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Abstract of a task includes the context switch necessary to makelgessi

the preemption of another task and the choice of the taskttaéth
In this paper we study hard real-time systems composed othighest priority. Thus, this cost only depends on the nunafber

periodic preemptive tasks and address the scheduling @mobl tasks. A variable part, which is more difficult to determiiseas-
on specific hardware platforms. For such a system, the failur sociated with the occurrence of every preemption of theecurr
to satisfy any constraint may have disastrous consequeAees task in order for it to resume later on. Thus, this cost depemd
important starting point for the analysis of such systemthés  the number of preemptions for every task. We consider all the
basic task model considered. In this paper we introduce a newpossible scenarios of first activation for all the tasks @ienul-
model, relative to the ones in the literature, that is ablelbain taneousr non-simultaneoys Currently, there exists a wide gap
stronger schedulability conditions. This new model presia between the scheduling theory and its implementation imaipe
formal and rigorous specification of a task and helps us to de- ing systems running on specific hardware platforms. Thigpap
scribe the schedulability principle when tasks are schedllly provides a first step toward bridging the gap between reat-ti
using a fixed-priority scheduling policy. scheduling theory and implementation realities. Suréilg gap

must be bridged for any meaningful validation of timing emt-
Keywords: Real-time systems, Task models, Fixed-priority ~ N€ss. Throughout the paper, we assume that all timing clearac
scheduling theory. istics are non negative integers, i.e. they are multiplesoofie
elementary time interval (for example the “CPU tick”, thealm
est indivisible CPU time unit). The general scheduling fpeab
in this case consists in filling the available time units laft

This paper focuses on hard real-time monoprocessor systemger the schedule of some tasks with the execution time ufits o
and addresses the scheduling problem of periodic preeenptiv the other tasks. Bgsed on o_ur ngw model, W? are able t(,) pro-
tasks on specific hardware platforms without cache, pipetn ~ POS€ @ schedulability analysis which uses a binary operatio
complex internal architecture, when tasks are schedulearde ~ WNOSe operands are calletasks In the following, we show the
ing to a fixed-priority scheduling policy. Up to now, many mod corre_spondenge between !’IOtIOI’]S and concept; belongmg tot
els and concepts necessary to describe and analyse hard redii@ssical real-time scheduling theory and those introduceur
time systems have been proposed. Rich and extensive state &mdel. Alsq, we |ntroduge the bln_ary opgra}tl@rwhen F_mf)r"
the art work has been performed in order to justify the consid {€S are assigned according to a fixed-priority schedulivigp
ered assumptions, etc. Over the years, preemptive pefiashc such afRate MonotonicDeadline MonotonicAudsley[1, 5].
models [1, 2] have proven remarkably useful for the modgllin ~_ The remainder of the paper is structured as follows: se@ion
of hard real-time systems — systems where the failure tefyati  9\VeS definitions and properties used Fhroughout this papdr
any constraint may have disastrous consequences [2]. UnforPresents the newiotask model” that will help us to perform
tunately, none of the previously proposed models has been de? New metho@ology for .the schedulability of a hard real-time .
signed to take into account an issue such as the exact cagt-of p SyStém. Section 3 provides the correspondence between peri
emption [3]. This weakness in current existing models magle 0dic tasks and periodic otasks. Section 4 gives the schigitiula
to erroneous conclusions in terms of schedulability denisi 1ty Principle when priorities are assigned according to &dix
This in turn can affect the correct behavior of the systenum¢ r ~ Priority scheduling policy. We conclude and propose future
time, or in any case lead to resources being wasted. In additi WOrK in section 5.
this model allows the unification in one framework of diffete
models such as Liu & Layland’s and Mok’s models. In this pa- 2 Definitions and properties
per, we introduce a new model to solve the general scheduling

1 Introduction

problem of hard real-time systems while taking into accdhbat In this section we introduce some definitions and properties
exact cost of the Real-Time Operating SystdRTQ3S [4]. In- in order to provide the reader with the framework of our new

deed, the preemption cost represents only one half of theSRTO model for hard real-time systems.

