generation
of distributed real-time executives: a seamless flow of lggagpansformations. [Proceedings of
First ACM and IEEE International Conference on Formal Metea@and Models for Codesign, MEM-
OCODE’03 Mont Saint-Michel, France, June 2003.

32

01: include(syndex. mix)dnl ; I'nclude generic kernel
02: dnl

03: processor_(proc,pl,al, ; START FILE pl.m}
04: SynDEx-7.0.2 (C) INRIA 2001-2009, 2009-10-07 10:33:55)
05: semaphores_(; Semaphores decl arations

06: Senmaphore_Thread_x,
07: _al _C CD pl x_enmpty,
08: _al _CCDpl x full,
09: _al B BD pl x_enpty,
10: _al _B BD pl x full)

11: alloc_(int, _al A AB,1) ; Buff declarations

12: alloc_(int, al A AC 1)

13: alloc_(int, _al B BD 1)

14: alloc_(int, al _CCD 1)

15: thread (SAM x, pl, p2) ; START SEQ COVMUNI CATI ONS

16: | oadDnto_(, p2)
17: Pre0 (_al _B BD pl x_enpty,, _al B BD, enpty)
18: Pre0_(_al _C CD pl_x_enpty,,_al _C CD, enpty)

19: | oop_
20: Sucl (_al B BD pl x full,, al B BDfull) ; Wit for buff BD full
21: send_(_al _B BD, proc, pl, p2) ; Send buff BD pl -> p2
22: Pre0 (_al B BD pl x enpty,, al B BD,empty) ; Signal buff BD enpty
; in current repetition
23: Sucl (_al _CCDpl x full,, al _CCDfull) ; Idemas send buff BD
24: send_(_al _C CD, proc, pl, p2)
25: Pre0 (_al _C CD pl x _enpty,, al _C CD, enmpty)
26: endl oop_
27: saveFrom (, p2)
28: endthread_ ; END SEQ COVMUNI CATI ONS
29: main_ ; START SEQ COVPUTATI ONS
30: spawn_t hread_(x) ; Launch comm t hread
31: A(_al _A AB, _al _A AQ
32: | oop_
33: A(_al _A AB, _al A AQ ; Conpute A (sensor)
o wite result in buff
; AB and AC
34: SucO_(_al B BD pl x_enpty,x, al B BDenpty) : Wait for buff BD enpty
; in previous repetition
35: B(_al _A AB, al B BD) ; Conpute B read in buff
. ABwite in buff BD
36: Prel (_al_BBDpl x full,x, _al B BD full) ; Signal buff BD full
; allowing send BD
37: SucO0_(_al _C CD pl x_enpty,x, _al _C CD enpty) ; ldemas conpute B
38: C(_al _AAC al _CCD
39: Prel (_al_CCDplx full,x, _al _CCDfull)
40: endl oop_
41: A(_al _A AB, _al _A AC
42: wai t _endt hread_(Semaphore_Thread x) ; Wit end commthreads
43: endmain_ ; END SEQ COWPUTATI ONS
44: endprocessor _ ; END FILE p1.m

Figure 13: Macro-code corresponding to the algorithm gmaffigure[9 for processor pl
33

i ncl ude(syndex. mix) dnl

dnl

processor _(proc, p2, figure9,

SynDEx-7.0.2 (C) INRI'A 2001-2009, 2009-10-07 10: 33:55)

senaphores_(
Semaphore_Thread X,
_al_C CD p2_x_enpty,
_al_C CDp2 x_full,
_al _B BD p2_x_enpty,
_al_B BD p2 x_full)

alloc_(int, _al B BD,1)
alloc_(int, al CCD1)

thread_(SAM x, p1, p2)
| oadFrom (pl)

| oop_
Sucl (_al _B BD p2 x_enpty,, _al_B BD, enpty)
recv_(_al B BD, proc, pl, p2)
Pre0 (_al B BD p2 x full,, _al _B BDfull)
Sucl (_al _C CD p2 x_enpty,, _al _C CD, enpty)
recv_(_al _C CD, proc, pl, p2)
Pre0_ (_al_CCDp2 x full,, _al _CCDfull)
endl oop_
saveUpto_(pl)
endt hread_
mai n_

spawn_t hread_(x)
D(_al B BD, al _CCD

Pr e1_(__al _B BD p2 x_enpty, x, _al B BD, enpty)
Prel (_al _C CD p2_x_enpty,x, _al _C CD, enpty)
| oop_

SucO_(_al B BD p2 x full,x,_al _B BD,full)
SucO_(_al _C CD p2_x_full,x,_al _CCDfull)
D(_al _B BD _al _CCD

Prel_z_al_B_BD_pZ_x_enpty,x,_aI_B_BD,enpty)
Prel (_al _C CD p2_x_enmpty,x, _al _C CD, enpty)
endl oop_

D(_al _B BD _al _CCD
wai t _endt hread_(Semaphore_Thread_x)
endmai n_

endpr ocessor _

Figure 14: Macro-code corresponding to the algorithm gaffigure[9 for processor p2

34

	Introduction
	Context
	Goals
	Definitions

	Application specification
	Functionalities
	Hardware
	Constraints

	The AAA methodology for optimized implementation
	Algorithm model
	Control and data flow graphs
	Factorized conditioned data dependence graph

	Architecture model
	Multicomponent
	Architecture characterization

	Implementation model
	Distribution and scheduling
	Impact of the granularity and potential parallelism

	Optimized implementation: adequation
	Principles
	Example of adequation heuristics
	Resources minimization

	Executives generation
	From implementation graph to execution graph
	From execution graph to macro-code
	Macro-code to source files
	Example of macro-code
	Example of macro-definition

	SynDEx: system level CAD software
	Conclusion

