
Feedback Control Static Scheduling for Real-Time Distributed Embedded
Systems

Tolga Ayav
INRIA Rhône-Alpes

ZIRST 655, Avenue de l’Europe
38334 Montbonnot, St Ismier Cedex, France

Tolga.Ayav@inrialpes.fr

Yves Sorel
INRIA, Domaine de Voluceau
Rocquencourt - B.P.105, 78153

Le Chesnay Cedex, France
Yves.Sorel@inria.fr

Abstract

This paper presents an implementation of feedback con-
trol strategy on distributed static scheduling. The static
schedule is created taking into account the average ex-
ecution times of the tasks. Feedback control algorithm
handles the unestimated dynamic behaviors in the system
and keeps the performance at a desired level. The ap-
proach of feedback control supporting static scheduling
yields more flexible scheduling, low scheduling overhead
and better resource utilization while preserving the real-
time constraints.

1. Introduction

Scheduling for distributed embedded systems is becom-
ing more important. Scheduling of tasks on a distributed
architecture is a resource allocation problem and there are
two kinds of allocation policy: static and dynamic. The
dynamic policy is more efficient and its implementation is
also simpler. However, the disadvantage is the overhead
both in program size and in execution time. Static schedul-
ing minimizes the overall execution time drastically reduc-
ing overheads but all the properties of the application, in-
cluding its environment must be known at compile time.
Therefore, static policy is appropriate for the implementa-
tion of real-time control, signal and image processing algo-
rithms on embedded systems, where resources and time are
hardly limited and where the algorithm and its environment
are well-known.

Today, most of the distributed embedded systems oper-
ate in open environments where both workload and avail-
able resources are difficult to predict such as mobile ve-
hicles, robots and so on [3][5]. We present a feedback
control distributed static scheduling (FC-DSS) system that
combines feedback control scheduling and static schedul-
ing. The proposed approach results in lower overhead and

P1 P2 P3

BUS
I A

B

C

D

E O

Figure 1. Example algorithm graph (left panel)
and architecture graph (right panel).

better resource utilization, which makes it attractive for em-
bedded systems with limited resources.

2. Feedback controlled static scheduling
framework

We use the AAA heuristic [2] to obtain the static sched-
ule of the algorithm application. AAA is based on the com-
plete knowledge of task execution times. When it is difficult
to define the workload and execution times, systems may
not meet the deadline. To overcome this problem, we pro-
pose to use average execution times instead of worst case
and an additional feedback control loop to handle this unes-
timated characteristic of the system.

2.1. Algorithm, architecture and task model

The algorithm specifying the application to be imple-
mented is modeled by a data-flow graph (denoted with Gal).
Each vertex represents a task and each directed edge repre-
sents a data-dependence. The data-flow graph is executed
periodically and each execution is called an iteration. An
example of algorithm graph is given in Figure 1. The pe-
riod of the iteration is the deadline for the completion time
of all the tasks. This hard real-time constraint is difficult to
meet when there exists a lack of prior information about the
execution times.

The architecture is modeled by a graph (denoted with
Gar) where each vertex is a processor or a communication
medium (bus, link, etc.) and each non-directed edge is a
connection between a processor and a medium. Processors
(rep. media) execute sequentially computations (resp. com-
munications) tasks (see Figure 1).

2.2. Static scheduling heuristic

We briefly present the static scheduling heuristic imple-
menting this solution. Let Osched(n) denote the list of al-
ready scheduled tasks and Ocand(n) denote the list of can-
didate tasks built from the algorithm graph at step n ≥ 0.
A task is candidate when all its predecessors are already
scheduled. Initially, Osched(0) = ∅. Using a cost func-
tion called schedule pressure, one operation is chosen to be
scheduled at step n. The heuristics computes first the “the
earliest start date from start” S(n)(τi, pj) for each task τi

and processor pj∈{1,2,··· ,n}. S(n)(τi, pj) takes into account
the communication times between τi and its successors and
predecessors when they are distributed on different proces-
sors. Thus the schedule pressure σ is computed as:

σ(n)(τi, pj) = S(n)(τi, pj) + ETi1,pj + E(τi) − R (1)

where ETi1,pj is the execution time of τi on processor pj ;
this value is given in pj’s characteristics lookup table. Note
that among k versions of τi, the longest version is utilized
in the heuristics. At each step n, one task is selected and
implemented on a processor until all tasks are scheduled
according to the following algorithm:

S0. Initialize Osched and Ocand:
Osched(0) = ∅, Ocand(0) = {τ ∈ O|pred(o) ⊆ Osched(0)}

