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Abstract. This paper presents the AAA methodology and its system-
level CAD software SynDEx, used to optimize the implementation of
distributed embedded real-time applications, and how coupling this soft-
ware with the scientific software package and the dynamic systems mod-
eler and simulator Scilab/Scicos, allows to provide a seamless flow which
improves the design safety, and decreases the development cycle thanks
to functional and timing simulations, as well as automatic code genera-
tion.

1 Introduction

Distributed embedded real-time applications are of crucial importance in do-
mains such as avionic, automobile, telecommunication, mobile robotic, etc. Mainly
based on digital electronics including software, this latter part of the application
is rapidly growing. Because they have to meet constraints in terms of distributed
resources as well as in terms of time, and in addition to be optimized because of
embedding considerations, the design process of such applications is particularly
complex. It is composed of two main steps.

The first one consists in specifying the functionality the application has to
perform, usually, using a block diagram approach where the different functions
are interconnected together. A function may be in turn described in terms of
other interconnected functions leading to hierarchical specifications. In the more
complex case the functionality is related to its physical environment which must
be taken into account in order to control it. The parameters of the control laws,
as well as the control laws themselves, are determinated through a simulation
process involving the environment which must be carefully modeled. Usually,
the environment is modeled as a continuous process whereas the control laws
are modeled as discrete processes since they will be implemented onto digital
electronics. An automatic control analysis allows to determine an upper bound
for the delay between two successive input sample (periodicity, cadence) con-
sumed by a control law from the environment, and an upper bound for the
computation delay between an input sample and an output sample produced by
a control law for the environment, which is the control produced in reaction to



this input (latency). If, when these bounds are not satisfied, control is no longer
possible and leads to catastrophic consequences, these applications are called
“strict or hard real-time” that we shall simply call “real-time” later on.

The second step takes place as soon as these parameters are set up, and con-
sequently the control laws behave properly connected with its environment dur-
ing the simulation process. It consists in implementing the discrete control laws
onto digital electronic resources such as programmable components (processors)
or non programmable components (ASIC1 or FPGA2 called later on “integrated
circuit”. ) while satisfying real-time constraints that were determinated during
the simulation process. The control laws interacting with the actual environment
through sensors and actuators, such digital electronic system controls its envi-
ronment by producing a reaction through actuator(s) processed from its internal
state, and from the state of the environment consumed through sensor(s). It is
in this sense that they are called “reactive systems” [1]. The control laws be-
cause of modularity considerations, or for performance reasons, are implemented
onto several resources requiring a distributed heterogeneous architecture where
hardware made of processors and integrated circuits, possibly of different types,
are altogether interconnected through communications media, possibly of dif-
ferent types. We call such heterogeneous architectures “multicomponent” [2].
When digital electronic systems are embedded they must satisfy technological
constraints, such as power consumption, weight, volume, memory, etc, leading
to minimize hardware resources.

The complexity, not only of the functionalities that must be implemented,
but also of the hardware architectures, and additionally the multiple constraints,
imply to use methodologies when the development cycle time must be minimized
from the high level specification until the successive prototypes which ultimately
will become a commercial product. In order to avoid gaps between the different
steps of the development cycle, we propose the AAA methodology based on a
global mathematical framework. This allows to specify the application function-
ality as well as the hardware architecture with graph models, and the implemen-
tation of functionalities onto architectures in terms of graphs transformations.
This approach has the benefit on the one hand to insure traceability and con-
sistency between the different steps of the development cycle, and on the other
hand to perform formal verifications and optimizations which decrease real-time
tests. Also, it allows to perform automatic code generation.

All these benefits contribute to minimize the development cycle and provide
a seamless flow which improves the design safety. The AAA methodology is
supported by a system-level CAD software called SynDEx. Moreover, in order
to allow functional simulation, the first step of the design process may be carried
out by the scientific software package and the dynamic systems modeler and
simulator software Scilab/Scicos. Its compiler is able to produce a source code
compliant with the application functionality model of SynDEx. Therefore, by

1 ASIC : Application Specific Integrated Circuit
2 FPGA : Field Programmable Gate Array



coupling Scilab/Scicos and SynDEx the designer will use the best tool for both
steps while insuring a consistent flow.

In section 2 we present the AAA methodology and its associated software
SynDEx, then in section 3 we explain how coupling Scilab/Scicos with SynDEx
provides a complete safe design flow, and finally in section 4 we give an example
that illustrates this flow.