cost which consists of two parts. A constant part, easy terdet First of all, we must specify a generator containing all the

mine, which corresponds to the cost of the scheduler, iscasso legal symbols which can be used. We defingeaeratorz as
ated with the activation and termination of tasks. The atithn being a finite set of symbols. As such, everywhere in this pape



the generator that will be consideredsis= {a,e}. In the con-
text of scheduling theory, we will always associate the syimb
a’ to a time unit which isavailable and the symbol &' to a
time unit which is eitheexecutedr executabledepending on
the cases that we will detail later on. Now, given thanera-
tor Z, we define arotaskas anordered multisetonsisting of a
certain number of elements (possibly zero) all belonging.to

task sets, we consider otasks with an infinite cardinal. Aslot
where a sub-otask with a finite cardinal can be extractedlaad t
otask is an infinite concatenation of this sub-otask fronrtage
element relatively to the first one, will be termpdriodic An
otask with an infinite number of the symba@"; and with a min-
imum number of symbols between two consecutive sequence of
symbols ‘€", will be termedsporadic Finally, an otask that con-

The fundamental difference we make here between the notiortains a finite number of symbol€™ will be termedaperiodic

of ordered multisetand the common notion ahultiset[6] is

Hereafter, we will only considgperiodic otasks. An otask sys-

that the order of elements in an otask is important in our.case tem[I” consisting only of periodic otasks will be calledgstem

In fact, this will allow us to make the difference between any
two otasks and in particular between otasks obtained fram pe
mutations of the elements of another otask. We definetask
systenT as a set of otasks on the genera&oitt is worth notic-
ing that the definition of amtask systenms quite general and

of periodic otasks

So far, the notion of “time”, which is central to scheduling
theory, has not yet been considered in this paper. In order to
overcome this, we consider an index along an oriented tinge ax
which is a temporal reference for all otasks. On this axis, we

allows us to consider highly structured otask systems sgch a identify un instant of referenct, for example we can choose

periodic, aperiodic or hybrid otask systems. The proxinaity
the terminologies used here to those in the literature sga®
the idea of a relationship between them which we will detail
later on. Indeed, we will consider an otask with specific grep
ties to represent geal-time taskand thus aystem of real-time
tasksis a particularsystem of otaskd/Ve consider a unique set
of otasks where each real-time task corresponds to one dnd on
one otask. This correspondence will allow us to derive tesul
on real-time task systems from those obtained on otaskragste
In order to illustrate the previous definitions here are s@xe
amples of otasks oB: 11 = {a}, 12 = {e,a,a}, 13 = {a,e a}
andt, = {a,a,e e a}. The otask with no symbols, is denoted
by A (A= {} =0). A is always an otask oB.

The set of all possible otasks anwill be denoted by>*.
Hence, any otask systemis necessarily a subset af. If 1
is an otask ork, then thecardinal of T is the number of el-
ements int and will be denoted byt|. Now, letx andy be
two otasks or®. Theconcatenatiorof x andy is the otaskxy
obtained by writing the symbols ofand the symbols of con-
secutively. As an example, ¥= {a,e e} andy = {e a} then
the otaskxy is given byxy = {a,e e e a} and the otaskx is
given byyx= {e a,a, e e}. We havexy # yxbecause of the im-
portance of the order of the elements in an otask. Conselguent
the concatenatioroperation is noCommutativei.e. there are
otasksx andy on X such thatxy is different fromyx. However,
this operation isassociativei.e. for all otaskx, y andzon z,
(xy)z=Xx(y2). The advantage of treessociativityis that it allows
us to concatenate several otasks without worrying aboubtthe
der in which the concatenation operations are carried oate N
that for any otaslk, the concatenation of andA equalsx, i.e.
X\ = Ax=Xx. If there exist two otask& andz such thalyy = wxz,
thenx is called asub-otaslof y. We call the operation leading
to obtain a sub-otask from an otask extraction In order to
illustrate the latter definition, the otadla, e e} is a sub-otask
of each otasKe e a,e e a a} and{a,a a,e e} since we have
for example{e,e a, e e aa} = {e e}{a e e}{a a}, butis nota
sub-otask of a,e a, e}.