Sn. while Ocand(n) 6= ∅ do
Sn1

Compute the scheduling pressure for each
τi ∈ Ocand(n) and keep the result
for each operation:
σopt(n)(τi, pi) = minpj∈P σ(n)(τi, pj)
P (τi) = pi

Sn2
Select the best candidate τbest(n) such that:

best = arg(maxτi∈Oimpl(n) σopt(n)(τi, pil
))

Sn3
Implement τbest on P (τbest)

Sn4
Update list of candidates and scheduled tasks:

Osched(n) = Osched(n − 1) ∪ {τi}
Ocand(n + 1) = Ocand(n) − {τi}

∪{τ
′

i ∈ succ(τi)|pred(τ
′

i) ⊆ Osched(n)}
end while

For further detail about AAA, one may refer to [2].

2.3. Imprecise computations revisited

Imprecise computations allow programmer to identify
some tasks as more important than others. It includes a
number of implementation techniques such as milestone,

Monitor
1

Controller PlantTLA
Ga

∆ u u

z−1
1

e

y’

y

+
−

Kp

ref
y

Figure 2. Feedback control loop

sieve, and multiple-version that are presented thoroughly in
[4]. In the present work, multiple-version implementation
is considered. This means that each task is composed of
many versions such as primary, secondary and so on. The
primary one is the longest version that produces a precise
result, whereas the other versions are shorter and they pro-
duce imprecise results.

We propose an imprecise computation which assumes
that each task τi ∈ Gal is described with a tuple
{I, ET}. Each task τi has k versions, i.e. I =
{τi1, τi2, · · · τik}. Since the target architecture is hetero-
geneous, the execution times for a given task can be dis-
tinct on each processor. Thus, each version has differ-
ent execution times on n different processors, i.e. ET =
{{ETi1,p1, ..., ETi1,pn}, ..., {ETik,p1, ..., ETik,pn}} (with
the assumption that ETi1 > ETi2 > ... > ETik). Note
that these execution times are average instead of worst case
execution times in order to achieve higher CPU utilizations
in the system. Feedback control loop provides a satisfac-
tory performance even when ETs vary from their estimated
average values during run-time.

2.4. Feedback control loop

We insert a feedback control algorithm into the applica-
tion algorithm. A model of the loop is given in Figure 2.
The control loop is invoked once at each iteration of the
global schedule. The controlled variable denoted with y is
the normalized completion time of the whole algorithm, i.e.
the completion time divided by the period of the iteration T .
For the rest of the paper, the term completion time should be
interpreted as normalized completion time. The reference
variable yref is the desired value of y. We implement this
feedback control loop with the algorithm graph Gfc given
in Figure 3. Thus, our proposed model extends the whole
algorithm to be scheduled to Gal ∪ Gfc. We explain com-
prehensively Monitor, Controller and TLA parts below.

2.4.1. Monitor
The monitor measures the completion time of the whole al-
gorithm. For any processor, let us denote the completion
time of the last task in one iteration with Ci, and then nor-
malize it with mi = Ci

T
. Here, m differs from CPU utiliza-

tion with the fact that CPU idle time when tasks wait for
data from their predecessors is also included in m calcula-
tion. The reason of using m as the controlled variable is that

2

Monitor TLA

Cont−
roller TLC

M1

M

M

LC1

LC2

LCn

2

n

Figure 3. The graph of the feedback control
loop algorithm (Gfc)

the end of completion time of the algorithm is not allowed
to exceed period T . Using m instead of CPU utilization as
the controlled variable has also another advantage that CPU
utilization cannot exceed 100% whereas m can. Therefore
we do not have the difficulties of non-linear analysis and
a limitation on yref (for more explanation, please refer to
[3]).

Monitor{
for i = 1 to n

mi(t) = Receive Data From(Mi);
end for
y

′

(t) = max{mi(t)};
}

where t ∈ N denotes the discrete time index, i.e. the actual
time t̃ can be computed as t̃=Tt.

2.4.2. Controller
We use P (Proportional) control function to calculate the
control output. The reason of using a simple P controller
is that its implementation introduces less overhead, and as
already remarked in [5] and [3], a P control structure is
enough flexible to stabilize the system.

