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1 Introduction

1.1 Context

The software in complex applications found in domains such as automobile, aeronautics, telecommunica-
tions, etc, is growing rapidly. On the one hand it increasingly replaces mechanical and analog devices which
cost a lot and are too sensitive to failures, and on the other hand it offers to the end-users new functionalities
which may easily evolve. These applications share the following main features:

• automatic-control and discrete-event:they include control laws, possibly using signal and image
processing, as well as discrete events, in order to schedulethese control laws through finite state
machines;

• critical real-time constraints:they must satisfy input sampling rates (periodicity) or/and deadlines,
otherwise the application may fail leading to a human, ecological or financial disaster, later on we
shall use real-time by default;

• embedding constraints:they are mobile and rely on limited resources because of weight, size, energy
consumption, and price limitations;

• distributed and heterogeneous hardware architecture:they are distributed in order to provide enough
computing power through parallelism, but also for the purpose of modularity, and to keep the sensors
and actuators close to the computing resources. Furthermore, fault tolerance imposes redundant ar-
chitecture to cope with hardware components failures. Theyare also heterogeneous because different
types of resources, processors, specific integrated circuits (ASIC, FPGA), and communications (link,
bus), are necessary to implement the aimed functionalitieswhile satisfying the constraints. The reader
must be aware that distributed real-time systems are considerably more difficult to tackle than central-
ized ones (only one type of resource), it is the reason why themost significant results in the literature
are given for this latter case.

Taking all these features into account is a great challenge,that only a formal (based on mathematics)
methodology may properly achieve. Indeed, typical methodsbased on the one hand on specification graph-
ical languages such as SADT (Structured Analysis and DesignTechnique), and on the other hand on C
programming and RTOS (Real-Time Operating System) for the implementation, are not efficient enough to
cope with the complexity of the target applications, mainlybecause there is a gap between thespecification
step and theimplementationstep. However, this does not mean that the application should not be carried
out with respect to the constraints, but that the developement cycle will have a too long duration, essentially
due to the real-time tests which must cover as many cases as possible.

Therefore, we propose a two steps approach without any gap reducing significantly the development
cycle time:

• a formal specification of the application, allowing verifications very early in the developement cycle
in order to eliminate logical errors, i.e. in terms of eventsorder;

• an optimized implementation guaranteeing the formal properties proved during the specification. This
approach relies on graph transformations from the specification up to the automatic code generation,
noticeably reducing real-time tests.

In this paper we will focus only on the second step by presenting a summary of several research works
carried out last past years on this subject. Concerning the first step, we rely on the well known denotational
semantics of synchronous languages [1] such as Esterel, Lustre, Signal or Statecharts. They all offer a formal
framework where it is possible to demonstrate useful properties when specifying applications with critical
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real-time constraints. Nowadays, commercial tools providing modern GUI (Graphical User Interface), based
on this semantics, are available on the market. More and moreindustries in the fields we are interested in,
use this approach in order to specify complex applications.For example, it is well known that several car
manufacturers use Statemate (the tool based on Statecharts) in order to specify their embedded systems, for
sequencing control laws involved for controlling the engine or the brakes, as well as for managing the events
triggered by the user when executing common tasks such as opening or closing a door, turning the ignition
key, signaling direction modifications, etc . . . Similarly,Scade (the tool based on Lustre) is used to specify
avionics applications. The crucial issue in both cases is actually a matter of ordering the different operations
necessary to perform each specified functionality. The nextstep consists in implementing these operations
through software and hardware. At this high level of specification, thus very early in the development cycle,
it is possible to verify logical properties such that an event will never occur, or will occur only if another event
occurred a specified number of times. In this paper the termeventis used in a broad sense, no assumption
is made whether it refers to a periodic or to an aperiodic signal, both types of signal are considered as a
set of events. These formal verifications are based on “model-checking” techniques [2] using BDD (Binary
Decision Diagram) [3] for solving these combinatorial problems. It is important to understand that only
properties in terms of event ordering are demonstrated in this framework, and therefore it is not possible
to say that the real-time constraints were satisfied. However, they prevent from a large amount of errors
found in real-time applications. At this specification level, we may carry out a functional simulation where
the hardware is not actually considered. It is worth noting that in the typical methods mentioned before,
these logical errors are usually discovered during real-time tests, consequently it is very difficult to find their
causes at the application specification level, mainly because of the gap between the specification and the
real-time implementation. This has an heavy price that the manufacturers are tired to pay, it is the reason
why they are ready to invest in new methods and their associated tools.

1.2 Goals

Assuming that an application specification has been performed with a language verifying the aforementioned
semantics, and that some logical properties have been demonstrated, the goal of the AAA methodology is
to optimize the implementation of this specification. That is to say, that the implementation will satisfy
the specification in terms of functionalities, and will satisfy the real-time and embedding constraints, while
the logical properties shown previously are maintained. This approach increases the dependability of the
application, especially if fault tolerance is specified at the level of the application.

AAA stands for Algorithm Architecture Adequation, adequation meaning an efficient mapping of the
algorithm onto the architecture.

In order to achieve our goals, we chose very soon in our research works the “off-line” approach for
optimizing implementations. Indeed, the implementation of an application specification onto an hardware
architecture corresponds to a resource allocation problem. There are two possible resource allocation poli-
cies : “on-line” or “off-line”. It is now generally admittedthat “off-line” policies are better suited for critical
real-time, that is to say, when it is mandatory that real-time constraints are met, because otherwise dramatic
consequences may occur. These policies have two main advantages: first they are deterministic and second
they induce very low executive overhead. Thus, even if theseapproaches are more difficult to implement
and may be costly in resources, they must be applied in order to avoid these consequences which may have
an higher price. For the rest of this paper we will assume to bein this case. Of course, when real-time
constraints are not critical more simple policies are used.
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1.3 Definitions

In order to avoid ambiguities, it is necessary to be precise about definitions such as application, physical
environment, reactive system, algorithm, architecture, implementation, and finally adequation which will be
used afterwards.

In the AAA methodology, anapplication is a system composed of two sub-systems in interaction. The
first one calledphysical analog environment, is controlled by the second one called thedigital controller,
because it is assumed to be based on computers. This latter isa reactive system[4] meaning that it must
mandatorily react to the variationsU(t) of the physical environment state (discrete input for the controller
through the analog to digital converter (ADC) of a sensor,t is an integer) in order to produce a controlY(t)
for the physical environment (discrete output of the controller provided to the physical environment through
the digital to analog converter (DAC) of an actuator) and a new state for the controllerX(t). X(t) andY(t)
define respectively input events and output events consumedand produced by the reactive system. Both
X(t) andY(t) are functions of the physical environment state and the previous state of the controller (U(t),
X(t) andY(t) may be vectors) given by the equation 1.

(Y(t),X(t)) = f (U(t),X(t −1)) (1)

Real-time systems are, first of all, reactive systems for which a maximum delay must be imposed be-
tween an input event arriving into the system and an output event produced by the system, in reaction to
this input event. Usually, an output event is obtained from an input event processed by operations on which
precedence constraints may be imposed.

There are two kinds of real-time constraints: thelatencycorresponds to the duration of a reaction be-
tween an input event and the output event the input triggered, the cadencecorresponds to the periodicity
of an input (i.e. the duration between two consecutive reactions). The latency refers to the elapsed time
between an input and the resulting output, whereas the cadence refers to the sampling rate of an input. In
the general case more than one latency or/and cadence constraints are specified.

The reactive system is composed of two parts, the hardware called architectureand the software called
algorithm. We use the term architecture because we are mainly interested in the structure of the hardware.
More precisely, we considermulticomponent architecturebecause its structure, which providesphysical par-
allelism, usually includes sensor and actuator, “programmable components” or processors: RISC (Reduced
Instruction Set), CISC (Complex Instruction Set), DSP (Digital Signal Processor), microcontroller (incor-
porating ADC/DAC, real-time clock, etc. . . ), and “non programmable components” (application specific
integrated circuit ASIC possibly reconfigurable like FPGA), all interconnected through communication re-
sources. A multicomponent is heterogeneous due to these twotypes of components, but also different types
of processors and integrated circuits may be used as well as different types of communication resources.

An algorithm is the result of the transformation of an application specification, which may be more
or less formalized, in a software specification adapted to its digital processing by a computer or a specific
integrated circuit. More precisely, as defined by Turing [5]an algorithm is afinite sequence of operations
(total order) that must be processed in a finite time and with afinite hardware support. We need here to
extend this notion of algorithm in two directions. On the onehand we have to take into account the infinite
repetition of reactive systems, and on the other hand we haveto take into account parallelism, which is
necessary for the distributed implementation of an algorithm. However, for each reaction, the number of
necessary operations to produce the control for the physical environment must be finite because real-time
constraints must be satisfied. Consequently, instead of a total order (sequence of operations) we prefer a
partial order which describes apotential parallelism, often called “inherent parallelism”. It is different from
the physical parallelism provided by the hardware. It is worth noting that when we speak of an algorithm, it
possibly means that it is a set of algorithms, rather than a unique algorithm.

Embedding constraintscorrespond to the number of processors and communication resources, the amount
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of memories for a multicomponent, the number of combinatorial functions in an integrated circuit, its sur-
face, or its power consumption, etc. . .