2 AAA/SynDEx

AAA/SynDEx provides a formal framework based on graph models and a system-
level CAD software, on the one hand to specify the functionality of the applica-
tion that we call “Algorithm”, the distributed resources in terms of processors
and/or specific integrated circuit, and communication media that we call “Ar-
chitecture”, and on the other hand to explore the design space solutions, i.e. the
possible implementations of an algorithm onto an architecture. This is performed
manually or automatically using optimization heuristics based on graph trans-
formations. We call this optimization process “Adequation” leading to the name
AAA of the proposed methodology. Exploration is mainly carried out through
timing analyses and simulations whose results predict the real-time behavior of
the application functions executed onto the different resources. This approach
conforms to the typical hardware/software codesign. Finally, for the software
part of the application, code is automatically generated as a dedicated real-time
executive, or as a configuration file for a resident real-time operating system such
as Osek, RTlinux, etc. For the hardware part of the application a synthetizable
VHDL code is automatically generated.

The SynDEx software runs under Unix/Linux, Windows, and MacOS oper-
ating systems. It comes with a full documentation including a reference manual,
a user manual, and a tutorial. It is downloadable free of charge under INRIA
copyright at: www.syndex.org.

2.1 Algorithm

The algorithm model is an extension of the well known data-flow model from
Dennis [3]. It is a directed acyclic hyper-graph (DAG) [4] that we call “con-
ditioned factorized dependence graph”, whose vertices are “operations” and
hyper-edges are directed “data or control dependences” between operations.
Hyper-edges are necessary in order to model data diffusion since a standard
edge only relates a pair of operations. A data or control dependence models a
data or control transfer between operations, and moreover imposes a “prece-
dence dependence relation” between their executions. The set of the data and
control dependences defines a partial order on the operations execution [5] called
“potential operation-parallelism”. Furthermore, each operation may be in turn
described as a graph allowing a hierarchical specification of an algorithm. There-
fore, a graph of operations is also an operation. Operations which are the leaves
of the hierarchy are said “atomic” in the sense that it is not possible to distribute



each of them on more than one computation resource. The basic data-flow model
was extended in three directions, firstly infinite (resp. finite) repetitions in order
to take into account the reactive aspect of real-time systems (resp. “potential
data-parallelism” similar to loop or iteration in imperative languages), secondly
“state” when data dependence are necessary between repetitions introducing cy-
cles which must be avoided by specific vertices called “delays” (similar to z

−n in
automatic control), thirdly “conditioning” of an operation by a control depen-
dence similar to conditional control structure in imperative languages. Delays
combined with conditionings allow to specify FSM (Finite State Machine) neces-
sary for specifying “mode changes”, e.g. some control law is performed when the
motor is the state “idle” whereas another one is performed when it is in the state
“permanent”. Repetition and conditioning are both based on hierarchy. Indeed,
a repeated or “factorized graph of operations” is a hierarchical vertex specified
with a “repetition factor” (factorization allows to display only one repetition).
Similarly, a “conditioned graph of operations” is a hierarchical vertex containing
several alternative operations, such that for each infinite repetition, only one of
them is executed, depending on the value carried by the “conditioning input” of
this hierarchical vertex. Finally, the proposed model is compliant with the syn-
chronous language semantics [6], i.e. physical time is not taken into account. This
means that it is assumed an operation produces its output events and consumes
its inputs events simultaneously, and all the input events are simultaneously
present. Thus, by transitivity of the partial order on the operations execution
associated to the algorithm graph, an output event of the algorithm is obtained
simultaneously with the arrival of the input event which trigger it. Each input
or output carries an infinite sequence of events taking values, which is called a
“signal”. Here, the notion of event is general, i.e. signals may be periodic as well
as aperiodic. The union of all the signals defines a “logical time” where physical
time elapsing between events are not considered.

2.2 Architecture

The typical coarse-grain architecture models such as the PRAM (Parallel Ran-
dom Access Machines) and the DRAM (Distributed Random Access Machines)
[7] are not enough detailed for the optimizations we intend to perform. On the
other hand the very fine grain RTL-like (Register Transfer Level) [8] models are
too detailed. Thus, the model of multicomponent architecture is also a directed
graph [9], whose vertices are of four types: “operator” (computation resource or
sequencer of operations), “communicator” (communication resource or sequencer
of communications, e.g. DMA), memory resource of type RAM (random access)
or SAM (sequential access), “bus/mux/demux/(arbiter)” (choice resource or se-
lection of data from or to a memory) possibly with arbiter (arbitration of mem-
ory accesses when the memory is shared by several operators), and whose edges
are directed connections. Therefore, a processor is a graph composed of an op-
erator, interconnected with memories (program and data) and communicators,
through bus/mux/demux/(arbiter). It is similar for an integrated circuit but



