
A New Model for Hard Real-Time Systems

Patrick Meumeu Yomsi
INRIA Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France
Email: patrick.meumeu@inria.fr

Yves Sorel
INRIA Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

Email: yves.sorel@inria.fr

Abstract

In this paper we study hard real-time systems composed of
periodic preemptive tasks and address the scheduling problem
on specific hardware platforms. For such a system, the failure
to satisfy any constraint may have disastrous consequences. An
important starting point for the analysis of such systems isthe
basic task model considered. In this paper we introduce a new
model, relative to the ones in the literature, that is able toobtain
stronger schedulability conditions. This new model provides a
formal and rigorous specification of a task and helps us to de-
scribe the schedulability principle when tasks are scheduled by
using a fixed-priority scheduling policy.

Keywords: Real-time systems, Task models, Fixed-priority
scheduling theory.

1 Introduction

This paper focuses on hard real-time monoprocessor systems
and addresses the scheduling problem of periodic preemptive
tasks on specific hardware platforms without cache, pipeline, or
complex internal architecture, when tasks are scheduled accord-
ing to a fixed-priority scheduling policy. Up to now, many mod-
els and concepts necessary to describe and analyse hard real-
time systems have been proposed. Rich and extensive state of
the art work has been performed in order to justify the consid-
ered assumptions, etc. Over the years, preemptive periodictask
models [1, 2] have proven remarkably useful for the modelling
of hard real-time systems — systems where the failure to satisfy
any constraint may have disastrous consequences [2]. Unfor-
tunately, none of the previously proposed models has been de-
signed to take into account an issue such as the exact cost of pre-
emption [3]. This weakness in current existing models may lead
to erroneous conclusions in terms of schedulability decisions.
This in turn can affect the correct behavior of the system at run-
time, or in any case lead to resources being wasted. In addition,
this model allows the unification in one framework of different
models such as Liu & Layland’s and Mok’s models. In this pa-
per, we introduce a new model to solve the general scheduling
problem of hard real-time systems while taking into accountthe
exact cost of the Real-Time Operating System (RTOS) [4]. In-
deed, the preemption cost represents only one half of the RTOS
cost which consists of two parts. A constant part, easy to deter-
mine, which corresponds to the cost of the scheduler, is associ-
ated with the activation and termination of tasks. The activation

of a task includes the context switch necessary to make possible
the preemption of another task and the choice of the task withthe
highest priority. Thus, this cost only depends on the numberof
tasks. A variable part, which is more difficult to determine,is as-
sociated with the occurrence of every preemption of the current
task in order for it to resume later on. Thus, this cost depends on
the number of preemptions for every task. We consider all the
possible scenarios of first activation for all the tasks (i.e. simul-
taneousor non-simultaneous). Currently, there exists a wide gap
between the scheduling theory and its implementation in operat-
ing systems running on specific hardware platforms. This paper
provides a first step toward bridging the gap between real-time
scheduling theory and implementation realities. Surely, this gap
must be bridged for any meaningful validation of timing correct-
ness. Throughout the paper, we assume that all timing character-
istics are non negative integers, i.e. they are multiples ofsome
elementary time interval (for example the “CPU tick”, the small-
est indivisible CPU time unit). The general scheduling problem
in this case consists in filling the available time units leftaf-
ter the schedule of some tasks with the execution time units of
the other tasks. Based on our new model, we are able to pro-
pose a schedulability analysis which uses a binary operation ⊕
whose operands are calledotasks. In the following, we show the
correspondence between notions and concepts belonging to the
classical real-time scheduling theory and those introduced in our
model. Also, we introduce the binary operation⊕ when priori-
ties are assigned according to a fixed-priority scheduling policy
such asRate Monotonic, Deadline Monotonic, Audsley[1, 5].