Theimplementationof a given algorithm onto a given multicomponent architecture consists in allocating
the architecture resources to the operations defining the algorithm. Architecture resources are mainly the
sequencer of a processor and of a communication resource if it has one (otherwise the processor sequencer
is borrowed), and the memories (program and data). Then after compilating, resetting the different proces-
sors and loading the different programs, after resetting the specific integrated circuits (note that it is only
necessary to allocate their memory because they are not programmable, i.e. they have been designed only
to perform a specific operation), the application may be run.The implementation of a given algorithm onto
a specific integrated circuit architecture which is to determine, also consists in allocating the architecture
resources to the operations defining the algorithm. In this case architecture resources are combinatorial and
sequential circuits created from the algorithm specification seeking for a compromise between the surface
occupied by these circuits and the real-time constraints. The implementation of an algorithm on a multicom-
ponent corresponds to anhardware/software codesignwhere the part of the algorithm distributed onto the
processors and the part distributed onto the integrated circuits, corresponding to the partitioning, are decided
a priori by the user.

Finally, anadequationconsists in searching, among all the possible mappings of the algorithm onto the
architecture, for the one which corresponds to anoptimized implementation. We use this notion of optimized
implementation although it is impossible to guarantee thatan optimal solution has been found for this kind
of problems (multicomponent or integrated circuit) which complexity is said NP-hard (i.e. non polynomial
relatively to the number of algorithm operations and architecture resources). Hence, it is preferable to obtain
rapidly an approximate solution than an optimal solution which may take too much time compared to the
human life. The search for an optimized implementation is oriented by, on the one hand the real-time
constraints (latency and cadence), and on the other hand theembedding constraints (hardware resources).
If the real-time constraints are impossible to satisfy while the potential parallelism is completely exploited
relatively to the physical parallelism, it is necessary to modify the algorithm itself in order to increase its
potential parallelism. Note that the adequation is an iterative process where the architecture influences the
algorithm and vice versa.

The document is organized as follows: we first present how to specify an application, that is, the func-
tionalities it is supposed to perform, corresponding to ournotion of algorithm, the hardware components
that can be used, corresponding to our notion of architecture, and the real-time and embedding constraints.
Then, we present the AAA methodology based on graphs models for the algorithm, the architecture, and on
graph transformations for the possible implementations and the executable codes. We present the optimiza-
tion techniques corresponding to the adequation. Finally,before concluding, we briefly present the system
level CAD software SynDEx associated to the AAA methodology.

2 Application specification

In order to specify an application it is necessary to describe its functionalities, the hardware which may be
used in order to implement these functionalities, and finally the real-time and embedding constraints the
application has to satisfy.

2.1 Functionalities

Functionalities stand for the operations the application has to perform, but also when it is useful, for the data
transfers between operations and/or the informations about the relative execution order of the operations and
of the data transfers.
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Usually, high level languages, often said “application domain oriented”, are used in order to specify the
functionalities the application must perform. Such a language is the “entry point” of a programming envi-
ronment (workshop) usually based on a graphic user interface (GUI) which simplifies the user’s work. There
are several possibilities for these languages, but presently modeling languages based on object oriented ap-
proach, are the most popular. UML [6] is the best known of these object oriented languages, and several
commercial programming environments (tools) are proposed, which are more or less application domain
oriented. AIL (Automobile Architecture Implementation Language) is an example of such a programming
environment defined by the French car manufacturers and providers, and based on a specialization of UML.

However, although these languages are very useful for specification purposes because of modularity,
reutilization, genericity, etc, they do not offer a “denotational semantics” allowing formal verifications, and
as it will be underlined later on, optimizations. On the other hand, even though synchronous languages are
not object oriented languages they have a denotational semantics, allowing to verify properties in terms of
events ordering, very early in the development cycle. This is the reason why in the AAA methodology we
chose that the algorithms, directly issued from the application specification, have this semantics. Neverthe-
less, there are works in progress which aim to interface UML with the synchronous languages Esterel and
Signal, in order to associate in a unified framework the best of both worlds.

2.2 Hardware

We address two kinds of hardware: the programmable components and the non programmable components.
The first kind of components corresponds to general purpose processors of type RISC and CISC, to proces-
sors oriented towards signal and image processing (DSP), orto microcontrollers, used in complex computers
(parallel machines, multiprocessors) when they are connected through a shared memory or a network using
message passing, and thus providing physical parallelism.Each processor executes a program performing
a part or the whole specified application. The second kind corresponds to ASIC (Application Specific Inte-
grated Circuit), a potentially infinite set of logic gates connected together in order to perform the specified
application, or to FPGA (Field Programmable Gate Array), a limited set of logic gates the interconnection
of which may be configured more or less rapidly in order to perform the specified application, or only a
part of the application if the number of gates of the FPGA is not sufficient. ASICs and FPGAs both provide
physical parallelism at the level of each logical gate. Bothkinds of components may be mixed leading to a
multicomponent. The communications between the differentcomponents, whatever their kinds are, must be
carefully taken into account in order to offer the best performances because they are crucial in complex mul-
ticomponent architectures. Indeed, it is well known that nowadays performances of parallel architectures
strongly depend on the performances of their communicationmechanisms.

For a programmable component, we are mainly interested in its sequencer because it will execute se-
quentially the set of the application operations that have been distributed onto this component. This means
that the potential parallelism of the algorithm must be locally reduced to match with the physical parallelism
of the given architecture. Similarly, the set of data transfers between operations distributed onto different
sequencers, is going to be executed sequentially by the communication sequencer, if it exists, belonging to
a communication resource, or otherwise by borrowing the operations sequencer. In the first case operations
and communications may be executed in parallel whereas in the second case they may not.

Regarding the development process of the application, it isworth noting that the first kind of component
induces flexibility and low cost, whereas the second one induces performance but high cost.

2.3 Constraints

As mentioned before, two kinds of constraints may be specified: real-time and embedding ones. Usually,
application specification languages do not provide such possibilities, so these constraints are specified at the
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level of the implementation process. Nevertheless, there are works in progress aiming at specifying at least
real-time constraints at the level of the application specification [7]. For example, in the AIL language it
is possible to specify latency constraints between a sensorand an actuator. Generally these constraints are
called “end-to-end”. Similarly, it is possible to specify aperiod for each sensor. Embedding constraints
are usually taken into account in the CAD tools for the specific integrated circuits. There are only few
approaches which allow to take into account accurately all types of hardware resources in the case of multi-
component architectures.

3 The AAA methodology for optimized implementation

The AAA methodology is based on graphs in order to model the algorithm as well as the architecture.
Therefore, a possible implementation of an algorithm onto an architecture may be specified as a graph
transformation. The adequation amounts to choose among allthe possible implementations (graphs trans-
formations), the one which satisfies real-time and embedding constraints, corresponding to the optimized
implementation. Finally, the code generation is an ultimate graph transformation leading to a distributed
real-time executive for the multicomponents and to a structural hardware description, e.g. structural VHDL,
for the specific integrated circuits. This graph oriented approach relies on a formal framework where it is
possible to describe and verify all the steps from the specification to the real-time execution of the appli-
cation. This allows to ensure a high level of dependability because there is actually no gap between these
steps.

Moreover, if fault tolerance is specified at the level of the application by the user who describes the
redundant computation and communication resources, then it is also possible to automatically add redun-
dant operations and data dependences to the algorithm graph, which are taken into account during the im-
plementation and the optimization, guaranteeing the behavior of the application if the specified hardware
components fail. This issue will not be addressed here, but the interested reader may consult [8, 9].

3.1 Algorithm model

3.1.1 Control and data flow graphs

There are two main approaches for specifying an algorithm: the control flow and the data flow. In both cases
the algorithm may be modeled by a directed graph [10]. It is the meaning given to the edges, which will
differentiate both approaches. Briefly, we remind the reader that a graph(V,E) is a pair of sets, the set of
verticesV and the set of edgesE, each edgee= (v,w) being a pair of vertices, and thenE ⊆V×V. Directed
means that the order of the vertices in the pair(v,w) is considered, whereas in non directed graphs it is not.

A “program flow chart” is a typical example of control flow graph, usually used before programming
with an imperative language like C. Each vertex of such a graph represents an operation which consumes
from, and produces data into variables during its execution, and each edge represents an execution prece-
dence relation between the two operations. Actually, an edge is a sequence control which corresponds either
to an unconditional (back or forth) or to a conditional branching. This latter is the basic mechanism when
an operation or a subgraph of operations must be conditionedfor example by the result of a test (“if . . . then
. . . else . . . ”). The notion of iteration or loop (“for i=1 to n do . . . ”), related to unconditional back branching,
corresponds to atemporal repetition(in opposition tospatial repetitionused later on) of an operation, or of
a subgraph of operations. A “state chart” is another commonly used control flow graph, where each vertex
represents one of the possible states, and each edge represents a transition, from one state to another one,
triggered by the arrival of an event. Each transition leads to execute an operation which consumes from and
produces data into variables. In both cases the set of all edges defines a total order on the execution of all
operations. There is no potential parallelism directly specified in this model, although it might be extracted
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from a data dependence analysis through the variables in which the operations read and write data. How-
ever, in the general case this analysis is very complicated and may conclude that no potential parallelism
is available in this control flow graph. Moreover, there is norelationship between the order in which the
operations must be executed, and the order in which these operations consume (read) from and produce
(write) their data into the variables. Another way to specify potential parallelism consists in composing
several control flow graphs which will communicate through shared variables. This approach is similar to
CSP (Communicating Sequential Processes) [11].

