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Abstract

Real-time systems are often designed using preemptive
scheduling to guarantee the execution of high priority tasks.
For multiple reasons there is a great interest in exploring
non-preemptive scheduling in the case of hard real-time
systems where missing deadline leads to catastrophic situa-
tions. This paper presents a necessary and sufficient schedu-
lability condition for determining whether a task will sat-
isfy its period and precedences constraints when some tasks
have already been scheduled. Tasks we are dealing with are
non-preemptive and the periods considered here are strict.

1 Introduction

Hard Real-Time preserves temporal and functional fea-
sibility. Hard real-time system scheduling has been con-
cerned with providing guarantees for temporal feasibility of
task execution in all anticipated situations. A scheduling al-
gorithm is defined as a set of rules defining the execution of
tasks at system run-time. It is provided thanks to a schedu-
lability or feasibility analysis, which determines, whether a
set of tasks with parameters describing their temporal be-
havior will meet their temporal constraints if executed at
run-time according to the rules of the algorithm. The re-
sult of such a test is typically a yes or a no answer indicat-
ing whether feasibility will be met or not. These schemes
and tests demand precise assumptions about task properties,
which hold for the entire system lifetime.

In practice, periodic tasks are commonly found in appli-
cations such as avionics and process control when accurate
control requires continual sampling and processing of data.
Such applications based on automatic control and/or sig-
nal processing algorithms are usually specified with block-
diagrams. They are composed of functions producing and

consuming data, and each function can start its execution
as soon as data it consumes is available since tasks are not
preemptive, and the cost of a task scheduling is a constant
included in its worst case execution time (WCET).

Strict period means that if the periodic task A has period
TA then ∀i ∈ N, (sAi+1 − sAi) = TA, where Ai and Ai+1

are the ith and the (i + 1)th repetitions of the task A, and
sAi and sAi+1 are their start times [1].

Given a real-time system of tasks, the goal is to de-
termine, offline, a monoprocessor static scheduling of the
tasks, such that each task completes its execution before a
specified deadline that we take here equal to its strict period.
Since tasks are deduced from functions producing and con-
suming data we consider in this case that they are depen-
dent. Finally, due to the hard real-time nature of the con-
sidered systems we deal with non-preemptive tasks. Non-
preemptive scheduling is important for a variety of reasons
[2]:

• In many practical real-time scheduling problems such
as I/O scheduling, properties of device hardware and
software either make preemption impossible or pro-
hibitively expensive. The preemption cost is either not
taken into account or still not really controlled;

• Non-preemptive scheduling algorithms are easier to
implement than preemptive algorithms, and can ex-
hibit dramatically lower overhead at run-time;

• The overhead of preemptive algorithms is more dif-
ficult to characterize and predict than that of non-
preemptive algorithms. Since scheduling overhead is
often ignored in scheduling models, an implementa-
tion of a non-preemptive scheduler will be closer to the
formal model than an implementation of a preemptive
scheduler.

For these reasons, designers often use non-preemptive



approaches, even though elegant theoretical results do not
extend easily to them [3].

As shown in [4] to analyze a system composed of non-
preemptive periodic tasks it is enough to study its behav-
ior for a time interval equal to the least common multiple
(LCM) of all the task periods, called the hyper-period. Con-
sequently, each task of the initial system will be repeated ac-
cording to the ratio between its period and the hyper-period.
Notice that in general, the value of the hyper-period is not
large due to the relatively small number of sensors and ac-
tuators which impose their periods to the tasks [5]. Thus,
the resulting system we have to deal with will not be signif-
icantly larger than the initial one.

According to [6] we also assume that the dependent tasks
must be at the same period or at multiple periods in order
for the consumer task to be able to receive the data sent
by the producer task without some data being lost or dupli-
cated. This restriction does not prevent the presence of tasks
with non multiple periods in the same system, nevertheless
these tasks must not be dependent [7]. In this case, the data
mechanism can be explained as follows, when two tasks are
dependent, and do not have the same period, there are two
possibilities:

• if the period of the consumer task is equal to n times
the period of the producer task then the producer task
must be executed n times compared to the consumer
task, and the consumer task cannot start its execution
until it has received all data from the n executions of
the producer task (we have to precise that the produced
data differ from one execution of the producer task to
another execution therefore data are not duplicated);

• reciprocally, if the period of the producer task is equal
to n times the period of the consumer task then the
consumer task must be executed n times compared to
the producer task.