without program memory. A “communication medium” is a linear graph com-
posed of memories, communicators, bus/mux/demux/arbiters corresponding to
a “route”, i.e. a path in the architecture graph. Like for the algorithm model,
the architecture model is hierarchical but specific rules must be carefully ful-
filled, e.g. a hierarchical memory vertex may be specified with bus/mux/demux
and memories (e.g. several banks), but not with operator. Thank to hierarchy,
in order to simplify the specification a multiprocessor may be described as a
bi-partite graph made of two types of vertices: processors and media. Although
this model seems very basic, it is the result of several studies [10], in order to
find the appropriate granularity allowing, on the one hand to provide accurate
optimization results, and on the other hand to quickly obtain these results dur-
ing the rapid prototyping phase. Data communications can be precisely modeled
through shared memory or through message passing possibly using routes.

2.3 Adequation

Implementation An implementation of a given algorithm onto a given multi-
component architecture corresponds to a distribution and a scheduling of, not
only the algorithm operations onto the architecture operators, but also a distri-
bution and a scheduling of the data transfers between operations [11].

The distribution consists in spatially allocating each operation of the algo-
rithm graph to an operator of the architecture graph. The difference between
programmable component and non programmable component lies in the fact that
only a unique operation can be allocated to an integrated circuit whereas several
operations can be allocated to a processor. This distribution leads to a partition
of the operations set, in as much as sub-graphs that there are of operators. Then,
for each operation two vertices called “alloc” for allocating program (resp. data)
memory must be added, and each of them is allocated to a program (resp. data)
RAM connected to the corresponding operator. Moreover, each “inter-operator”
data transfer between two operations distributed onto two different operators,
is distributed onto a route connecting these two operators. In order to actually
perform this data transfer distribution, according to the element composing the
route, as much as “communication operations” that there are of communicators,
as much as “identity” vertices that there are of bus/mux/demux, and as much as
“alloc” vertices for allocating data to communicate that there are of RAM and
SAM, are created and inserted. Finally, communication operations, identity and
alloc vertices are distributed onto the corresponding vertices of the architecture
graph. All the alloc vertices, those for allocating data and program memories as
well as those for allocating data to communicate, allow to determine the amount
of memory necessary for each processor of the architecture.

The scheduling consists in transforming the partial order of the corresponding
sub-graph of operations distributed onto an operator, in a total order. This “lin-
earization of the partial order” is necessary because an operator is a sequential
machine which executes sequentially the operations. This is a temporal alloca-
tion of the operations spatially allocated to an operator. Similarly, it also consists



in transforming the partial order of the corresponding sub-graph of communi-
cations operations distributed onto a communicator, in a total order. Actually,
both schedulings amount to add new edges which are only precedence depen-
dences rather than data or control dependences, to the initial algorithm graph.
To summarize, an “implementation graph” is the result of the transformation
of the algorithm graph (addition of new vertices and edges to the initial ones)
according to the architecture graph.

Optimization It is necessary to choose among all the possible implementations
a particular one for which the constraints are satisfied and possibly some criteria
are optimized.

In the case of multiprocessor architecture the problem consisting in distribut-
ing and scheduling the algorithm onto the architecture such that the execu-
tion time of the algorithm is minimum, is known to be of NP-hard complexity
[12]. This amounts to consider, in addition to precedences constraints specified
through the algorithm graph model, one latency constraint between the first op-
eration(s) (without predecessor) and the last operation(s) (without successor),
equal to a unique periodicity constraint (cadence) for all the operations. We
propose several heuristics based on the characterization of the operations (resp.
communication operations) relatively to the operators (resp. communicators),
e.g. execution durations of operations and data transfers, amount of memory,
etc, in order to minimize the execution duration of the algorithm graph on the
multiprocessor architecture, taking into account communications, possibly con-
current [11]. The characterization amounts to relate the logical time described
by the interleaving of events with the physical time. “Greedy heuristics” are
preferred because they are very fast [13] giving results in a time well suited to
rapid prototyping of realistic industrial applications. Indeed, for this type of ap-
plication the algorithm graph may have several thousands of vertices and the
architecture graph may have several tens of vertices, leading to a very complex
optimization problems that must be solved quickly as possible. We also extend
these greedy heuristics to iterative versions [14] which are much slower, due to
back-tracking, but give more precise results for the ultimate commercial prod-
uct. We also propose a “simulated annealing” version of these heuristics which
gives still more precise results but is actually very slow.