In the basic data flow graph [12] each vertex represents an operation which consumes data before its
execution and produces data after its execution, thus introducing a relationship between the order in which
the operations must be executed and the order in which these operations consume and produce their data.
The data produced by an operation and consumed by another onecorresponds to a data transfer. Note that
the notion of variable does not exist in this model; it is replaced by the notion of data transfer or “data
flow”. This approach is also called “unique assignment” avoiding the problem related to shared variables.
Each edge represents adata dependenceinducing an execution precedence relation between two operations.
An operation which does not need to transfer data to another operation is not connected by an edge to this
operation. Consequently, the set of edges defines a partial order relation on the execution of all the operations
[13, 14], defining in turn the potential parallelism of the data flow graph. Thelevel of potential parallelism
of a data flow graph depends on the lack of data dependences relatively to all the possible data dependences
in the graph. There are two kinds of potential parallelism,data potential parallelism, usually called “data
parallelism” when the operations without data dependencesare the same (i.e. the same operation is applied
to different data), andoperation potential parallelism, usually called “task parallelism” when operations are
different. Furthermore, because edges represents data transfers, hyper-edges (n-uples of vertices) are needed
rather than edges (pairs of vertices) when it is necessary tospecify that a data produced by an operation is
consumed by more than one operation, corresponding to a datadiffusion. This category of graph is called
“hyper-graph”. Finally, a data flow graph is “acyclic” meaning that any path in the graph, formed by a
succession of vertices and edges, must not have the same extremities which would produce a cycle. Cycles
must be avoided because they introduce indeterministic behavior in the graph execution.

3.1.2 Factorized conditioned data dependence graph

The algorithm model [15, 16, 17] used in the AAA methodology allows to specify potential parallelism,
to ensure coherence between the execution order of the operations and the way they consume and produce
data, to avoid shared variables which are the source of numerous errors. This model is an extension of the
basic data flow model in three directions. First we need to repeat infinitely and finitely a data flow graph
pattern in order to take into account respectively the reactive aspect of the real-time systems and potential
data parallelism. Second we need to specify “states” when data dependences are necessary between infinite
repetitions. Third we must be able to condition the execution of several alternative data flow graphs accord-
ing to the value transfered by acontrol dependence. Moreover, this model follows the synchronous language
semantics [1], that is, physical time is not taken into account. Regarding one reaction of the system, that
is, one data flow graph pattern of the infinite repetition, this means that each operation produces its output
events instantaneously with the consumption of its inputs events which must be present altogether. Conse-
quently it means that this data flow graph pattern is instantaneously executed. The successive executions of
the data flow graph pattern introduces a notion of “logical instant”, using an additional precedence depen-
dence (without data) between each repetition of the data flowgraph pattern which ensures that a reaction
will complete before another one begins. Each input or output of an operation carries an infinite sequence
of events taking values which is called a “signal”. The unionof all the signals define a “logical time”, such
that physical time elapsing between events is not considered. Finally in order to limit the complexity of the
graph, our model isfactorized, that is, only the repeated data flow graph pattern is represented instead of all

9



its repetitions (infinite or finite), leading to afactorized conditioned data dependence graph.
When an application is running, the reactive system (controller of equation 1) is infinitely repeated in-

teracting with a physical environment through, let us say tosimplify, one sensor and one actuator. In order
to specify the maximum of potential parallelism, it is possible to “unroll” this infinite temporal repetition
(iteration) in an infinite spatial repetition, assuming that it exists an infinity of sensors and actuators. This
allows to model the algorithm corresponding to the controller as an infinitely repeated data flow graph pat-
tern. However, in order to simplify its large specification,it is only necessary to describe one instance of
this data flow graph repetition, and then it is saidinfinitely factorized. When an instance of the factorized
data flow graph needs a data produced by an operation belonging to a previous instance corresponding to an
inter-repetition data dependence, this induces a cycle which must be mandatory avoided (acyclic graph) by
introducing a specific vertex calleddelay. It is equivalent to the well knownz−n used in control and signal
processing theory. The set of all the delays memorizes the algorithm state. Actually a delay is equivalent to
two vertices containing a memory: one vertex without predecessor and one vertex without successor. The
value contained in the memory of the latter vertex is copied in the other memory at the end of each reaction
(data flow graph pattern execution). Moreover, another advantage of the data flow approach, is that the
algorithm state is clearly localized in the delay vertices,whereas in the control flow approach it is spread
out in all the variables. This issue is especially importantwhen dealing with control and signal processing
algorithms where state must be carefully mastered. It is also possible to repeat spatially an operation, or
a subgraph of operations,N times (finitely), but represented as a single graph with a label indicating the
number of repetitions, and then is saidN times factorized. When each operation, or subgraph of operations,
concerns different data, this spatial repetition providesdata potential parallelism. This is the data flow equiv-
alent of unconditional back branching in control flow graphs(“for i=1 to n do . . . ”). If data dependences
between the consecutive repetitions are necessary (inter-repetition data dependences), this would cause cy-
cles when factorizing, therefore a specific vertex callediterate must also be introduced, equivalent to the
delay necessary for infinite repetition seen previously. Inthis case there is no potential parallelism because
each inter-repetition data dependence induces an execution precedence. Note that factorized specification
does not change anything about the semantics of the specification, it is only a way of simply represent com-
plex graphs but potentially with parallelism. Later on during the implementation process, it will sometimes
be necessary to transform a spatial repetition in a temporalrepetition, or vice versa depending on the type of
optimization the designer aims at. Finally, a vertex may be conditioned by the value transfered on its con-
trol dependence if it owns one. This conditioned vertex is specified as a set of alternative data flow graphs
and the value transfered on the control dependence indicates the one to execute during the reaction. This
is the data flow equivalent of conditional branching in control flow graph (“if . . . then . . . else . . . ” or more
generally “case . . . of . . . ”).

Therefore, the algorithm which corresponds to the decomposition of the controller (equation 1) in a set
of data dependent operations, is modeled by a factorized conditioned data flow graph where each atomic
(impossible to distribute on several resources) vertex is,either an operation performing computations (cal-
culations) without side effect (the output only depends of the input, no internal state, no internal sensor or
actuator), or afactorizer. There are four types of factorizer. For each instance of thespatial repetition, the
Fork (F) provides separately each element of the vector it has in input. TheDiffuse (D) operates like a
fork but all the elements of the output vector are identical since there is a unique data in input. TheJoin
(J) takes the result of each instance of the spatial repetitionand provides as output the vector composed of
the separate elements. Finally theIterate(I ) provides inter-repetition data dependences (temporal repetition
equivalent to a finite iteration).

The figure 1 presents the algorithm graph performing aniterative matrix-vector productcorresponding
to the infinite repetition of a matrix-vector productMV. The input vectoret which has three elements,
is produced by a sensor, and the input 3× 3 matrix is produced via a delay by the result of the matrix-
vector productzst−1 performed during the previoust −1 infinite repetition. The result of each matrix-vector
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product is also sent to an actuator (data diffusion). The figure 2 presents the subgraph performing one of
the three matrix-vector products. It corresponds to three repetitions of the scalar productV. The figure
3 presents the subgraph performing one of the three scalar products. It corresponds to three repetitions
of the operations multiply-accumulate. This subgraph has three inter-repetition data dependences in order
to perform an accumulation from the result of the sum performed during the previous repetition, locally
preventing from potential parallelism specification.
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Figure 1: Algorithm graph (infinite repetition of the matrix-vector product)
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There are two ways for obtaining such an algorithm specification. On the one hand the user may directly
input the factorized conditioned data flow graph through thegraphical interface of the system level CAD
software SynDEx as explained in section 4. On the other hand he may import this graph from one of the ap-
plication specification languages interfaced with SynDEx,like presently one of the synchronous languages
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Esterel and Signal, SyncCharts a state diagram language close to Statecharts, Scicos a free software control
theory oriented language close to Simulink, CamlFlow and Avs two image processing languages, and AIL
close to Titus.

3.2 Architecture model

3.2.1 Multicomponent

The most typically used models for the specification of parallel or distributed computer architectures, are
PRAM (Parallel Random Access Machine) and DRAM (Distributed Random Access Machine) [18]. The
first model corresponds to a set of processors communicatingdata through a shared memory, whereas the
second model corresponds to a set of processors with its own data memory (distributed memory), communi-
cating through message passing. Although these models would be sufficient for describing the distribution
(allocation) and the scheduling of the algorithm operations in the case of homogeneous architecture, they are
not precise enough for dealing with heterogeneous architectures and with the distribution and the scheduling
of the communications which are, as mentioned before, crucial for real-time performances. Furthermore,
we also need to take into account specific integrated circuits considered as non programmable components
possibly communicating with other components whatever their kinds are. The main difference between a
programmable component and a non programmable component, lies in the fact that only a unique operation
may be distributed (allocated) on a non programmable component, whereas on a programmable component
a set of operations, which must be scheduled, may be distributed.