The remainder of the paper is structured as follows: section2
gives definitions and properties used throughout this paperand
presents the new“otask model” that will help us to perform
a new methodology for the schedulability of a hard real-time
system. Section 3 provides the correspondence between peri-
odic tasks and periodic otasks. Section 4 gives the schedulabil-
ity principle when priorities are assigned according to a fixed-
priority scheduling policy. We conclude and propose future
work in section 5.

2 Definitions and properties

In this section we introduce some definitions and properties
in order to provide the reader with the framework of our new
model for hard real-time systems.

First of all, we must specify a generator containing all the
legal symbols which can be used. We define ageneratorΣ as
being a finite set of symbols. As such, everywhere in this paper,

the generator that will be considered isΣ = {a,e}. In the con-
text of scheduling theory, we will always associate the symbol
“a” to a time unit which isavailableand the symbol “e” to a
time unit which is eitherexecutedor executabledepending on
the cases that we will detail later on. Now, given thisgenera-
tor Σ, we define anotaskas anordered multisetconsisting of a
certain number of elements (possibly zero) all belonging toΣ.
The fundamental difference we make here between the notion
of ordered multisetand the common notion ofmultiset [6] is
that the order of elements in an otask is important in our case.
In fact, this will allow us to make the difference between any
two otasks and in particular between otasks obtained from per-
mutations of the elements of another otask. We define anotask
systemΓ as a set of otasks on the generatorΣ. It is worth notic-
ing that the definition of anotask systemis quite general and
allows us to consider highly structured otask systems such as
periodic, aperiodic or hybrid otask systems. The proximityof
the terminologies used here to those in the literature expresses
the idea of a relationship between them which we will detail
later on. Indeed, we will consider an otask with specific proper-
ties to represent areal-time task, and thus asystem of real-time
tasksis a particularsystem of otasks. We consider a unique set
of otasks where each real-time task corresponds to one and only
one otask. This correspondence will allow us to derive results
on real-time task systems from those obtained on otask systems.
In order to illustrate the previous definitions here are someex-
amples of otasks onΣ: τ1 = {a}, τ2 = {e,a,a}, τ3 = {a,e,a}
andτ4 = {a,a,e,e,a}. The otask with no symbols, is denoted
by Λ (Λ = {} = /0). Λ is always an otask onΣ.

The set of all possible otasks onΣ will be denoted byΣ∗.
Hence, any otask systemΓ is necessarily a subset ofΣ∗. If τ
is an otask onΣ, then thecardinal of τ is the number of el-
ements inτ and will be denoted by|τ|. Now, let x and y be
two otasks onΣ. Theconcatenationof x andy is the otaskxy
obtained by writing the symbols ofx and the symbols ofy con-
secutively. As an example, ifx = {a,e,e} andy = {e,a} then
the otaskxy is given byxy = {a,e,e,e,a} and the otaskyx is
given byyx= {e,a,a,e,e}. We havexy 6= yx because of the im-
portance of the order of the elements in an otask. Consequently,
the concatenationoperation is notCommutative, i.e. there are
otasksx andy on Σ such thatxy is different fromyx. However,
this operation isassociative, i.e. for all otasksx, y andz on Σ,
(xy)z= x(yz). The advantage of theassociativityis that it allows
us to concatenate several otasks without worrying about theor-
der in which the concatenation operations are carried out. Note
that for any otaskx, the concatenation ofx andΛ equalsx, i.e.
xΛ = Λx= x. If there exist two otasksw andzsuch thaty= wxz,
thenx is called asub-otaskof y. We call the operation leading
to obtain a sub-otask from an otask anextraction. In order to
illustrate the latter definition, the otask{a,e,e} is a sub-otask
of each otask{e,e,a,e,e,a,a} and{a,a,a,e,e} since we have
for example{e,e,a,e,e,a,a} = {e,e}{a,e,e}{a,a}, but is not a
sub-otask of{a,e,a,e}.

From now on, the superscripts will represent the number of
times an element is concatenated. These elements can either
be simple otasks, or even otask systems. Thus, ifx ∈ Σ∗, and
Γ ⊆ Σ∗, then: xk = xx· · ·x, Σk = ΣΣ · · ·Σ = {x∈ Σ∗/|x| = k},
Γk = ΓΓ · · ·Γ, where in each case, there arek factors that are
concatenated.