The rest of the paper is organized as follows: the next
section is devoted to the related work. Section 2 gives the
model used. In section 3 we introduce the schedulability
analysis through several theorems and a corollary. After
that, section 4 gives an example for the proposed method.
Finally, section 5 presents a conclusion.

2 Related Work

It exists a lot of monoprocessor schedulability analysis
for popular algorithms like RM and EDF [8]. Unfortu-
nately, as we do not deal with the same models as in these
algorithms, their schedulability conditions become, at best,
a necessary conditions. Let’s take the example of EDF’s
schedulability condition which is

∑n
i=0

E(oi)
T (oi)

≤ 1 for a set

of n tasks where E(oi) and T (oi) are respectively the exe-
cution time and the period of a task oi [8]. This condition
is just a necessary condition for our problem since it is a
specific case of the problem for which this condition is used
[9].

The problem of knowing whether, a non-preemptive set
of periodic tasks under the constraints defined previously
is schedulable has been shown NP-Complete in the strong
sens by [2].

The main difference between what is done in [2] and the
present work consists in the definition of the period. In [2]
the authors consider that the kth execution of a periodic task
ρ with a period p must begin no earlier than tk and be com-
pleted no later than the deadline of tk + p. Whereas in our
model, and due to strict period constraint, ρ must begin ex-
actly at tk and no lag is allowed. Therefore, the scheduling
problem, as it is presented here, does not have any solution
in the literature.

3 Real-time system model

We deal with systems of real-time tasks with precedence
and strict periodicity constraints. A task o is characterized
by a period T (o), a worst case execution time E(o) with
E(o) ≤ T (o), and a start time S(o). By strict periodicity
constraint we mean that if the periodic task o has period
T (o) then ∀i ∈ N, S(oi+1) − S(oi) = T (o), where oi and
oi+1 are the ith and the (i + 1)th repetitions of the task o,
and S(oi) and S(oi+1) are their start times.

The precedences between tasks are represented by a di-
rected acyclic graph (DAG) denoted G which is the pair
(V,E). V is the set of tasks characterized as above, and
E ⊆ V × V the set of edges which represents the prece-
dence (dependence) constraints between tasks. Therefore,
the directed pair of tasks (oi, oj) ∈ E means that oj must
be scheduled, only if oi was already scheduled and we have
S(oi) +E(oi) ≤ S(oj).

We assume that the periods and WCETs are multiple of a
unit of time U = 1 which means that they are integers rep-
resenting for example some cycles of the processor clock.
If a task o with execution time E(o) is said to start at time
unit t, it starts at the beginning of time unit t and completes
at the end of time unit t+E(o)−1. Reciprocally, a time in-
terval [t1, t2] denotes a set of consecutive time units, given
by {t1, t1 + 1, ..., t2}.

4 Schedulability Analysis

The schedulability analysis consists in verifying that a
task could be scheduled with other tasks already proved
schedulable using the same schedulability analysis. A task
is schedulable means that it exists one or several time inter-



vals on which this task can be scheduled, i.e. its period and
periods of already schedulable tasks are satisfied.

It is known that in general a system of tasks can be sched-
uled by some algorithms whereas other algorithms fail to do
it. Consequently, the schedulability analysis depends on the
chosen scheduling algorithm. We chose a scheduling algo-
rithm which satisfies the strict periodicity of tasks in addi-
tion to the precedences constraints. This algorithm is based
on the following ideas:

• tasks are sorted according to the precedence order. If
several tasks are in parallel (there are no precedences
between them) the tasks with the smallest period has
the highest priority.

• before scheduling a task, we must ensure that this task
satisfies all periods of tasks already scheduled. Oth-
erwise the start time of this task will be delayed (see
example 1)

• a task is scheduled immediately after the completion of
the previous one, idle times are introduced only when
it is required.