Thus, our heterogeneous multicomponent model [19] is an oriented graph, where each vertex is a se-
quential machine (automaton with output) and each edge is a connection between the output of a sequential
machine and the input of another sequential machine, thus forming a network of automata [20]. There
are five types of vertices: theoperator for sequencing computation operations, thecommunicatorfor se-
quencing communication (DMA channel), thememoryfor memorizing data or program, and finally the
bus/mux/demux(BMD) with or without arbiter for selecting from and diffusing data toward a memory.
When there is an arbiter in a bus/mux/demux/arbiter, this one is also a sequential machine deciding which
resource will access to a memory, which is, in this case, a shared resource. The bus/mux/demux and the
memory are considered as degenerated automata. There are two types of memories: RAM memory with
random access for storing data or program, and SAM with sequential access for storing data, maintaining
their order, when they must be communicated from an operatoror a communicator to another operator or a
communicator. The different types of vertices may not be connected in whatever manner, a set of connection
rules must be verified [19]. For example two operators must not be directly connected and identically for
two communicators. In order to communicate data, an operator must be at least connected to a RAM or a
SAM, connected in turn to another operator. When computations and communications must be decoupled,
communicators must be inserted, between operator and memory, whatever its type is. Heterogeneous ar-
chitecture does not only mean that vertices have different characteristics, for example different execution
durations for a given operation executed on an operator or a data transfered through a communicator, but
also for example, that some operations may be executed only by some specific operators, or some data
must be transfered only by some specific communicators. Thisallows, among other possibilities related to
the architecture characterization described later on in section 3.2.2, to take into account specific integrated
circuits, which are only able to execute a unique operation.

A basic processor may be specified as a graph containing one operator, one data RAM, and one program
RAM, all interconnected. If this processor has been designed for parallel architecture, it may also contain
one or several communicators with the corresponding data RAM or SAM for communications. A direct
(without routing) communication resource between two processors, may be specified as a linear graph com-
posed of the vertices n-uple (bus/mux/demux/arbiter, RAM or SAM, bus/mux/demux/arbiter). Typically,
the RAM vertex is used to model a communication by shared memory, whereas the SAM vertex is used to
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model a communication by message passing through a FIFO. When the computations must be decoupled
from communications, some communicators must be added leading to the n-uple (bus/mux/demux/arbiter,
communicator, RAM or SAM, communicator, bus/mux/demux/arbiter). A route is a path in the architecture
graph connecting two operators. It is composed of a list of pairs (edge, vertex) plus an edge. A communi-
cator allows data to cross through a processor without requiring its operator (“store and forward”). Several
parallel routes may be specified in order to transfer data in parallel, but these routes may be of different
length (number of elements in the route).

This model, well adapted to the optimizations presented later on in the paper, allows to specify architec-
tures with more or less details. But it is important to be aware that the more detailed the architecture will
be, the more the solution of the optimization problem will take time to be found.

The figure 4 presents the detailed model of the DSP TMS320C40 from Texas Instrument, obtained from
the Data-Book [21]. Here all the connections between the vertices are bi-directional, then for the sake of
readability we have represented each pair of arrows by a simple segment. The CPU, including its sequencer,
its memory controller, and its arithmetic and logic unit, are represented by an operator. Since it is able to
simultaneously access two internal (R0 andR1) and/or external (Rloc andRglob) memories modeled by RAM
vertices, it is connected to two bus/mux/demux (b7 andb8) which select the appropriated memory. Because
these memories may also be accessed by one of the six DMA channels modeled by communicators (C1 to
C6), each communicator is connected to the memories by a bus/mux/demux/arbiter (b9) which arbitrates
among the communicators. Each point-to-point communication port is modeled by a SAM which may be
accessed either by a DMA or by the CPU, here the operator. The operator and the communicators may
access the external RAMRloc using the arbiter of the bus/mux/demux/arbiter (b11). The operator and the
communicators may access the external RAMRglob using the arbiter of the bus/mux/demux/arbiter (b12).
Each of the six bus/mux/demux (b1 tob6) selects either a SAM or the external RAM (Rglob), for each of the
six communicators (C1 toC6). The bus/mux/demux (b10) selects one of the six SAM accessed by the CPU.

The figure 5 presents the model of a complex architecture composed of four TMS320C40 communi-
cating, on the one hand by point-to-point links, and on another hand by a shared memory (Rglob). Then,
although the same type of processor (operator) is used in this example, this is an heterogeneous architecture
relative to the communications which are of different types. Each processor has its own local memory (Rloc).

The figure 6 presents a less detailed version of the previous architecture. It is obtained by encapsulating
in a unique operator the graph given in figure 4, leading to a more simple description of the architecture.

3.2.2 Architecture characterization

The optimization process described in detail in section 3.4, is based on the multicomponent architecture
characterization, meaning that to each operator and communicator, is associated the set of operations it is
able to execute. Furthermore, to each operation is associated, its execution duration, the amount of memory,
the power consumption, etc. . . , it requires. For example theCPU of a DSP is able to execute a multiply-
accumulate operation in one clock cycle, and a FFT (Fast Fourrier Transform) in several cycles. Similarly,
the DMA of a DSP associated to a point-to-point link is able totransfer data in a specific time, and an array
of the same data in a time proportional to the number of data totransfer, plus a set-up time. The arbiter of a
bus/mux/demux/arbiter has a crucial role, it is characterized by a table of priorities and a table of bandwidths
which has as much elements as connected edges. The values of these elements are used to determine during
the optimizations which of the operators and/or communicators will access the memory and with which
bandwidth.

Each integrated circuit of the architecture is characterized separately by associating to each vertex and
edge the execution duration relative to the chosen technology.
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Figure 4: TMS320C40 architecture graph

3.3 Implementation model

In this section we present how to describe all the possible implementations of a given algorithm onto a given
multicomponent, in intention rather than in extension, using graph transformations. Performing an imple-
mentation is mainly a matter of reducing the potential parallelism of the algorithm according to the physical
parallelism of the architecture. More precisely, it consists indistributingandschedulingthe operations of the
algorithm onto the architecture which has been already characterized. We use the term distribution instead
of “placement” or “allocation”, which are commonly employed, in order to refer to distributed systems.

3.3.1 Distribution and scheduling

The distribution and the scheduling are formally detailed in [16]. The distribution consists in performing
a partition of the initial algorithm graph, in as much elements of partition as there are of operators in the
architecture graph. Then, each element of partition, i.e. each corresponding subgraph of the algorithm
graph, is distributed onto an operator of the architecture graph. This amounts to label each subgraph with
the name of the operator it has been distributed onto. Remember that only a unique operation may be
distributed onto an operator representing a specific integrated circuit in the considered multicomponent.
Then, a partition of the data dependences of the algorithm graph between operations belonging to two
different elements of operations partition must be performed, in as much elements of partition as there are of
routes in the architecture graph. Each element of partition, i.e. each set of corresponding data dependences
of the algorithm graph, is distributed onto a route of the architecture graph. This amounts to label each set
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of data dependences by the name of the route it has been distributed onto. Finally, for each data dependence
which connects two elements of operations partition (inter-partition edge),communication operationsmust
be created and inserted. There are as much communication operations as there are of communicators in
the route the data dependence has been distributed onto. If the route does not contain any communicator,
like in a direct communication resource using a shared RAM, it is not necessary to create a communication
operation. Indeed, in this case the operator performs the data transfer. Altough, the drawback is that no
parallelism (decoupling) is possible between computations and communications, since the operator is also
required to perform data communications. Actually, each communication operation is composed of two
vertices. In the case of a SAM it corresponds to asendvertex and areceivevertex. Thesendis executed
by the communicator which sends the data to the SAM, and thereceiveis executed by the communicator
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Rglob
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Figure 6: Simplified TMS320C40 quadri-processor architecture graph
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which receives the data from the SAM. Similarly, in the case of a RAM it corresponds to awrite vertex and
a readvertex.

The scheduling consists in transforming the partial order of the corresponding subgraph of operations
assigned to an operator, in a total order. This “linearization of the partial order” is necessary because the
operator is a sequential machine which executes sequentially the operations. Similarly, it also consists in
transforming the partial order of the corresponding subgraph of communications operations assigned to a
communicator, in a total order. Actually, both amount to addedges, calledprecedence dependences, to the
initial algorithm graph.

Finally, memory allocation is also necessary in order to take into account, on the one hand the program
memories used to store each operation, and on the other hand the buffers necessary to transfer data from an
operation to another operation distributed onto the same operator. Thenalloc vertices must also be added for
each operation and for each edge in order to be distributed onto the program and the data RAM connected
to the operator.

The distribution, the scheduling and the memory allocationlead to theimplementation graph.
Figure 9 shows a simple implementation example of the algorithm graph presented in figure 7 onto

the architecture presented in figure 8-b. Such an implementation graph is automatically generated from
the results of the optimization heuristic given in the next section. In this example we wantA, B andC
to be executed byOpr1 andD executed byOpr2. Consequently two pairs of communication operations
(sendBD, receiveBD and sendCD, receiveCD) must be inserted and associated toCom1 andCom2 in order
to realize data transfers on the shared SAMS (9-a). Allocation vertices (allocAB, allocBD, allocAC . . . )
have also been added in order to model all required memory allocations (9-b). Since operationsB and
C, which are not dependent, are distributed onto the same operator, an order of execution must be chosen
between them. Notice that in this example, in order to simplify the figures, we do not take advantage of the
potential parallelism between operationB andC. They should have been executed in parallel if distributed
onto different operators. Thus, we add a precedence dependence edge betweenB andC, and a precedence
dependence edge betweensendBD andsendCD because they are scheduled on the same communicatorCom1,
and symmetrically a precedence dependence edge betweenreceiveBD andreceiveCD executed onCom2. This
corresponds to the bold arrows of figure 9-c.
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Hence to summarize, the set of all the possible implementations of a given algorithm onto a given
architecture may be mathematically formalized in intention, as the composition of three binary relations:
namely therouting, thedistribution, and thescheduling. Each relation is a mapping between two pairs of
graphs (algorithm graph, architecture graph), from the setGal ×Gar on the setGal ×Gar. It also may be
seen as an external compositional law, where an architecture graph operates on an algorithm graph in order
to give as a result a new algorithm graph, which is the initialalgorithm graph distributed and scheduled
according to the architecture graph. In this case this is a mapping from the setGal ×Gar on the setGal.