Keeping in mind that we are interested in scheduling periodic

task sets, we consider otasks with an infinite cardinal. An otask
where a sub-otask with a finite cardinal can be extracted and the
otask is an infinite concatenation of this sub-otask from a certain
element relatively to the first one, will be termedperiodic. An
otask with an infinite number of the symbol “e”, and with a min-
imum number of symbols between two consecutive sequence of
symbols “e”, will be termedsporadic. Finally, an otask that con-
tains a finite number of symbols “e” will be termedaperiodic.
Hereafter, we will only considerperiodicotasks. An otask sys-
temΓ consisting only of periodic otasks will be called asystem
of periodic otasks.

So far, the notion of “time”, which is central to scheduling
theory, has not yet been considered in this paper. In order to
overcome this, we consider an index along an oriented time axis
which is a temporal reference for all otasks. On this axis, we
identify un instant of referencet0, for example we can choose
t0 = 0. Hence, in addition to the cardinal and the order of ele-
ments that can help us to differentiate between any two otasks
on the generatorΣ, thestart date r∈ Z andend date f∈ Z of
each otask w.r.t. the reference timet0 are important and may
also help us to differentiate between two otasks. We will denote
by τ(r, f) the otask onΣ which starts at dater and finishes at date
f . This notation allows us to describe both finite and infinite
cardinal otasks. Iff = r thenτ = Λ. If f = ∞ then|τ| = ∞ and
in this case we denote by conventionτ(r,∞) = τr as there is no
ambiguity concerning the end date ofτ.

By definition, aperiodic otaskτper onΣ is an infinite cardinal
otask with a start dater such that there exists a finite cardinal
sub-otaskτ, and τper is an infinite concatenation ofτ from a
certain time instantβ ≥ r. We denote each periodic otask by:

τper = ζ(r,β) τ∞
β (1)

where the integerβ represents the smallest time instant such
that relation 1 is satisfied,ζ(r,β) represents a finite cardinal otask
called initial part of τper andτ∞

β represents an infinite cardinal
otask, infinite concatenation ofτ from dateβ called periodic
part of τper.

For the sake of clarity, the infinite cardinal otask
τ1 = {a,a,e,e,e,a,e,aτ,e,e,a,e,aτ, · · · ,e,e,a,e,aτ, · · ·}0 =
{a,a,e}(0.3){e,e,a,e,a}∞

3 is a periodic otask on
Σ = {a,e} whose initial part is {a,a,e}(0.3) and the
periodic part is {e,e,a,e,a}∞

3 . A periodic otask
system on Σ is given for example by the setΓ =
{{a,a,e}(0.3){e,e,a,e,a}∞

3 ,{a,e,e,a}(12.16){e,a,a,e,e,a,a,a}∞
16}.

Given a periodic otask, there are two different
forms in which it may be written: thefactored form
and the developed form. For the case of otaskτ1,
{a,a,e}(0.3){e,e,a,e,a}∞

3 will be referred to as thefactored
form and {a,a,e,e,e,a,e,aτ,e,e,a,e,aτ, · · · ,e,e,a,e,aτ, · · ·}0

will be referred to as thedeveloped form. Now, let τper be a
periodic otask onΣ. If the existence of the integerβ such that
τper = ζ(r,β)(τ)∞

β is unique by definition, the existence of the
finite sub-otaskτ is not unique. Indeed, the otaskτ1 can also
be written τ1 = {a,a,e}(0.3){e,e,a,e,aτ,e,e,a,e,aτ}

∞
3 and we

have 5= |{e,e,a,e,a}| 6= |{e,e,a,e,a,e,e,a,e,a}| = 10.
We define thepatternof a periodic otaskτper = ζ(r,β) τ∞