New applications in the automobile, avionic, or telecommunication domains,
lead us to consider more complex constraints. In such applications it is not
sufficient to consider the execution duration of the algorithm graph. It is also
necessary to consider periodicity constraints for the operations, possibly differ-
ent, and several latency constraints imposed possibly on any pair of operations
(not only on input-output pair). Presently, there are only partial results for such
situations in the multiprocessor case, and only few results in the monoprocessor
case. Thus, we tackle this research area by interpreting the typical scheduling
model given by Liu and Leyland [15] for the monoprocessor case, in our algo-
rithm graph model. This leads to redefine the notion of task periodicity through
the infinite repetition of any operation of an algorithm graph associated to an



integer defining the period of the repetition. Then, we extend the periodicity
to an infinite repetition of an operations finitely repeated, thus generalizing the
SDF (Synchronous Data-Flow) model [16] proposed in the software environment
Ptolemy.

For simplicity reason, and because this is consistent with the application do-
mains we are interested in that is to say strict real-time, we only consider that the
real-time systems are non-preemptive, and that “strict periodicity” constraints
are imposed on operations. In this case it is possible to we give a schedulability
condition for graph of operations with precedence and periodicity constraints.
We have formally defined the notion of latency which is more powerful [17], for
the applications we are interested in, than the usual notion of “deadline” that
does not allow to impose directly a timing constraint on a pair of operations,
connected by at least one path, like it is necessary for “end-to-end constraints”.
Moreover, notice that when two deadlines are used to impose a latency this
method gives an over-constrained solution compared to the latency method we
propose. We give a schedulability condition for graph of operations with prece-
dence and latency constraints. Then, by combining both previous results we give
a schedulability condition for graph of operations with precedence, periodicity
and latency constraints, using an important result which gives a relation be-
tween periodicity and latency. We also give an optimal scheduling algorithm in
the sense that if there is a schedule the algorithm will find it [17].

Thanks to these results obtained in the monoprocessor case, we propose ex-
tensions of the heuristics for one latency constraint equal to a unique periodicity
constraint, in order to solve the distribution and scheduling problem for graph
of operations with precedence, periodicity and latency constraints in the multi-
processor case [18].

2.4 Code Generation

As soon as an implementation is chosen among all the possible ones, it is straight-
forward to automatically generate executable code through an ultimate graphs
transformation leading to a distributed real-time executive.

For a processor the operator (resp. each communicator) has to execute the
sequence of operations (resp. communication operations) allocated to it. For an
integrated circuit the operator has to execute the unique operation allocated
to it. Then, this graph is translated in an “executive graph” [9] where new
vertices and edges are added in order to manage the infinite and finite loops,
the conditionings, the inter-operator data dependences corresponding to “read”
and “write” when the communication medium is a RAM, or to “send” and
“receive” when the communication medium is a SAM. Specific vertices, called
“pre” and “suc”, which manage semaphores, are added to each read, write, send
and receive vertices in order to synchronize the execution of operations and of
communication operations when they must share, in mutual exclusion, the same
sequencer as well as the same data.

These synchronizations insure that the real-time execution will satisfy the
partial order specified in the algorithm. Executives generation is proved to be



dead-lock free [10] maintaining the properties, in terms of events ordering, shown
thanks to the synchronous language semantics. This executive graph is directly
transformed in a macro-code [9] which is independent of the processor. This
macro-code is macro-processed with “executive kernels” libraries which are de-
pendent of the processors and of the communication media, in order to produce
as much as source codes that there are of processors. Each library is written
in the best adapted language regarding the processors and the media, e.g. as-
sembler or high level language like C. Finally, each source code produced by
macro-processing is compiled in order to obtain distributed executable code sat-
isfying the real-time constraints.

3 Scilab/Scicos Coupled with SynDEx

The algorithm graph of SynDEx, which corresponds to the specification of the
application functionality, may be described using its graphical user interface
as for the architecture graph, or may be imported into the software SynDEx
as a file with extension .sdx according to a syntax defined in the document:
www.syndex.org/v6/grammar.pdf. The software Scilab/Scicos3 is a scientific
package and a dynamic systems modeler and simulator whose compiler can pro-
duce a file of this type. Thus, a block diagram performed with Scilab/Scicos is
translated in a .sdx file that can be directly imported in SynDEx, and then an
adequation can be performed with any architecture specified also with SynDEx.