Example 1 In figure 1 we applied the previous algorithm
on a system of tasks composed of five periodic tasks: (a :
1, 4), (b : 1, 6), (c : 1, 8), (d : 1, 12), (e : 1, 12) con-
nected by some precedences (see figure 1-1=). We consider
a scheduling on the hyper-period of these tasks which is the
LCM(4, 6, 8, 12) = 24.

Figure 1-2 depicts the resulting scheduling using the
given algorithm. As we can see, tasks are schedulable,
while precedence and strict periodicity constraints are sat-
isfied. As it is indicated by the third item of the previous
paragraph, first instances of tasks are scheduled on the first
interval which satisfies the period of tasks already sched-
uled. We observe that the start time of the task e1 is delayed
by one interval of length 1 in order to allow the execution of
task a2. After that the execution of other instances of tasks
follow their periods.

Figure 1. Tasks Graph and The Resulting
Scheduling

Starting with two tasks, theorem 1 gives a first schedu-
lability condition. Then, we prove in theorem 2 that

condition of theorem 1 is not applicable to n tasks. In order
to generalize this condition to n tasks several theorems
are necessary. First, theorem 3 gives a schedulability
condition for tasks which have, two by two, the same GCD
(Greater Common Divisor). Second, for two tasks, theorem
4 gives the number of time intervals where the second
task is schedulable, the first one being scheduled. Third,
theorem 5 generalizes the previous condition for tasks
which have, two by two, the same GCD. Finally, theorem
6 and corollary 1 generalize the previous condition, giving
a condition for n tasks. All these conditions hold for tasks
with precedence constraints, this is proved in theorem 7.

The following theorem gives a necessary and sufficient
condition such that two tasks are schedulable.

Theorem 1 Two tasks (o1 : E(o1), T (o1)) and (o2 :
E(o2), T (o2)) are schedulable if and only if

E(o1) +E(o2) ≤ GCD(T (o1), T (o2)) (1)

Proof
Let g = GCD(T (o1), T (o2)) be the greatest common divi-
sor. We start by proving that (1) is a sufficient condition. Let
assume that S(o1) = 0 and S(o2) = E(o1). Each instance
of the task o1 is executed in an interval belonging to an in-
tervals set I1, with I1={∀n ∈ N, [ng, ng + E(o1) − 1]},
each instance of the task o2 is executed in an interval be-
longing to an intervals set I2, with I2={∀n ∈ N, [ng +
E(o1), ng+E(o1)+E(o2)−1]}. If we consider a schedul-
ing on P = LCM(T (o1), T (o2)) then n = 1..P/g. If
g ≥ E(o1) + E(o2) no intervals of I1 and I2 overlap, i.e.
if we decompose the interval [0, P ] into P/g intervals of
length g, then, due to their periods, an instance of o1 and
an instance of o2 will be executed into a same interval of
length g. So g < E(o1) + E(o2) means that I1 and I2
overlap. This proves the sufficiency of (1).

To prove the necessity of (1) we show that if g <
GCD(T (o1), T (o2)), tasks o1 and o2 cannot be scheduled.
Let assume that g < GCD(T (o1), T (o2)) and without loss
of generality we assume also that S(o1) = 0.

Tasks o1 and o2 cannot be scheduled means that it exists
two integers x, y for which

[xT (o1), xT (o1) +E(o1)− 1]∩

[S(o2) + yT (o2), S(o2) + yT (o2) +E(o2)− 1] 6= ∅

which is equivalent to,

[xT (o1)− yT (o2), xT (o1)− yT (o2) +E(o1)− 1]∩

[S(o2), S(o2) + E(o2)− 1] 6= ∅



According to Bezout’s theorem [10], there exist two in-
tegers p , q for which pT (o1) + qT (o2) = g. By choosing
x = np and y = −nq, n ∈ N we have

[ng, ng +E(o1)− 1] ∩ [S(o2), S(o2) +E(o2)− 1] 6= ∅

This is true if free intervals between the intervals
[ng, ng + E(o1) − 1], n = 0, 1, .. are of length g −E(o1),
while the intervals [S(o2), S(o2) +E(o2)−1] are of length
E(o2). Therefore, the assumption that g < E(o1) +
E(o2) implies that an integer n necessarily exists for which
[ng, ng+E(o1)−1] and [S(o2), S(o2)+E(o2)−1] overlap.
This completes the proof of the theorem 1 �

The question is: can we generalize the theorem 1 for more
than two tasks?