β to
be theminimumfinite cardinal sub-otaskτmin of the otaskτ
such thatτper = ζ(r,β)(τmin)

∞
β . Thepatternof any periodic otask

always exists and is unique. Consequently, any two periodic
otasksτ1 = ζi (r i ,βi)

(τi)
∞
βi

andτ2 = ζ j (r j ,β j)
(τ j)

∞ on Σ areequal

if and only if on the one handζi (r i ,βi)
= ζ j (r j ,β j)

and on the other
handτ1 andτ2 have the samepattern. In the same vein,τ1 and
τ2 are said to beequivalentif and only if they have the same de-
veloped form. In the remainder of this paper, any periodic otask
τper on Σ will be denoted byτper = ζ(r,β)τ∞

β whereζ(r,β) is the
initial part,τ is the pattern andT = |τ| is theperiodof τper.

We assume that the patternτ of τper contains at least one sym-
bol “e”. Indeed, ifτ = {a} then we consider thatτper equals the
finite cardinal otaskζ(r,β), i.e. τper = ζ(r,β){a}∞

β = ζ(r,β) which
is not interesting as it is not periodic. Similarly, we assume that
the patternτ contains at least one symbol “a”. Indeed, if it is not
the case, by identifying the symbol “e” to a time unit which is
eitherexecutedor executable, then the periodic otaskζ(r,β){e}∞

β
corresponds to one whose elements do not change from a cer-
tain date, the dateβ. This situation is not interesting since our
goal is to compose otasks by replacing the available time units
of a otask, i.e. the symbols “a”, by the executable time units of
another otask, the symbols “e”.

It is worth noticing that any periodic otaskτper = ζ(r,β)τ∞
β

of period T on Σ is equivalent to an infinite number of peri-
odic otasks of periodT on Σ. Indeed, since we haveτ 6= Λ
and|τ| finite by definition, then there exists a finite otaskx 6= Λ
and a finite otasky such that|τ| = |x| + |y| and τ(β,β+|τ|) =
x(β,β+|x|)y(β+|x|,β+|τ|). Thus:

τper = ζ(r,β)τ∞
β

= ζ(r,β)(xy)∞
β

= ζ(r,β)(xy)(xy)(xy) · · ·(xy)(xy) · · ·
= ζ(r,β)x(yx)(yx)(yx) · · ·(yx)(yx) · · ·
=

(
ζ(r,β)x(β,β+|x|)

)
(yx)∞

β+|x| = τ′

per

The otaskτ′

per is periodic of periodT and its initial part is
ζ(r,β)x(β,β+|x|) and its periodic part is(yx)∞

β+|x|. As the otasks
x andy are arbitrary, we can repeat this process as many times
as we want. In particular, for anyk∈ N, we also have

τper = ζ(r,β) τττ · · ·τ
︸ ︷︷ ︸

k times

τ∞
β+k|τ| = ζ(r,β)τk

(β,β+k|τ|)τ
∞
β+k|τ| (2)

whereτk
(β,β+k|τ|) denotes the finite otask beginning at dateβ and

ending at dateβ + k|τ|, it corresponds to the otaskτ concate-
natedk times. We will say thatτper is in the canonical form
if and only if the first element of the finite cardinal otaskτ is
the symbol “e”. Thanks to everything we have presented up
to now, the periodic otaskτ2 = {a,a,e}(0,3){a,a,e,e,a,e,a}∞

3
is not in thecanonical form, but it is equivalentto the otask
τ′

2 = {a,a,e,a,a}(0,5){e,e,a,e,a,a,a}∞
5 which is in thecanoni-

cal form. This transformation is useful as the schedule will con-
sist in replacing symbols “a” belonging to an otask by symbols
“e” belonging to another otask. From now on, for each peri-
odic otaskτper = ζ(r,β)τ∞

β , we consider the equivalent periodic

canonical otaskτ′

per = ζ(r,β′)τ
∞
β′

whereβ′
is the smallest integer

greater thanβ. We define therelative deadline Dof a periodic
otaskτper = ζ(r,β)τ∞

β to be an integer value equal toβ− r for the
initial part ofτper, and equal to the cardinal of a single sub-otask,
possibly the pattern itself, containing at least all the symbols “e”
of the pattern for the periodic part ofτper. D is at most equal to
T.