to = 0. Hence, in addition to the cardinal and the order of ele-
ments that can help us to differentiate between any two stask
on the generatok, thestart date re Z andend date fe Z of
each otask w.r.t. the reference timgeare important and may
also help us to differentiate between two otasks. We willaden
by 1;, ) the otask ork which starts at dateand finishes at date
f. This notation allows us to describe both finite and infinite
cardinal otasks. If =r thent =A. If f = o then|t| = » and
in this case we denote by conventio@m) =T, as there is no
ambiguity concerning the end datetof

By definition, aperiodic otaskiper 0N Z is an infinite cardinal
otask with a start date such that there exists a finite cardinal
sub-otaskt, andtper is an infinite concatenation af from a
certain time instan8 > r. We denote each periodic otask by:

Lep) Tp 1)

where the integef represents the smallest time instant such
that relation 1 is satisfiedy, g) represents a finite cardinal otask
calledinitial part of Tper and Ty represents an infinite cardinal
otask, infinite concatenation af from datef3 called periodic
part of Tper.

For the sake of clarity, the infinite cardinal otask
T, = {a,a,e,e,e,a,e,aT,e,e,a,e,aT,~--,e,e,a,e,aT,-~~}o =
{a,ae}p3i{eeaealy is a periodic otask on
Z = {ae} whose initial part is {a,a e}z and the
periodic part is {eeaeal3. A periodic otask
system on X is given for example by the sefl =
{{a,ae} 03 {eeaeals,{aeealiigieaaeeaaalf})

Given a periodic otask, there are two different
forms in which it may be written: thefactored form
and the developed form For the case of otaski,
{a,a.e}p3{eeaealy wil be referred to as thdactored
form and {a,a,e,e,e7a,e7aT,e,e,a,e,aT,-~~,e,e,a,e,aT,---}o
will be referred to as theleveloped form Now, letTper be a
periodic otask ork. If the existence of the integr such that
Tper = Z<r7[3)(t)[°3° is unique by definition, the existence of the
finite sub-otaskr is not unique. Indeed, the otask can also

Tper =

From now on, the superscripts will represent the number of pe writtent; = {a,a, elozieeaea,.eeaea s and we
times an element is concatenated. These elements can eithefaye 5— |{e e a e all 75 \{e eaea, e e a e a}| = 10.

be simple otasks, or even otask systems. Thusd4fz*, and

[ C 2% then: XK = xx---x, 3K =33...3 = {x€ Z*/|x = k},
FK=TrT...T, where in each case, there drdactors that are
concatenated.

Keeping in mind that we are interested in scheduling peciodi

We define thepatternof a periodic otask per = () TE;’ to
be the minimumfinite cardinal sub-otaskmi, of the otaskt
such thatt per = {rp (rmm)g. Thepatternof any periodic otask
always exists and is unique. Consequently, any two periodic
otaskst; = Zi(ri,Bi)(T') andt, = ZJ (r,) onZ areequal



if and only if on the one hand ;, gy = {j (r1.8;) and on the other
handt; andt, have the sampattern In the same veirt; and
T, are said to bequivalenif and only if they have the same de-
veloped form. In the remainder of this paper, any periodaskt
Tper ON 2 Will be denoted byt per = Z(LB)TE’ whereZ(nB) is the
initial part, T is the pattern and = [t is theperiod of Tper.

We assume that the patterof e, contains at least one sym-
bol “€". Indeed, ift = {a} then we consider thaier equals the
finite cardinal otask((;p), i.€. Tper = Z(r,ﬁ){a}ff = {(r,p) Which
is not interesting as it is not periodic. Similarly, we assutiat
the pattern contains at least one symba@™ Indeed, if it is not
the case, by identifying the symbao¢*to a time unit which is
eitherexecutedr executablethen the periodic otaslg,,m{e}‘[},o

sent it graphically. However, for the periodic part, the dlese
will be represented by a checkmarkt At this point we have
everything we need to introduce our model of periodic otasks
Figure 1 illustrates a periodic otask with relative deagllih
and periodT. Each shaded box corresponds to the symiol “
and each non-shaded box to the symbal th the generator
>. The initial part which is finite, is between the dateand
B. The pattern of the periodic part, which repeated infinjtedy
comprised betweef8 andpB+ T. In this figure,D can take 5
possible values relative to the position of the last symiebirt
the periodic part of the otask. These values gFeT —1, T —
2,T—3,T—4}. Note that in our model, the value of the relative
deadline for the periodic part of any periodic otasheiss than

corresponds to one whose elements do not change from a ce@" €qualto its period.