Only the condition of the theorem 1 is used in the
schedulability analysis (start times are not known yet). But
we can easily observe that this condition cannot be useful
since it compares only two tasks at the same time. Thus, we
need a more general condition which takes into account a
set of tasks. the following theorem proves that theorem 1 is
generalizable only for tasks for which the greatest common
divisors of their periods taken two by two are the same.

The generalization of theorem 1 for all tasks gives only a
sufficient condition for scheduling them. This condition is
proposed by the following theorem.

Theorem 2 Tasks of the set {i ∈ N, i ≤ n, (oi :
E(oi), T (oi))} are schedulable if

n∑

i=0

E(oi) ≤ GCD(∀i, T (oi)) (2)

Proof
Let g = GCD(T (o0), .., T (on)). To prove that 2 is a suf-
ficient condition we proceed as for theorem 1. Let assume
that S(o0) = 0 and S(oi) = E(o0)+ ..+E(oi−1), ı = 0..n
. Every task oi i = 0..n is executed in a subset of the set
Ii ={∀l ∈ N, [lg + S(oi), lg + S(oi) + E(oi − 1]}, As∑n
i=0 E(oi) ≤ GCD(T (o0), .., T (on)) no intervals of I1,

I2, .. and In overlap, which proves the sufficiency of condi-
tion (2)�

To check that condition (2) is not a necessary one it suf-
fices to take a simple example with three tasks, one task with
period 2 and the two others with period 4. If we put 1 as the
execution time of all tasks then these tasks are schedulable
even if the sum of their execution times is 3 and it is greater
than the GCD(4, 4, 2) = 2

The use of condition (2) to schedule tasks may fail
to identify a lot of schedulable cases. Consequently the
schedulability analysis would be inefficient.

Instead of looking for a condition dealing with all tasks
which is an intractable problem [11] we preferred to pro-
ceed differently. The goal is, for each candidate task, to
check if it is schedulable with other tasks which have al-
ready been proved schedulable. We seek a necessary and
sufficient condition to do that.

Theorem 3 Let {∀i ∈ N, i ≤ n, (oi : E(oi), T (oi))}
be a set of n tasks which satisfy for each two
tasks (oa : E(oa), T (oa)) and (ob : E(ob), T (ob)),
GCD(T (oa), T (oa)) is the same and let assume that it is
equal to g. Tasks of this set are schedulable if and only if

n∑

i=0

E(oi) ≤ g (3)

Proof
If we consider a scheduling on P = LCM(∀i, T (oi))
which is the hyper-period, from the P/g intervals of length
g, indeed, there will be necessarily one interval I from the
previous intervals which will contain all tasks. From this,
if the sum of execution times of these tasks is larger than g
then it means that these tasks cannot be scheduled on the in-
terval I whereas the periods impose it. Therefore, the sum
of tasks execution times must be less or equal to g, which
proves the sufficiency of 3.

We prove the necessity of 3 by showing that, if g <∑n
i=0 E(oi), then tasks of the set {∀i ∈ N, i ≤ n, oi} can-

not be scheduled. To do that we use a proof by induction.
The base case: for a set with two task {o0, o1} the neces-

sity was proved in theorem 1.
The inductive step: now we show that if the statement

holds for the set {o0, o1, ..., on−1} then it also holds for the
set {o0, o1, ..., on−1, on}.