Since the definition of the relative deadline does not present
any ambiguity for the initial part, it is not necessary to repre-

sent it graphically. However, for the periodic part, the deadline
will be represented by a checkmark:. At this point we have
everything we need to introduce our model of periodic otasks.

Figure 1 illustrates a periodic otask with relative deadline D
and periodT. Each shaded box corresponds to the symbol “e”
and each non-shaded box to the symbol “a” in the generator
Σ. The initial part which is finite, is between the datesr and
β. The pattern of the periodic part, which repeated infinitely, is
comprised betweenβ and β + T. In this figure,D can take 5
possible values relative to the position of the last symbol “e” in
the periodic part of the otask. These values are{T,T −1,T −
2,T−3,T−4}. Note that in our model, the value of the relative
deadline for the periodic part of any periodic otask isless than
or equalto its period.

Figure 1. Model of a periodic otask.

We calldate of sub-activation of rank l for the initial partof
τper denoted byr l

in (resp.date of first sub-activation of rank l for

the periodic partof τper denoted byr l ,1
p) the date of occurence

of the first symbol “e” belonging to the sequence of rankl in the
initial part of τper relatively tor (resp. the date of occurence of
the first symbol “e” belonging to the sequence of rankl of the
pattern for the periodic part ofτper relative toβ). Identically,
we call sub-execution time of rank l of the initial part(resp.
sub-execution time of rank l of the periodic part) denotedCl

in
(resp. Cl

p) the cardinal of the sub-otask which consists only of
symbols “e” corresponding to the sequence of rankl . Figure 2
below clarifies these notions ofdate of sub-activationandsub-
execution timefor a periodic otask.

Figure 2. dates of sub-activations and sub-
execution times for a periodic otask.

3 Model of periodic tasks

The study of a periodic real-time system by using a peri-
odic otask system requires that each periodic task is describ-
able uniquely as a periodic otask, that is to say that two distinct
periodic tasks must match two distinct periodic otasks. In this

section, we choose to build such a correlation by describinghow
each otask can be generated from the temporal characteristics of
each real-time task and operations on simpler otasks.

Let Γn = {τ1,τ2, · · · ,τn} be a system ofn periodic tasks
whereτi = (r1

i ,Ci ,Di ,Ti) andCi ≤ Di ≤ Ti . Based on the char-
acteristics a periodic task,r1

i is the date of first activation,Ci is
the Worst Case Execution Time (WCET) without any approx-
imation of the preemption cost,Di is the relative deadline and
Ti is the period ofτi . Relation 3 provides the periodic otaskoτi

which corresponds to the periodic taskτi .

oτi =







Ci
︷ ︸︸ ︷
e,e, · · · ,e,a,a,a, · · · ,a
︸ ︷︷ ︸

Di

,a, · · · ,a,a

︸ ︷︷ ︸

Ti







∞

r1
i

(3)

wherer1
i means that the pattern of otaskoτi begins at the dater1

i ,
corresponding to the date of first activation of taskτi . It thus fol-
lows that the otaskoτi is aparticular otasksince it iscanonical.
It consists of a periodic part but has not got a non-trivial initial
part, indeed its initial part equalsΛ. Furthermore it isregular,
that is to say that the pattern contains a single sequence ofCi

symbols “e” followed by a single sequence ofTi −Ci symbols
“a”. The Di first symbols of the pattern represent the relative
deadline of the otaskoτi . The value ofDi delimits the interval
before whichCi symbols “e” of oτi must have been executed. In
equality 3 each repetition of the pattern from the dater1

i corre-
sponds to an instance of the taskτi . The pattern of rankk start-
ing at the daterk

i = r1
i +(k−1)Ti corresponds to thekth instance.