tain date, the datp. This situation is not interesting since our
goal is to compose otasks by replacing the available timesuni
of a otask, i.e. the symbol®®, by the executable time units of
another otask, the symbolg™

It is worth noticing that any periodic otastger = Z(nB)TE’
of period T on X is equivalent to an infinite number of peri-
odic otasks of period on Z. Indeed, since we have# A
and|t| finite by definition, then there exists a finite otasi¢ A
and a finite otasky such that|t| = |x| + |y| and T ) =

X(B,+[x)Y(B+[x|,g+t)- Thus:

Tper

Y) (XY) (Xy) - - - (Xy) (xy) - -
r3)X(YX) (YX) (YX) - - (yX) (y)f) e
e X@ ) YR 1x = Tper

The otas;kr'per is periodic of periodT and its initial part is

{(rp)X@,p+lx) @nd its periodic part is{yx)‘[’;HX'. As the otasks

T
D
Otask 7 ., :
T B N

Initial part Periodic part

= g”

D=« M

Figure 1. Model of a periodic otask.

We calldate of sub-activation of rank | for the initial paof
Tper denoted by, (resp.date of first sub-activation of rank | for

the periodic partof Tper denoted byr'p’l) the date of occurence
of the first symbol &€ belonging to the sequence of rahln the
initial part of Tpe relatively tor (resp. the date of occurence of
the first symbol &’ belonging to the sequence of rahlof the
pattern for the periodic part afper relative tof). Identically,

x andy are arbitrary, we can repeat this process as many timesye call sub-execution time of rank | of the initial paftesp.

as we want. In particular, for arye N, we also have
© k 0
Tper = {(rp) LT TTg. o) = S T ok ok (2)
k times

Wherer(ﬁ,mw denotes the finite otask beginning at datend

ending at datd3 + k|t|, it corresponds to the otagkconcate-
natedk times. We will say thatiper is in the canonical form

if and only if the first element of the finite cardinal otasks
the symbol €'. Thanks to everything we have presented up
to now, the periodic otask, = {a,a,e} o3 {a aeeaea}3

is not in thecanonical form but it is equivalentto the otask
t'2 ={a,a,e.a,a}o5{eeaeaaa}s whichisin thecanoni-

cal form This transformation is useful as the schedule will con-
sist in replacing symbolsd” belonging to an otask by symbols
“€" belonging to another otask. From now on, for each peri-
odic otasktper = Z(r,B)TE’, we consider the equivalent periodic

canonical otask'per = Z(r,B/)TE’, wheref' is the smallest integer

greater tharB. We define theelative deadline Dof a periodic
otasktper = {(1,3)Tp to be an integer value equal fio-r for the
initial part of Tper, and equal to the cardinal of a single sub-otask,
possibly the pattern itself, containing at least all the bpin “€”

of the pattern for the periodic part ofer. D is at most equal to
T.

sub-execution time of rank | of the periodic pagenotedCl,
(resp. CL) the cardinal of the sub-otask which consists only of
symbols ‘€’ corresponding to the sequence of rdnkFigure 2
below clarifies these notions dfte of sub-activatiomndsub-
execution timédor a periodic otask.

D
ot o= ot § G2 P
Otask 7, e T -
il B E Bl B RN
R
Tl 2 1p=0 re 3 B+T
Initial part Periodic part
(== @=

Figure 2. dates of sub-activations and sub-
execution times for a periodic otask.

3 Model of periodic tasks

The study of a periodic real-time system by using a peri-

odic otask system requires that each periodic task is descri

Since the definition of the relative deadline does not priesen able uniquely as a periodic otask, that is to say that twandist

any ambiguity for the initial part, it is not necessary tonep

periodic tasks must match two distinct periodic otasks.hia t



section, we choose to build such a correlation by describavg
each otask can be generated from the temporal charaatsigti
each real-time task and operations on simpler otasks.