Let assume that g <
∑n
i=0 E(oi) and we have to prove

that integers x0, x1, ..., xn exist for which:

([S(o0) + x0T (o0), S(o0) + x0T (o0) +E(o0)− 1] ∪ ...∪

[S(on−1) + xn−1T (on−1),

S(on−1) + xn−1T (on−1) +E(on−1)− 1])∩
[S(on) + xnT (on), S(on) + xnT (on) +E(on)− 1] 6= ∅

it is equivalent to,

([S(o0) + x0T (o0), S(o0) + x0T (o0) +E(o0)− 1]∩

[S(on) +xnT (on), S(on) +xnT (on) +E(on)− 1])∪ ...∪
([S(on−1) + xn−1T (on−1),

S(on−1) + xn−1T (on−1) +E(on−1)− 1]∩
[S(on) + xnT (on), S(on) + xnT (on) +E(on)− 1]) 6= ∅



or equivalently,

([S(o0) + x0T (o0)− xnT (on),

S(o0) + x0T (o0)− xnT (on) +E(o0)− 1]

∩[S(on), S(on) +E(on)− 1]) ∪ ...∪
([S(on−1) + xn−1T (on−1)− xnT (on),

S(on−1) + xn−1T (on−1)− xnT (on) +E(on−1)− 1]∩
[S(on), S(on) +E(on)− 1]) 6= ∅

As assumes theorem 3 (for each two tasks
(oa : E(oa), T (oa)) and (ob : E(ob), T (ob)),
GCD(T (oa), T (oa)) is the same and it is g) and As
tasks of the set {o0, o1, ..., on−1} are schedulable (in-
duction’s assumption) each two intervals from the set
of intervals {[S(o0) + x0T (o0), S(o0) + x0T (o0) +
E(o0) − 1], ..., [S(on−1) + xn−1T (on−1), S(on−1) +
xn−1T (on−1) +E(on−1)− 1]} do not overlap.

In addition, according to Bezout’s theorem, it exists pairs
of integers (pi, qi) for which piT (oi) + qiT (on) = g (i =
0, ..., n− 1), by choosing xi = lipi and xn = −liqi, n ∈ N
we have

([S(o0) + l0g, S(o0) + l0g +E(o0)− 1]∩
[S(on), S(on) +E(on)− 1]) ∪ ...∪

([S(on−1) + ln−1g, S(on−1) + ln−1g +E(on−1)− 1]∩
[S(on), S(on) +E(on)− 1]) 6= ∅

Which can be rewritten in,

([S(o0) + l0g, S(o0) + l0g +E(o0)− 1] ∪ ...∪

[S(on−1) + ln−1g, S(on−1) + ln−1g +E(on−1)− 1])

∩[S(on), S(on) +E(on)− 1] 6= ∅

Clearly, this must be the case since free intervals between
the intervals ([S(o0) + l0g, S(o0) + l0g + E(o0) − 1] ∪
... ∪ [S(on−1) + ln−1g, S(on−1) + ln−1g + E(on−1) −
1]) are of length (g − ∑n−1

i=0 E(oi)), while the intervals
[S(on), S(on) + E(on) − 1] are of length E(on). The as-
sumption that g <

∑n
i=0 E(oi) implies that integers li nec-

essarily exist for which ([S(o0)+l0g, S(o0)+l0g+E(o0)−
1]∪...∪[S(on−1)+ln−1g, S(on−1)+ln−1g+E(on−1)−1])
and [S(on), S(on) + E(on) − 1] overlap. This completes
the proof by induction and at the same time it completes the
proof of the theorem�

By theorem 3 we have a schedulability condition for
some tasks which satisfy some properties but we do not

have a condition which deals with all tasks whatever their
periods are.

We choose to group, according to theorem 3, schedula-
ble tasks and to look for a new condition which takes into
account the candidate task and a tasks group that has been
proved schedulable.