Given an algorithm and an architecture graphs, there is a finite number of possible distributions and
schedulings [22]. Indeed, it is possible to perform different partitions with the same number of elements
(namely the number of operators), and for each subgraph assigned to an operator, it is possible to perform
different linearizations, and identically for the communication operations relative to the routes and the com-
municators. But this leads to a very high number of possible combinations. However, it is necessary to
eliminate all the schedulings which do not preserve the logical properties, remember in terms of ordering,
shown with the synchronous languages as mentioned before. This amounts to preserve the transitive closure
[22] of the partial order associated to the initial algorithm graph when the relation “scheduling” is applied.
Moreover, the partial order of the resulting algorithm graph, which corresponds to a reduction of the poten-
tial parallelism, must be compatible with the partial orderof the initial algorithm graph. Note that there is
no such problem when the relation “distribution” is applied.

Our implementation model, calledMacro-RTL, may be seen as an extension of the typical implementa-
tion model called RTL (Register Transfer Level) [23]. An operation of the algorithm graph corresponds to
a macro-instruction(a sequence of instruction instead of one instruction) or a combinatorial circuit. A data
dependence corresponds to amacro-register(several memory cells). The consumption and the production
of data by an operation corresponds to a data transfer between registers through a combinatorial circuit.
This model encapsulates details relative to the instructions set, the micro-programs, the pipe-line, and the
cache. In that way it filters these characteristics too difficult to take into account during the optimizations.
This model has a reduced complexity well adapted to the rapidoptimization algorithms we aim at, however
giving accurate optimization results.

3.3.2 Impact of the granularity and potential parallelism

A given algorithm offers a granularity relative to the number of operations (vertices) and data dependences
(edges) it is composed of, and a level of potential parallelism relative to the lack of data dependences relative
to all its possible data dependences (pairs of vertices). Itis obvious that these two parameters are inter-
dependent. This issue has consequences in terms of possibleimplementations. If the number of operations
and data dependences is not sufficient enough relatively to the number of hardware resources (computation
and communication sequencers), it is not possible to balance correctly the load on each resource. Similarly,
if the level of potential parallelism is low, there is not enough degree of freedom when reducing the potential
parallelism in order to match the physical parallelism of the architecture. On the contrary, if the number of
operations and data dependences is too high, then each operation and data dependence encapsulates only
few details, because in this case it has generally a low complexity, leading to a less efficient filtering of the
characteristics difficult to take into account. On the otherhand, the high level of potential parallelism leads
to a huge number of possibilities when reducing the potential parallelism in order to match the physical par-
allelism. The impact of the granularity and potential parallelism is discussed in detail in [24] for an example
of image processing. It is shown that an a priori choice of thegranularity and potential parallelism may be
modified if the real-time constraints are not satisfied. In this case, some operations must be decomposed in
several operations, possibly with potential parallelism.
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3.4 Optimized implementation: adequation

3.4.1 Principles

An adequation consists in searching, among all the possibleimplementations of the algorithm onto the
architecture, for the one which corresponds to an optimizedimplementation relatively to the real-time and
embedding constraints. The optimization problems considered in this paper, that is, the minimization of the
latency and/or the cadence when the architecture is fixed, and the minimization of the architecture resources,
are NP-hard problems [25].

Because it is impossible to obtain an exact solution in a reasonable time relatively to the human life, we
use heuristics which are rapid enough and give a solution as close as possible to the exact (optimal) solution.
In the case of complex applications involving control, signal and image processing, “rapid prototyping”
is necessary. Such heuristics are well suited in order to rapidly test several variants of an implementation
relatively to the cost and the availability of the hardware components, and also relatively to the addition of
new functionalities. It is the reason why we first use “deterministic greedy” heuristics, i.e. no random choice
and no back-tracking, and especially its “list scheduling”version because they rapidly give a result with a
good precision [26]. A solution obtained with this kind of heuristics may be improved by back-tracking
[27], such that the choices are modified locally or globally when elaborating a partial solution, according to
the so-called “neighborhood” techniques. However, this kind of heuristics is dramatically slower. Finally, in
order to improve again the quality of the solution, it may be in turn used as an initial solution for stochastic
heuristics, i.e. where random choices allow to go from one solution to another one. Actually these heuristics
are very slow, but are more precise mainly because they avoidlocal minima that the deterministic ones do
not avoid. Because we are dealing with heuristics, it is alsointeresting to exploit the user’s skills, who is
able to restrict the search space by imposing distribution or scheduling constraints in order to avoid “bad
tracks” leading to local minima.

The heuristics optimizing the latency are based on the “critical paths” of the algorithm graph labeled
by the durations, not only of the operations relatively to the possible operators but also of the data transfers
relatively to the communication resources, whereas the heuristics optimizing the cadence are based on its
“critical loops”, i.e. the cycles in the algorithm graph containing delays, leading to pipe-lining and re-timing
by just moving these delays. To optimize simultaneously andindependently both latency and cadence is a
very difficult problem. It is the reason why usually, one is fixed while the other is intended to be optimized.

3.4.2 Example of adequation heuristics

In this section we present an efficient deterministic greedylist heuristics optimizing one latency which takes
accurately into account inter-processor communications which are often neglected [28]. Its efficiency has
been compared in [27] relatively to heuristics of the same family. We assume that there is only one input
at the beginning and one output at the end of the algorithm graph (it is easy to transform the graph if this
is not the case), and that the cadence is equal to the latency.For the sake of simplicity, we do not take into
consideration the conditioning and the memory capacity. Moreover, subgraph repetitions are assumed to
be entirely defactorized. The reader interested in these issues may consult [16], [19]. We have works in
progress to take into account several constraints e.g. several latencies and cadences [7].

Here are the principles of the heuristics which tends to construct a global optimum from several local
optima while the distribution and the scheduling are performed simultaneously. It iterates on the setOs of
schedulableoperations in the algorithm graph. An operation not yet scheduled becomes schedulable when
all its predecessors, excluding the delays, have already been scheduled. InitiallyOs is composed of all the
operations which are either input or which have only delays as predecessors. During an iterationi of the
heuristics, one of the schedulable operationso and an operatorp onto which this operation will be sched-
uled, are chosen using a cost function detailed in the next section. p belongs to the set of operatorsP of
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the architecture graph. Consequently, some successors ofo become in turn schedulable. The iteration is
repeated untilOs = /0 and then, each operation has been distributed and scheduledonto an operator after
a complete exploration of the initial partial order associated to the algorithm graph, thus leading to a new
compatible partial order. When an operation is scheduled onto an operator after an operation which is not its
predecessor, this amounts to modify the initial partial order by adding a new edge which is only an execution
precedence (no data is transfered since there were no edge between both operations). If an operationo is
scheduled onto an operatorp and if its predecessoro′ has been scheduled onto a different operatorp′, it is
necessary to choose a router, joining p and p′ (a path in the architecture graph), and to create and insert
betweeno ando′ as much communication operations as there are of communication resources composing
r, and to schedule each communication operation onto the corresponding communicator of the communica-
tion resourcem. When a communication operation is scheduled onto a communication resource, this also
amounts to modify the initial partial order by adding a new edge which is only an execution precedence
(no data is transfered between both communication operations). It is worth noting that on each operator
and on each communicator of a communication resource we obtain a total order which is compatible by
construction (it is ensured that an operation is scheduled only after its predecessor) with the initial partial
order. However, we obtain globally a partial order, the operations on different operators as well as the com-
munications operations on different communicators may be executed in parallel, which is also compatible
with the initial partial order. This principle guarantees that the complete execution of the operations and of
the communications will never cause a deadlock.

Cost function

The goal of the heuristics consists in minimizing the latency, and here the latency is equal to the critical path
of the algorithm graph labeled by the durations of the operations and of the data transfers because we only
have one input at the beginning and one output at the end of thegraph. The cost function is defined in terms
of the start and end dates of each operation. We denote by∆(o, p) the execution duration of the operationo
belonging to the algorithm graphGal, and byp the operator belonging to the architecture graphGar which
executeso. Γ(o) is the set of the successors ofo andΓ−(o) the set of its predecessors. For each schedulable
operation and for each operator where it is possible to distribute and schedule this operation,R the partial
critical path,S(o) andE(o) (resp. S−(o) et E−(o)) the earliest start and end dates of execution from the
beginning of the graph (resp. from the end of the graph), andF(o) the schedule flexibility are processed:

S(o) = max
x∈Γ−(o)

E(x) (or 0 if Γ−(o) = /0)

E(o) = S(o)+∆(o, p)
E−(o) = max

x∈Γ(o)
S−(x) (or 0 if Γ(o) = /0)

S−(o) = E−(o)+∆(o)
R = max

o∈Gal
E(o) = max

o∈Gal
S−(o)

F(o) = R−E(o)−E−(o)

Note the symmetry in the formulas, the dates are processed relatively to opposite directions and origins:
min

o∈Gal
S(o) = 0= min

o∈Gal
E−(o). Note also that, often in the literature [29]S= ASAPandR−S− = ALAP. The

schedule flexibilityF(o) represents the freedom degree of an operation, i.e. a time interval inside whicho
may be executed without increasing the critical path.