Figure 3 illustrates a periodic task as a particular periodic otask
given in figure 2.

Figure 3. Correspondence between a periodic
task and a periodic otask.

4 Schedulability principle

Our main objective is the schedulability analysis of a system
of periodic tasks by considering the corresponding otask system.
For this purpose, we will combine otasks by using anassociative
non commutative binary scheduling operationthat we denote by
⊕ in order to get an otask that will help us decide the schedu-
lability. When we writex⊕ y wherex andy are two periodic
otasks, this means by convention that the first operand (otask x)
has a higher priority than the second operand (otasky), therefore
the operation⊕ is not commutative, i.e. x⊕y 6= y⊕x. Now we
have everything we need to explain the difference betweenexe-
cutedandexecutablesymbols “e”. In the expressionx⊕ y, the

elements “e” of otaskx are calledexecutedand those of otasky
are calledexecutable. The intuitive idea that we propose to per-
form the operation⊕ will therefore consist in replacing some
elements “a” of a copyz of otaskx by elements “e” of otasky,
leading to the resultz = x⊕ y. Although there are not enough
“a” for all the executable“e”, x⊕ y = Λ is defined. When per-
forming operation⊕ the date of sub-activation of each sequence
of executable symbols “e” of otask y gives the earliest date of
the symbols “a” to replace in otaskz.

For any otask systemOΓn = {oτ1,oτ2, · · · ,oτn} arranged ac-
cording to decreasing priorities relative to an algorithm such as
Rate Monotonicor Deadline Monotonic, since⊕ is a binary op-
eration, it will be used as many times as there are otasks inOΓn

in order to guarantee, or not, the schedulability of the system.
The operations⊕ will be applied from the otask with the high-
est priority to the otask with the lowest priority. This process
will produce an intermediate result otask at each step whichcor-
responds to the otask with the highest priority, i.e. the left-hand
operand of the next the operation⊕. Consequently, ifRn is the
scheduling otask result ofOΓn, thenRn is obtained by succes-
sive iterations:

{
R1 = Λ⊕oτ1 = oτ1

Ri = Ri−1⊕oτi , 2≤ i ≤ n

The otaskoτi will be saidschedulablewith respect to the con-
sidered priorities policy if and only ifRi 6= Λ and the system
OΓn will be said schedulableif and only if all the otasks are
schedulable. If this is not the case, then the systemOΓn is said
not schedulable.

5 Conclusion and future work
In this paper we have introduced a new model, relative to the

ones in the literature, that provides a more accurate specifica-
tion of a real-time task. It helped us to describe the schedula-
bility analysis when tasks are scheduled using a fixed-priority
scheduling policy by defining an associative non commutative
binary scheduling operation that we have denoted by⊕. Future
work will use this new model in order to provide schedulability
conditions when the RTOS cost is taken into account. Indeed,
the preemption cost which is the variable part of the RTOS cost
necessitates an accurate model.

References

[1] C.L. Liu and J.W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment.Journal of the ACM,
1973.

[2] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time peri-
odic tasks with offsets.Real-Time Systems, 2005.

[3] I. J. Bate.Scheduling and Timing Analysis of Safety Critical Real-
Time Systems. PhD thesis, University of York, 1998.

[4] P. Meumeu Yomsi.Prise en compte du coût exact de la pŕeemption
dans l’ordonnancement temps réel monoprocesseur avec con-
traintes multiples. PhD thesis, Université de Paris Sud, Spécialit́e
Physique, 02/04/2009.

[5] N.C. Audsley, A. Burns, M.F. Richardson, Tindell K., and A.J.
Wellings. Applying new scheduling theory to static priority pre-
emptive scheduling.Software Engineering Journal, 1993.

[6] Z. Manna and R. Waldinger.The Logical Basis for Computer
Programming. volume 1: Deductive Reasoning. Addison-Wesley,
Reading, Massachusetts, 1985.