Figure 2. Scheduling Time Intervals

At first, we wanted to know, once a task oa is scheduled,
by taking into account all the time intervals occupied by the
instances of this task, how many time intervals can be used
to execute another task ob? For example, if we have a task
(a : 1, 4) then the scheduling of its instances yields 6 time
intervals on which the task (b : 1, 6) can be scheduled (see
figure 2-1). Once that task b is scheduled, there remain 4
time intervals upon which the task (c : 1, 6) can be sched-
uled (see figure 2-2). After that task c has been scheduled,
there remain 2 time intervals upon which the task (d : 1, 6)
can be scheduled (see figure 2-3). Finally, after task d has
been scheduled there is no other time intervals upon which
the task (e : 1, 6) can be scheduled (see figure 2-4). We can
observe that tasks b, c and d satisfy one by one the condition
(1) with task a.

From this example we know that as soon as a first task
o has been scheduled, it remains several intervals of length
E(o) where this task could be scheduled or another task
which has the same period and WCET as o. The following
theorem gives an equation which allows us to compute the
number of these intervals.

Theorem 4 Let (oa : E(oa), T (oa)) and (ob :
E(ob), T (ob)) be two tasks satisfying condition (1) and let



g = GCD(T (oa), T (ob)). If task oa has been scheduled
then the number of available time intervals (equal to E(ob)
) in which we can schedule task ob is given by:

T (ob)

g

⌊
(g −E(oa))

E(ob)

⌋

Proof
(g −E(oa))

E(ob)
is the number of intervals of length E(ob)

which are able to contain task ob in one interval of length

g and
⌊
T (ob)

g

⌋
is the number of sub-intervals of length g

in one interval of length equal to T (ob) �

Theorem 4 can be generalized to all tasks that have the
same property as tasks of theorem 3.

Theorem 5 Let (ocdt : E(ocdt), T (ocdt)) be a candidate
task for the schedulability analysis and {∀i ∈ N, i ≤
n, (oi : E(oi), T (oi))} be a set of n tasks satisfy-
ing, for each two tasks (oa : E(oa), T (oa)) and (ob :
E(ob), T (ob)), GCD(T (oa), T (ob)) is equal to g and no
T (oi), ∀n divides T (ocdt. If all tasks oi were proved
schedulable and ocdt satisfies the following condition:∑n
i=0 E(oi) +E(ocdt) ≤ GCD(g, T (ocdt)) then the num-

ber of available time intervals in which we can schedule
task ocdt is given by:

T (ocdt)

GCD(g, T (ocdt))

⌊
GCD(g, T (ocdt))−

∑n
i=0 E(oi)

E(ocdt)

⌋

Proof
As in the previous proof

⌊
GCD(g,T (ocdt))−

Pn
i=0 E(oi)

E(ocdt)

⌋
rep-

resents the number of intervals of length E(ocdt) which
are able to contain task ocdt in one interval of length
GCD(g, T (ocdt)) and T (ocdt)

GCD(g,T (ocdt))
represents the num-

ber of sub-intervals of length GCD(g, T (ocdt)) in one in-
terval of length equal to T (ocdt) �

Example 2 Let (a : E(a) = 1, T (a) = 8), (b : E(b) =
1, T (b) = 12) and (c : E(c) = 1, T (c) = 16) be three tasks
already proved schedulable. We want to schedule a task
(d : E(d) = 1, T (d) = 20) and using theorem 5 compute
the number of time intervals where it is possible to schedule
it.

Before starting computing, we check that tasks a,b
and c verify conditions. So GCD(T (a), T (b)) =
GCD(T (b), T (c)) = GCD(T (c), T (a)) = 4, E(a) +
E(b) + E(c) + E(d) = 4 ≤ 4 and T (d) is not a multi-
ple of a,b and c periods.

By applying theorem 5 equation we will have : 20
4 ∗⌊

4−3
1

⌋
= 5

Figure 3 shows the five intervals where task d can be
scheduled and on intervals where it cannot be scheduled it
gives the task which is in conflict with task d.

Figure 3. Time Intervals

Notation
Because we will divide the set Ω of already proved schedu-
lable tasks in several subsets {Ω1,Ω2, ...,Ωm} according to
the GCD of each tasks subset, so we denote by BG (ba-
sic GCD) the GCD of all tasks of Ω. Let Ω1 be the set
of tasks that satisfy the following property: for each two
tasks (oa : E(oa), T (oa)) and (ob : E(ob), T (ob)) in Ω1,
GCD(T (oa), T (ob)) is equal to BG,

∑

ok∈Ω1

E(ok) is de-

noted byBE.