When the heuristics considers an operationo, all its predecessors have already been distributed and
scheduled, but no successor has already been scheduled. Then, whenE− andS− are processed∆ must be
defined independently of all operators. The execution duration of an operationo which is not yet scheduled
is defined as the arithmetic mean of all its possible execution durations on the setK(o) of the operators able
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to executeo:
K(o) = {p∈ Gar|∆(o, p) is defined}

∆(o) =
1

Card(K(o)) ∑
p∈K(o)

∆(o, p)

When an operationo is scheduled onto an operatorp, it is scheduled after all the operations previously
scheduled ontop, its execution duration∆(o) becomes∆(o, p) , and for each predecessoro′ of o scheduled
onto an operatorp′ 6= p, communication operations must be created and inserted betweeno ando′. These
communication operations must also be distributed and scheduled. Consequently,S(o) as well as the critical
pathRwill have greater or equal values (when no communication is necessary) but never smaller, becoming
S′(o) andR′ in order to indicate that communications may have been takeninto account.

The cost functionσ(o, p) called theschedule pressureis the difference between theschedule penalty
P(o) = R′−R (critical path increase) and the schedule flexibilityF(o) before the critical path increases:

σ(o, p) = P(o)−F(o) = S′(o)+∆(o, p)+E−(o)−R

σ(o, p) is an improved version of the commonly used cost functionF(o) which is extended byP(o).
Indeed, whenS′(o) (taking into account possible communications) increases,o becoming more and more
critical F(o) decreases until being null and then remains null.P(o) which until now was null begins to
increase. Finallyσ(o, p) which is the composition ofF(o) andP(o), is a function which increases continu-
ously. Note thatF(o) depends onR′ (taking into account possible communications) which may bedifferent
at each iteration of the heuristics, whereasσ(o, p) does not depend onR which remains the same whatever
the iteration is. Then, it is not necessary to process the value ofR at each iteration.

Choice of the best operator

The best operator pm(o) for a schedulable operationo is either the operator on which, the user has con-
strained the operation to be executed (distribution constraints), or the operator which gives the smallest
schedule pressure, i.e. the greater schedule flexibility and the smaller schedule penalty (increase of critical
path). If several operators lead to the same results one of them is randomly chosen:

∃pm(o) | σ(o, pm(o)) = min
p∈Gar

σ(o, p)

On the other hand, the schedulable operation which is the most urgent to schedule onto its best operator,
is the operation with the greatest schedule pressure, unless its start date is greater than the date of another
schedulable operation which can be executed before. It is the reason why practically it is necessary to restrict
Os to:

O′
s= {o′ ∈ Os | Sm(o

′)< min
o∈Os

Em(o)}

whereSm(o) andEm(o) are the respective values ofS(o) andE(o) for o scheduled onto its best operator
pm(o).

Finally, the operation chosen at each iteration isom such as:

∃om | σ(om, pm(om)) = max
o∈O′

s

σ(o, pm(o))

If several operations lead to the same results one of them is randomly chosen. The chosen operator is
pm(om) the best operator on whichom is scheduled.
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Creation, distribution and scheduling of communications

When an operationo is scheduled onto an operatorp, each data dependence between this operation and
one of its predecessorso′ ∈ Γ−(o) already scheduled onto an operatorp′ 6= p, is an inter-operator data
dependence. For each of these dependences, it is necessary to choose a route which will support the transfer
of the data produced byo′ in the local memory ofp′ to the local memory ofp in order to be consumed byo.
The transfer is achieved through the different communication resources composing the route.

The number of possible routes (path in the architecture graph) may be large for complex architectures,
and consequently the choice of the best route may take a very long time because it is necessary to compare,
for a data dependence to transfer, all the possible cases of distribution and scheduling in all the communi-
cators of the route. In order to reduce this time the heuristics performs an incremental choice usingrouting
tables. This method is described in details in [28]. Briefly, for each operator the shortest routes (minimum
number of communication resources) between this operator and all the other operators, is determined. These
shortest routes and the first communication resource of thisroute are memorized in its routing table. If there
are several possible routes between two operators with the same minimum number of communication re-
sources, these routes, calledparallel routes, are memorized. Then, each time the heuristics has to evaluate
the cost of an inter-operator data dependence, for each operator of the route(p′, p) it chooses in the routing
table among the possible first communication resourcem of the shortest routes from this intermediate op-
erator andp, the one which first completes the communication operationc. This communication operation
may be either another communication operation which has been previously scheduled ontombecause it has
to transfer the same data (this is the case of a data diffusionusing the same first part of the route), orc is a
new communication operation that must be created and inserted in the algorithm graph between the previous
communication operation in the route (oro′ at the beginning of the route) ando. c must be scheduled ontom
by adding a precedence dependence between the last communication operation scheduled ontom beforec,
andc. The heuristics proceeds like this untilp is reached. This approach allows to take into account on the
one hand parallel routes in order to balance the load of the communication resource, and on the other hand
the possibilities to reuse already routed communications avoiding to needlessly duplicate communications.

3.4.3 Resources minimization

In the previous section we assumed that the architecture graph is given and then, all the resources like
operators, communicators, etc, are also given, as well as the way they are interconnected. In this case we aim
at exploiting the architecture resources as good as possible. However, in some cases it is possible to decrease
the number of resources while satisfying the real-time constraints. Therefore, an iterative process may be
set up, where the user tries to decrease the number of resources and verifies if the real-time constraints are
still met.

3.5 Executives generation

Here, we only present the main principles of the executives generation for multicomponent architecture. The
code executable in real-time, is the result of an ultimate graph transformation of the implementation graph
obtained after the optimized distribution and scheduling described previously. The graph transformation and
the obtained code are detailed in [19, 30].

As soon as a distribution and a scheduling have been chosen, that is to say determined “off-line”, it is
possible to automatically generate dedicated real-time distributed executives. They are mainly static with a
dynamic part only for taking into account conditionings which depends of test values only known when the
application is executed in real-time. From the same informations, it is also possible to configure the fixed
priorities of a set of tasks scheduled by a standard RTOS, like: Vrtx, Irmx, Virtuoso, Lynx, Osek, RT-Linux,
etc... However, this approach although it should allow the use of COTS (Component Of The Shelf) which
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may reduce costs, will obviously decrease the performancesby increasing the overhead of the executives.
Note that in both cases we use an “off-line” approach, well suited to real-time applications which need to be
deterministic.

The dedicated executives are mainly based on the one hand on the sequencing, possibly conditioned, of
the algorithm operations distributed on a particular processor, and on the other hand on an inter-component
communications system without any deadlock by construction, ensuring a global synchronization between
all the operations running on different processors. This isthe reason why we chose the name SynDEx,
acronym for Synchronized Distributed Executives, for the system level CAD software presented in section
4 which implements the AAA methodology. Deadlocks due to data dependence cycles are detected during
the algorithm graph specification and during the graph transformations, taking into account the architecture
graph, and leading to the implementation graph.

The algorithm graph specified by the user, possibly through ahigh level language (perhaps perform-
ing verifications), is transformed during the optimized distribution and scheduling, avoiding cycles since
its partial order is reinforced without introducing any cycle. Similarly, the implementation graph is also
transformed in order to produce the executives, by adding tothe implementation graph new vertices and
their corresponding edges. In order to satisfy the real-time characteristics of the algorithm, each executive
includes an infinite repetition due to the reactive nature ofthe applications, and synchronizations which
ensure that the data communications will be executed, without any deadlock, according to the scheduling
chosen by the optimization heuristics. This preserves the logical properties shown with the high level spec-
ification languages when some are used. The synchronizationoperations guarantee execution precedence
between computation operations and communication operations belonging to different sequences, sharing
data in mutual exclusive access. Each synchronization operation uses a semaphore automatically generated.
In [19] it is shown with Petri nets that these semaphores allow the executives to verify the partial order of
the initial algorithm graph.

There are as many generated executives as there are of processors. Each executive file is amacro-code
which is independent of the processor type. It is composed ofa list of macros which will be translated by a
macro-processor, for example the Gnu tool “m4”, using the appropriate definitions of macros, into a source
program (C, assembler, etc...). Then, each of these source programs will be compiled and linked, and finally
loaded and executed on the target processor in order to run inreal-time. The definition macros which are
dependent of the processor, are of two types. The first one is an extensible set ofapplication definition
macrosdescribing the operations behavior, e.g. an addition or a filter. The second one is a fixed set of
system definition macrosdescribing the application support: loading and initialization of program memory,
management of data memories, sequencing (conditional and unconditional branchings respectively for con-
ditionings, and finite and infinite loops), inter-processordata communications (send, receive, write, read),
synchronization inside a processor between a sequence of computations and one or several sequences of
communications, synchronization between sequences of communications belonging to different processors,
and finally chronometric recording for operations and data transfers characterization. This latter set of defi-
nition macros is called theexecutive kerneland one is needed by processor.