Let 'y = {11,T2,---,Tn} be a system oh periodic tasks
wheret; = (r1,Ci,D;, Ti) andC; < D; < T;. Based on the char-
acteristics a periodic task} is the date of first activatiorG; is
the Worst Case Execution Time (WCET) without any approx-
imation of the preemption cosh; is the relative deadline and
T; is the period oft;. Relation 3 provides the periodic otask
which corresponds to the periodic tagk

G
€6 7é7a7a7a7"' ,a,a,---,a,a

Di

ot =

®)

T it

wherer! means that the pattern of otask begins at the datef,
corresponding to the date of first activation of tagKt thus fol-
lows that the otaskr; is aparticular otasksince it iscanonical

It consists of a periodic part but has not got a non-trividtiah
part, indeed its initial part equals. Furthermore it igegular,
that is to say that the pattern contains a single sequen€e of
symbols €’ followed by a single sequence af — C; symbols
“a’. The Dj first symbols of the pattern represent the relative
deadline of the otaskrt. The value ofD; delimits the interval
before whichC; symbols €’ of ot; must have been executed. In
equality 3 each repetition of the pattern from the deteorre-
sponds to an instance of the task The pattern of rank start-
ing at the dateX = r! + (k— 1)T; corresponds to thk" instance.
Figure 3 illustrates a periodic task as a particular pedadask
given in figure 2.

Dl
Otask OT, C
0 ! S t
[ i :
i F'i: rI] Bi+Ti
Periodic part
l:l = «g” = «g”

Figure 3. Correspondence between a periodic
task and a periodic otask.

4 Schedulability principle

Our main objective is the schedulability analysis of a gyste
of periodic tasks by considering the corresponding otasiesy.
For this purpose, we will combine otasks by usingasociative
non commutative binary scheduling operattbat we denote by
@ in order to get an otask that will help us decide the schedu-
lability. When we writex®y wherex andy are two periodic
otasks, this means by convention that the first operandiadas
has a higher priority than the second operand (oyagtkerefore
the operation® is not commutativei.e. Xx®y # yd x. Now we
have everything we need to explain the difference betvesen
cutedandexecutablesymbols €". In the expressioxay, the

elements &’ of otaskx are calledexecutedind those of otask

are calledexecutableThe intuitive idea that we propose to per-
form the operation® will therefore consist in replacing some
elements &” of a copyz of otaskx by elements & of otasky,
leading to the result = x@y. Although there are not enough
“a’ for all the executable'e’, x@y = A is defined. When per-
forming operation® the date of sub-activation of each sequence
of executable symbolse” of otasky gives the earliest date of
the symbols &” to replace in otask.

For any otask syste®@r, = {011,012, --,0T,} arranged ac-
cording to decreasing priorities relative to an algorithmels as
Rate Monotonior Deadline Monotonigcsinces is a binary op-
eration, it will be used as many times as there are otas$ in
in order to guarantee, or not, the schedulability of the eayst
The operationsp will be applied from the otask with the high-
est priority to the otask with the lowest priority. This pess
will produce an intermediate result otask at each step wtnch
responds to the otask with the highest priority, i.e. thethaind
operand of the next the operatign Consequently, iR, is the
scheduling otask result @I, thenR®, is obtained by succes-

sive iterations:

R =N\dory =011

R=R_1Dot, 2<i<n
The otaskort; will be saidschedulablawvith respect to the con-
sidered priorities policy if and only ifg; # A and the system
Or, will be said schedulablgf and only if all the otasks are
schedulable. If this is not the case, then the systémis said
not schedulable

5 Conclusion and future work

In this paper we have introduced a new model, relative to the
ones in the literature, that provides a more accurate spacifi
tion of a real-time task. It helped us to describe the scltedul
bility analysis when tasks are scheduled using a fixed-pyior
scheduling policy by defining an associative non commugativ
binary scheduling operation that we have denoteebbyuture
work will use this new model in order to provide schedulapili
conditions when the RTOS cost is taken into account. Indeed,
the preemption cost which is the variable part of the RTO$ cos
necessitates an accurate model.
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