Now, to get the right number of intervals of length
E(ocdt) and to know if this task is schedulable or not we
have to take into account the remainder tasks already proved
schedulable but not included in theorem 5. In other words,
from the intervals number found using theorem 5 we have
to subtract the intervals which lead to conflicts between ocdt
and the other tasks already proved schedulable. We mean by
conflict whether the scheduling of the candidate task pre-
vents, one or several tasks, to be scheduled following their
periods.

Reminder tasks we are talking about are tasks which sat-
isfy: the GCD of any one from them and the candidate task
ocdt is different fromBG.

First, these tasks will be grouped on several subsets,
in every subset the following property must be satis-
fied: for every two tasks (oa : E(oa), T (oa)) and (ob :
E(ob), T (ob)), GCD(T (oa), T (oa)) is the same. Then, for
every subset Ωj we compute the number Γ(Ωj) which is the
number of intervals of length E(ocdt) where ocdt cannot be
scheduled because of conflicts with tasks of Ωj .

The following theorem introduce a way to compute Γ for
a given subset.

Theorem 6 let Ωj={2 ≤ j ≤ m, (oj : E(oj), T (oj))}
be a set of m tasks satisfying, for each two tasks



(oa : E(oa), T (oa)) and (ob : E(ob), T (ob)),
GCD(T (oa), T (ob)) is equal to g. If (ocdt :
E(ocdt), T (ocdt)) is a candidate task for the schedulabil-
ity analysis then the number of intervals of length E(ocdt)
where ocdt cannot be scheduled because of conflicts with
Ωj’s tasks: let’s Q = (BG − BE) and E(Ωj) =∑m
j=0 E(oj)

Γ(Ωj) =
T (ocdt)

GCD(g, T (ocdt))
[

⌊
Q

E(ocdt)

⌋ ⌊
E(Ωj)

Q

⌋
+

(

⌊
Q

E(ocdt)

⌋
−
⌊
E(Ωj)−E(Ωj) mod Q

E(ocdt)

⌋
)]

Proof
T (ocdt)

GCD(g,T (ocdt))
is the number of of sub-intervals of

length GCD(g, T (ocdt) in one interval of length equal to
T (ocdt). This result is multiplied by

⌊
Q

E(ocdt)

⌋ ⌊
E(Ωj)
Q

⌋
+

(
⌊

Q
E(ocdt)

⌋
−
⌊
E(Ωj)−E(Ωj) mod Q

E(ocdt)

⌋
)

which represents in one interval of length
GCD(g, T (ocdt) the number of sub-intervals of length
E(ocdt) where ocdt cannot be scheduled because it prevents
one or several tasks from Ωj to satisfy their periods. This
calculation assumes (following the scheduling algorithm
described previously) that each task from Ωj will be
scheduled immediately after the completion of the previous
scheduled one �

Now, using the result of the two previous theorems, we
introduce a condition which allows us to verify the schedu-
lability, according to the proposed algorithm, during the
schedulability analysis. The following corollary proposes
a way to know if a task ocdt is schedulable.

Corollary 1 Let {Ω = ∀i ∈ N, i ≤ n, (oi : E(oi), T (oi))}
be a set of tasks already proved schedulable. Let assume
that from this set we can set upm subsets according to prop-
erty of theorem 3 with for each subset Ωj , j ≤ m a greatest
common divisor gj , j ≤ m. Let BG be the greatest com-
mon divisor of set Ω and the subset Ω1,BE =

∑

ok∈Ω1

E(ok)

and Q = (BG−BE).
Let assume that (ocdt : E(ocdt), T (ocdt)) is a candidate

task for the schedulability analysis then the number of inter-
vals of length E(ocdt) where ocdt can be scheduled by the
proposed scheduling algorithm is equal to: A−B

where:

A =
T (ocdt)

BG

⌊
Q

E(ocdt)

⌋

and

B =
m∑

j=2

Γ(Ωj)

=

m∑

j=2

T (ocdt)

GCD(gj , T (ocdt))
[

⌊
Q

E(ocdt)

⌋ ⌊
E(Ωj)

Q

⌋

+(

⌊
Q

E(ocdt)

⌋
−
⌊
E(Ωj)−E(Ωj) mod Q

E(ocdt)

⌋
)]

ocdt can be scheduled if and only if
A−B ≤ 0.