The process of the executives generation is perfectly systematic. It automates the work performed by
hand by a system programmer, leading to a very low overhead even though they are automatically generated.

The executives generation is performed following four steps [19]: (1) transformation of the optimized
implementation graph into an execution graph, (2) transformation of the execution graph into as many
macro-code as there are of processors, (3) transformation of each macro-code into a source file, (4) compi-
lation, download and execution of each source file.
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3.5.1 From implementation graph to execution graph

This transformation consists in adding new types of vertex:Loop, EndLoop andpre-full/suc-full,
pre-empty/suc-empty vertices. This is done following two steps:

1. since the considered applications are reactive (i.e. they are in constant interaction with the environ-
ment that they control) the sequence of operations distributed onto each operator must be infinitely
repeated. For each sub-graph of the algorithm distributed onto an operator aLoop vertex is added and
connected before the first operation of the sequence, and aEndLoop vertex is added and connected
after the last operation (Cf. figure 12),

2. when two operations distributed onto two different operators are data dependent, a communication
must be performed between these operators. The operator which executes the producing operation
must cooperate with a communicator in order to send (resp. write) the data to a SAM (resp. a
RAM), symmetrically another communicator must cooperate with the operator which executes the
consuming operation in order to receive (resp. read) the data from the SAM (resp. the RAM). When
considering one infinite repetition, for each pair operator-communicator, operator and communicator
must be synchronized because both these sequencers share the data to send. This synchronization
is necessary in order to carry out the inter-partition edge,represented by a bold arrow on figure 10.
It is implemented onprocessor1 by replacing this edge with a linear sub-graph made of an edge
connected to apre-full vertex which is itself connected to asuc-full vertex (right part of figure
10). Thepre-full (resp. suc-full) vertex is allocated on the same partition as the producing
(resp. consuming) operation of the initial inter-partition edge.Pre-full andsuc-full vertices are
operations able to read-modify-write a binary semaphore allocated into the memory shared by the
two sequencer partitions. Ifsuc-full (which precedes thesend operation) is executed before the
connectedpre-full (which follows the operationB) then thesuc-full waits for the end of the
pre-full execution which signals that the buffer containing the value produced by the operationB is
full. This mechanism ensures a correct execution order between the execution of the operationB and
the operationsend BD which sends the value produced byB to the operationD executed on another
processor2. When considering two consecutive infinite repetitions, itis also necessary to avoid that
a producing operation overwrites the data which has not yet been sent. For this purpose a pair of
suc-empty, pre-empty vertices is inserted.Pre-empty is inserted after the consuming operation
send BD while suc-empty is inserted before the producing operationB. Pre-empty signals that the
sent of the data produced byB during the previous repetition was terminated.

Symetrically, onprocessor2 which receives and consumes with operationD the result produced
by operationB executed onprocessor1, the synchronization represented by a bold arrow on figure
11 is implemented by replacing this edge with a linear sub-graph made of an edge connected to a
pre-full vertex which is itself connected to asuc-full vertex (right part of figure 11). Similarly,
when considering two consecutive infinite repetitions, apre-empty is inserted after the consuming
operationD while suc-empty is inserted before the producing operationrcv BD .

Notice that when a SAM is used to transfer the data between thecommunicators, no other synchro-
nizations is necessary since this type of memory ensures an hardware write-read synchronization. In
the case of a RAM, a synchronization, similar to the one between operator and communicator, must
be added.

Figure 12 depicts a complete example of the execution graph obtained after the transformation of the
implementation graph given in figure 9.Loop/EndLoop vertices have been added onOpr1,Com1,Com2
andOpr2 operations. In order to simplify the graph, allocation vertices are not represented.
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Figure 10: Principle of synchronizationsend

Synchronization operations are fundamental in distributed systems since they guarantee that each data-
dependence of the algorithm graph is implemented correctly. They guarantee that all buffers, storing the
data, are always accessed in the order specified by the data-dependences in a way that this order is satisfied
at runtime independently of the execution durations of the operations. Moreover, they guarantee that no
data is lost. Therefore, the implementation optimization,even if it may be biased by inaccurate architecture
characteristics, is safe in the sense that it cannot induce,unlike human programmers, runtime synchroniza-
tion errors (such as deadlocks, or lost data). Indeed, such synchronizations are usually hand-written inside
the application code such that deadlocks may occur if the designer misses one of them or does not write
them in the the correct order. Finally, since synchronization operations are added in order to guarantee the
partial execution order specified in the initial algorithm graph, and because the implementation of our syn-
chronization reflects exactly our models, we do not have trouble due to run-time overhead (as consensus
waiting problem) induced by synchronization. The run-timeoverhead induced by the synchronizations is
completely mastered and its cost can be taken precisely intoaccount by the optimization heuristics. The
proposed technique allows big savings thanks to a minimization of the coding process which actually is
reduced to the one of the application operations. In addition, it leads to a minimum debugging time.

3.5.2 From execution graph to macro-code

Once the executive graph has been built, the sub-graph distributed onto each operator (processor) of the
architecture graph, is transformed into a sequence of macro-instructions. The use of a macro-code enables
to mix easily different programming languages (C, Fortran,assembler, SystemC. . . ) that can be found in
heterogeneous architecture.

The macro-code structure for an operatoropr is sequentially composed of:

• macros allocating semaphores and buffers for each allocation vertex allocated to each RAM connected
to opr we generate analloc (name) macro.name is generated from the operation name producing
the data,

• as many communication sequences as existing communicatorsconnected toopr (only one commu-
nicator is connected to each operator in our example). This sequence is generated between a pair
of ComThread , EndComThread macros. Such a sequence is built by exploration of the sequence
of totally ordered vertices allocated to the communicator partition. For each vertex of the sequence
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we generate a corresponding macro (send , receive , read , write , pre full, suc full,
pre empy, suc empty). In order to distinguish a pair (pre , suc ) synchronizing a sequence of com-
munications with a sequence of computations from a pair (pre , suc ) synchronizing a sequence of
computations with a sequence of communications, we use a pair (pre0 , suc0 ) for synchronizing a
sequence of communications with a sequence of computations, and a pair (pre1 , suc1 ) for synchro-
nizing a sequence of computations with a sequence of commmunications. The arguments of these
macros are computed from the edges connected to their corresponding vertices.

• a unique computation sequence. This sequence is generated between a pair ofMain , EndMain
macros. Such a sequence is also built by exploration of the sequence of totally ordered vertices
allocated to the operator partition. Aspawn thread (com1) macro has in charge to run the commu-
nication threadcom1. This thread is executed under DMA interrupt (end of transfers interrupt) of the
main thread.

In order to generate an executable code whose partial order is consistent with the implementation graph,
it is important to remember that the translation/print process follows exactly the order given to the vertices
distributed onto this operator.

In order to measure the real-time performances of an application carried out with the AAA methodology,
it is possible to generate executives withchronometric operationsautomatically inserted before each com-
putation and each data communication. The real-time performances measure are performed in two steps:
first on each processor the real-time start and end dates are measured and memorized using the real-time
clock of the processor, second at the end of the application all the memorized values are transfered to one of
the processors with mass storage capabilities. These measures may be compared to those computed by the
heuristics in order to determine the optimized distribution and scheduling. The difference between the real-
time measures and the computed measures, is representativeof the difference between the models used in
AAA and the reality. Moreover, these measures allow to determine the execution duration of the operations
and data transfers, necessary to perform the architecture characterization as described in section 3.2.2.
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Figure 12: Execution graph after transformation of implementation graph of figure 9

27



3.5.3 Macro-code to source files

Each macro-code is translated by a macro-processor into a source code depending on the language chosen for
the target operator. We use the free software Gnu-m4 macro-processor (http://www.gnu.org/software/m4).

A macro is translated either into a sequence of in-lined instructions, or into a call to a separately compiled
function. These macros are classified in two sets corresponding to two kinds of libraries. The first one is an
extensible set ofapplication macros, which support the algorithm operations. The second, constituting an
executive kernel, is a fixed set ofsystem macros, which support code downloading, memory management,
sequence control, inter-sequence synchronization, inter-operator transfers, and runtime timing (in order to
characterize algorithm operations and to profile the application).

Once the executive libraries have been developed for each type of processor, it takes only few seconds
to automatically generate, compile and download the deadlock free code for each target processor of the
architecture. It is then easy to experiment different architectures with various interconnection schemes.