Although both models seem close syntactically speaking, in terms of semantic
the block diagram of Scilab/Scicos is quite different of the conditioned factor-
ized dependence graph of AAA/SynDEx. Indeed, contrary to the AAA/SynDEx
model the Scilab/Scicos model is not purely data-flow. It mixes control, material-
ized by activation input signals on the top, and output signals on the bottom of a
block, and data-flow materialized by input signals on the left, and output signals
on the right of a block. Activation signals are produced by “if-then-else” or “se-
lect” blocks. They control the execution of blocks. Moreover, data signals are not
purely data-flow in the sense that data are remanent, which is not the case in pure
data-flow. So, a complex translation is necessary to transform control/data-flow
block diagram of Scilab/Scicos in a conditioned factorized dependence graph of
AAA/SynDEx where the control is included in the data-flow leading to a model
which is purely data-flow. Actually, the control in the AAA/SynDEx model is
a specific hierarchical conditioning vertex, only one of its sub-graphs will be ex-
ecuted depending on the value of its specific conditioning input. Also, the data
are not remanent that is to say a value produced by a vertex of an algorithm
graph is lost at the end of the execution of the algorithm graph which is infinitely
repeated. It will be produced again during the next repetition or logical instant.

The translation is composed of two steps. First, each imbrication of “if-
then-else” or “select” blocks which produces activation signals for the other
blocks determines the number, and the hierarchy of conditioning vertices in

3 www.scilab.org



AAA/SynDEx. Second, each time a data must be memorized because it is not
used in a conditional branch, that is automatically done in a Scilab/Scicos
block diagram because of remanence, it is necessary to use a delay vertex in
AAA/SynDEx. This is complicated because when a data must be memorized
it is necessary to follow the the control due to imbricated if-then-else blocks
transformed in a hierarchy of conditioning vertices in AAA/SynDEx.

4 Example

Figure 1 shows the principles of Scilab/Scicos coupled with SynDEx. The pre-
sented example is a manual driving application with joystick for the CyCab. It
is an intelligent and modular electric vehicle designed at INRIA Rocquencourt
by the IMARA team4 and industrialized by Robosoft5. On the top of the fig-
ure Scilab/Scicos allows to model the CyCab, including the process to control
(driver, ground, wheels, suspensions, motor, etc) and the controller (combination
of several control laws). This latter, depending on the position of the joystick,
modifies the wheels direction, increases or decreases the speed of the motor, or
activates the brakes. The complete model (process and controller) is simulated
and the parameters of the controller are adjusted. Then, the block diagram rep-
resenting the controller is discretized if this model was continuous, and compiled
with the SynDEx option in order to produce a .sdx file. On the bottom of the
figure SynDEx allows to import this file as an algorithm graph. Then, the dis-
tributed architecture of the CyCab, made of four microcontrollers MPC555 from
Motorola and one embedded PC altogether interconnected through a CAN bus,
must be specified with SynDEx. Now, it is possible to perform an adequation,
and generate an executable code for each processor, using the executive kernels
corresponding to the MPC555, the i80386, and the CAN bus. These codes are
loaded an run inside the processors of the CyCab.

Figure 2 shows the graphical user interface of SynDEx used to implement
the discrete controller onto the distributed architecture. On the left top of the
figure a window depicts the algorithm graph, and because it is a hierarchical
specification a smaller window (left bottom) depicts in turn a sub-graph of the
algorithm graph. On the right top of the figure a window depicts the architecture
graph (four MPC555 and an embedded PC connected with a CAN bus). Finally,
on the left bottom of the figure a windows depicts the result of the adequation
applied to the algorithm and the architecture graphs. This is a timing simulation
window describing how the algorithm is distributed and scheduled onto the ar-
chitecture by the optimization heuristics of SynDEx. It includes one column for
each processor and communication medium, describing the distribution (spatial
allocation) and the scheduling (temporal allocation) of operations onto proces-
sors, and of inter-processor communications onto media. Time flows from top to
bottom, the height of each box is proportional to the execution duration of the
corresponding operation (execution durations are given/measured by the user

4 www-rocq.inria.fr/imara
5 www.robosoft.fr



for each available pair of operation/processor or data/medium). Consequently,
the height of this timing windows gives the execution time of the distributed
application that the user can compare to the timing constraints. Usually, several
adequations with different variants of the algorithm and the architecture (imple-
mentation exploration), are necessary to obtain the implementation satisfying
the real-time constraints, then the user will ultimately generate the executable
code.

5 Conclusion

We presented the AAA methodology and its associated software SynDEx provid-
ing a seamless design flow for the optimized implementation of distributed em-
bedded real-time applications. This software coupled with the scientific software
package and the dynamic systems modeler and simulator software Scilab/Scicos
allows to use the best tool for both steps of the design process while insuring a
consistent flow.

We have work in progress in order to extend the optimization techniques,
which presently are mainly static, to more dynamic schemes to better support
aperiodic event and dynamic creation of functions, and in order to provide au-
tomatic hardware/software partitioning in the codesign process.
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