Proof
This corollary is the logical outcome of the two previous
theorems. First, among already proved schedulable tasks,
we take into account only tasks which satisfy the follow-
ing conditions: for each two tasks (oa : E(oa), T (oa))
and (ob : E(ob), T (ob)), GCD(T (oa), T (ob)) = BG.
These tasks constitute the basis of the scheduling. The
schedulability analysis of all the other tasks consists in,
first, checking the condition of theorem 3 with these tasks.
This is the reason why theorem 5 computes the number
of intervals in which the candidate task can be scheduled
according to this first set of task. Then, we form with
the reminder already proved schedulable tasks a number
of sets, each set satisfy the previous property with a
(GCD 6= BG) and each set has a different GCD. For
each set (excepting the first set) theorem 6 allows us to
compute the number of intervals where the candidate task
cannot be scheduled for non schedulability with one or
several tasks from this set. As these intervals are included
in the first calculation, we need to subtract them from the
result of theorem 5. If the final result is less or equal to zero
then there are no intervals on which the candidate task can
be executed�

Notice that, throughout this schedulability analysis, in
the given conditions nothing is mentioned about precedence
constraints, whereas we allow it in the tasks model. Indeed,
a system with precedence constraints but without any pe-
riodicity constraint is always schedulable. The following
theorem demonstrates that for a set of proved schedulable
tasks i.e. satisfying periodicity constraints, it always exists
a scheduling of these tasks which satisfies precedences be-
tween them tasks whatever precedences are.

Theorem 7 Let Ω be a set of proved schedulable tasks.
Whatever precedence constraints between Ω’s tasks are, it
exists, at least one scheduling which satisfies these prece-
dence constraints

Proof
Once a set of n tasks is proved schedulable, these tasks



can be scheduled in n! different ways or orders. From
these n! orders, at least, one order satisfies the precedence
constraints (we remind that tasks are not allowed to be
preempted)�

5 Application

In order to illustrate the proposed method we propose the
following example: let (X : E(X) = 2, T (X) = 30) the
candidate task to the schedulability analysis. Let Ω={(A :
2, 5), (B : 1, 10), (C : 1, 20), (D : 1, 30), (E : 1, 60)}
the set of tasks already proved schedulable. In this case
BG=GCD(T (A), T (B), T (C), T (D)) = 5

The different subsets that we can set up from the set Ω
and task X are:

• {X,A} with the GCD of periods equal to 5

• {X,B,C} with the GCD of periods equal to 10

• {X,D,E} with the GCD of periods equal to 30

According to the corollaryA is equal to: 30

5

⌊
5− 2

2

⌋
=

6
and B is equal to: B1 +B2

B1 = (
30

10
(

⌊
5− 1

2

⌋⌊
2

3

⌋
+ (

⌊
3

2

⌋
−
⌊

2− 2

2

⌋
))) =

3× 1 = 3
and by the same way B2 = 1, so B =

3 + 1 = 4
then A − B = 6 − 4 = 2, from this, we deduce that X

is schedulable.

6 Conclusion

This paper provides a schedulability analysis in the case
of non-preemptive tasks under strict periodicity and prece-
dence constraints. Unlike previous research the periodic-
ity constraint we deal with is strict which means that the
elapsed time between two successive task execution is al-
ways equal to the period of this task.

The analysis proposed here is composed in several stages
to reach the main result which is a necessary and sufficient
condition we obtain at the end through a corollary. This
condition allows us to check if a task can be scheduled or
not.

Such schedulability analysis can be used in suboptimal
heuristics to find an assignment of the tasks for each proces-
sor when partitioned multiprocessor scheduling is intended.
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