3.5.4 Example of macro-code

Figure 13 is an example of code generation obtained by transformation of the execution graph given in
figure 12. This example will focus on processor p1 (the code ofprocessor p2 given in figure 14 is generated
symmetrically):

• generation of asemaphores macro (lines 5-10) which allocates all the necessary semaphores, one
pair full empty for each communication. The semaphores are managed bypre andsuc synchro-
nization operations;

• generation ofalloc macros (lines 11-14) for each allocation vertex associatedto RAM R1 of figure
9 (the reader must remind that for readability allocation vertex are not drawn on figure 12);

• the unique communicator sequence is generated between a pair of thread (SAM,x,p1,p2) and
endthread macros (lines 15 to 28), whereSAM is the type of the communication,x is the name
of the communication gate,p1,p2 are the communicating processors. Each communication vertex
scheduled on the communicatorcom1 is translated into asend (lines 21 and 24) or arecv macro.
Each synchronization vertex is translated into the corresponding macrospre (empty/full) and
suc (empty/full) in order to synchronize the communicator sequence with the operator sequence,
and vice-versa the operator sequence with the communicatorsequence. The pair(pre1 (full),
suc1 (full)) (lines 36 and 20) synchronizes the operator sequence with the communicator sequence
in the same repetition, whereas the pair(pre0 (empty), suc0 (empty)) (lines 22 and 34) synchro-
nizes the communicator sequence of the current repetition with the operator sequence of the previous
repetition to guarantee that thesend (line 21) in the previous repetition is terminated;

• the unique operatoropr1 sequences its operations between a pair ofmain and endmain macros
(lines 29 to 43). Each operation vertex is translated into a macro with the same nameA, B, C (lines 33,
35 and 38) taking the allocation vertice names as argument.

Then, theses files are translated into the language of the target processor by the Gnu-m4 macro-processor
using a processor specific library containing the macro-definitions of each system macro, and the macro-
definitions of each application operation.

3.5.5 Example of macro-definition

Below is an example of macro-definition used by the macro-processor Gnu-m4 to translate SynDEx macro-
instructionalloc into C code.
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Consider the macro-instruction:

alloc_(int,x,3)

To produce C code the definition of this macro is performed in two steps:

• First step: (in syndex.m4x, standard library)

def(‘alloc_’,
define(‘$2_type_’, $1)dnl
define(‘$2_size_’, ifelse($3,,1,$3))dnl
ifdef(‘$1_alloc_’, ‘$1_alloc_’, ‘basicAlloc_’)’)($2)’)

• Second step: (in U.m4x library, C-Unix specific library)

define(‘basicAlloc_’, ‘_($’‘1_type_ _$’‘1[$’‘1_size_];)

Consequently, the result given by Gnu-m4 for the above macro-instruction is:

int x[3];

Similarly, the translation of asend macro may beDMA config write (alloc BD,size of(alloc BD),
com2) if com2 is the addresses of a RAM writable by a DMA channel of the processor. The implementa-
tion of synchronization macros is generally coded in assembly language, since performance and context
switching minimization between the communication sequences and the computation sequence are required.

4 SynDEx: system level CAD software

SynDEx is a system level CAD software, i.e. the tool associated with the AAA methodology, for rapid
prototyping and optimization of distributed real-time embedded applications. It may be freely downloaded
at: www-rocq.inria.fr/syndex or syndex.org, and offers through a GUI the following functionalities:

• algorithm specification of the functionalities with a factorized conditioned data flow graph or interface
with some high level specification languages,

• architecture specification of the multicomponent with a directed graph,

• heuristics execution for the optimized distribution and scheduling of the algorithm onto the architec-
ture,

• visualization of the heuristics results, as a timing diagram corresponding to a simulation of the real-
time execution,

• generation of the distributed real-time executives, mainly static and without any deadlock. They are
built with a minimum overhead, from executive kernels, presently available for the following proces-
sors: ADSP216X(Sharc), TMS320C4X, TMS320C6X, i80C196, MC68332, MPC555, i80X86, and
workstations under UNIX and LINUX. Executive kernels are easily ported on other processors from
the existing ones.

The way to practically use the GUI of SynDEx is described in its User Manual and examples are given
in its Tutorial.
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5 Conclusion

We presented a formal methodology based on graphs, in order to optimize the implementation of distributed
real-time embedded applications. SynDEx is a system level CAD software based on this methodology.
When it is associated with a domain oriented language, the compiler of which provides the algorithm speci-
fication and allows monoprocessor simulation, if this language allows to verify logical properties the AAA
methodology guarantees that these properties are maintained through all the steps of the implementation.
Moreover, the resulting distributed real-time embedded application will behave like its monoprocessor simu-
lation while verifying, in addition, real-time and embedding constraints. This approach providing a seamless
software environment from the specification to the distributed real-time embedded executable code, leads
to a high level of dependability which may even increase whenfault tolerance is also specified in the same
environment. Moreover, mainly because real-time tests arereduced and because code is automatically gen-
erated, the development cycle duration of distributed real-time embedded applications is also drastically
reduced.
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01: include(syndex.m4x)dnl ; Include generic kernel
02: dnl
03: processor_(proc,p1,al, ; START FILE p1.m4
04: SynDEx-7.0.2 (C) INRIA 2001-2009, 2009-10-07 10:33:55)
05: semaphores_( ; Semaphores declarations
06: Semaphore_Thread_x,
07: _al_C_CD_p1_x_empty,
08: _al_C_CD_p1_x_full,
09: _al_B_BD_p1_x_empty,
10: _al_B_BD_p1_x_full)
11: alloc_(int,_al_A_AB,1) ; Buff declarations
12: alloc_(int,_al_A_AC,1)
13: alloc_(int,_al_B_BD,1)
14: alloc_(int,_al_C_CD,1)
15: thread_(SAM,x,p1,p2) ; START SEQ COMMUNICATIONS
16: loadDnto_(,p2)
17: Pre0_(_al_B_BD_p1_x_empty,,_al_B_BD,empty)
18: Pre0_(_al_C_CD_p1_x_empty,,_al_C_CD,empty)
19: loop_
20: Suc1_(_al_B_BD_p1_x_full,,_al_B_BD,full) ; Wait for buff BD full
21: send_(_al_B_BD,proc,p1,p2) ; Send buff BD p1 -> p2
22: Pre0_(_al_B_BD_p1_x_empty,,_al_B_BD,empty) ; Signal buff BD empty

; in current repetition
23: Suc1_(_al_C_CD_p1_x_full,,_al_C_CD,full) ; Idem as send buff BD
24: send_(_al_C_CD,proc,p1,p2)
25: Pre0_(_al_C_CD_p1_x_empty,,_al_C_CD,empty)
26: endloop_
27: saveFrom_(,p2)
28: endthread_ ; END SEQ COMMUNICATIONS
29: main_ ; START SEQ COMPUTATIONS
30: spawn_thread_(x) ; Launch comm thread
31: A(_al_A_AB,_al_A_AC)
32: loop_
33: A(_al_A_AB,_al_A_AC) ; Compute A (sensor)

; write result in buff
; AB and AC

34: Suc0_(_al_B_BD_p1_x_empty,x,_al_B_BD,empty) ; Wait for buff BD empty
; in previous repetition

35: B(_al_A_AB,_al_B_BD) ; Compute B read in buff
; AB write in buff BD

36: Pre1_(_al_B_BD_p1_x_full,x,_al_B_BD,full) ; Signal buff BD full
; allowing send BD

37: Suc0_(_al_C_CD_p1_x_empty,x,_al_C_CD,empty) ; Idem as compute B
38: C(_al_A_AC,_al_C_CD)
39: Pre1_(_al_C_CD_p1_x_full,x,_al_C_CD,full)
40: endloop_
41: A(_al_A_AB,_al_A_AC)
42: wait_endthread_(Semaphore_Thread_x) ; Wait end comm threads
43: endmain_ ; END SEQ COMPUTATIONS
44: endprocessor_ ; END FILE p1.m4

Figure 13: Macro-code corresponding to the algorithm graphof figure 9 for processor p1
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include(syndex.m4x)dnl
dnl
processor_(proc,p2,figure9,
SynDEx-7.0.2 (C) INRIA 2001-2009, 2009-10-07 10:33:55)

semaphores_(
Semaphore_Thread_x,
_al_C_CD_p2_x_empty,
_al_C_CD_p2_x_full,
_al_B_BD_p2_x_empty,
_al_B_BD_p2_x_full)

alloc_(int,_al_B_BD,1)
alloc_(int,_al_C_CD,1)

thread_(SAM,x,p1,p2)
loadFrom_(p1)
loop_
Suc1_(_al_B_BD_p2_x_empty,,_al_B_BD,empty)
recv_(_al_B_BD,proc,p1,p2)
Pre0_(_al_B_BD_p2_x_full,,_al_B_BD,full)
Suc1_(_al_C_CD_p2_x_empty,,_al_C_CD,empty)
recv_(_al_C_CD,proc,p1,p2)
Pre0_(_al_C_CD_p2_x_full,,_al_C_CD,full)

endloop_
saveUpto_(p1)

endthread_

main_
spawn_thread_(x)
D(_al_B_BD,_al_C_CD)
Pre1_(_al_B_BD_p2_x_empty,x,_al_B_BD,empty)
Pre1_(_al_C_CD_p2_x_empty,x,_al_C_CD,empty)
loop_
Suc0_(_al_B_BD_p2_x_full,x,_al_B_BD,full)
Suc0_(_al_C_CD_p2_x_full,x,_al_C_CD,full)
D(_al_B_BD,_al_C_CD)
Pre1_(_al_B_BD_p2_x_empty,x,_al_B_BD,empty)
Pre1_(_al_C_CD_p2_x_empty,x,_al_C_CD,empty)

endloop_
D(_al_B_BD,_al_C_CD)
wait_endthread_(Semaphore_Thread_x)

endmain_

endprocessor_

Figure 14: Macro-code corresponding to the algorithm graphof figure 9 for processor p2
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