Controller first calculates the error, executes P control
action and calls TLA for the selected processor. The
pseudo-code of the controller is given below:

Controller{
e(t) = yref − y

′

(t);
if(e(t) < 0)
then proc=Select CPU having highest m and

minimum one degradable task();
else proc=Select CPU having highest m and

minimum one enhancable task();
∆u(t) = Kp · e(t);
TLA(proc, ∆u(t));

}

∆u is the output of the P control action. ∆u > 0 means
that the requested completion time of the algorithm should

Figure 4. Final schedule

be increased, and ∆u < 0 means that the requested com-
pletion time of the algorithm should be decreased. The con-
troller then calls task level actuator (TLA) to change the
current requested completion time from u to u + ∆u. In
other words, negative error means that the completion time
of the algorithm exceeds the desired value and some tasks
must be switched to their secondary versions so as to de-
crease the completion time. In this case, controller selects
the processor having the highest completion time (i.e. the
processor that defines the completion time of the whole al-
gorithm) and minimum one degradable task. Then, it exe-
cutes the controller and TLA for that processor. Degradable
means that task’s version can be changed from primary to
secondary so as to decrease the completion time. If the error
is positive, then the controller selects the processor having
the highest completion time and minimum one enhancable
task in this case.

The schedule of the whole algorithm is given in Figure
4. Since y

′

= 1.01 > yref and there may exist unpre-
dictability in the execution times of the tasks, the feedback
control loop dynamically tries to keep y at the desired level
specified with yref .

2.4.3. Task level actuator
The task level actuator (TLA) manipulates the requested
completion time of the algorithm by changing the versions
of the tasks. For instance, if it changes the version of task
τi from τip to τir, it adjusts the requested completion time
by calculating ETir −ETip. TLA, then sends the informa-
tion about the chosen versions of the tasks to the LCi (Level
Controller) tasks that adjust the versions to be executed in
the next iteration. The pseudo-code of TLA is as follows:

TLA(proc, ∆u){

3

if(∆u < 0)
while(∆u < 0 and If Degradable Task(proc)){

τc = Select Degraded Task(proc);
Change Level(τc, from version p, to version r);
∆u = ∆u − ETir,proc + ETip,proc;

}
else

while(∆u > 0 and If Enhancable Task(proc)){
τc = Select Enhanced Task(proc);
Change Level(τc, from version p, to version r);
∆u = ∆u − ETir,proc + ETip,proc;

}
for i=1 to n

Send Data To(LCi)
end for

}

2.5. Control theory based analysis
Designing a stabilizing controller is an important con-

cern [3][1]. In stability analysis, we first derive the state
space form of the closed-loop system given in Figure 2.
Starting from the control input, TLA changes the estimated
completion time of the algorithm for the next period at ev-
ery sampling instant t such that u(t + 1) = u(t) + ∆u(t).
Since the precise execution time of each task is unknown
and time varying, the actual completion time (denoted with
y) may differ from the estimated completion time u(t) such
that y(t) = G · u(t) where G represents the maximum ex-
tent of workload variation in terms of requested completion
time. We assume that the monitor measures the actual com-
pletion time precisely, i.e. y

′

(t) = y(t).
Then, we derive the error and the control signals as

e(t) = yref − y
′

(t) and ∆u(t) = Kpe(t) respectively. The
closed-loop system is therefore described by

u(t + 1) = (1 − KpG)u(t) + Kpyref . (2)

A classical stability criterion for discrete time linear sys-
tems guarantees that u(t) is asymptotically stable around its
equilibrium, if the following condition is fulfilled:

|1 − KpG| < 1 ⇐⇒ 0 < Kp < 2/G (3)

Assuming that the stability condition 3 is satisfied, con-
trol system guarantees zero steady state error, i.e.

lim
t→∞

e(t) = yref −G lim
t→∞

u(t) = yref −G
yref

G
= 0. (4)

3. Simulations
In the experiments, we used the example application al-

gorithm and architecture given in Figure 1. The execution
times of primary versions of the tasks and the communica-
tion times are generated randomly. The secondary versions

Figure 5. Task completion times (yref = 0.85).

are the half of the primary versions. Due to the space lim-
itation, these values cannot be given here. The controller
parameter Kp and the reference variable yref are assigned
0.5 and 0.85 respectively. In order to account for the un-
predictability of these execution times, the actual execution
times are calculated as AETpi = ETpi ·uniform[0.8, 1.2]
which are unknown to the feedback control scheduler. Fig-
ure 5 shows the completion times of the three processors
during 50 iterations. As seen in the figure, feedback control
algorithm keeps the completion time around yref .

4. Conclusion
In this paper, we presented a feedback control static

scheduling technique for distributed embedded systems.
Static schedule is created in accordance with the AAA
heuristic and an additional feedback control algorithm han-
dles the possible unestimated behaviors in the workload.
We provide a stability analysis to tune the parameters. The
results are demonstrated through a simple experiment. The
proposed scheduling system should also be tested under
more realistic workloads.

References

[1] T. Ayav, G. Ferrari-Trecate, and S. Yilmaz. Stability proper-
ties of adaptive real-time feedback scheduling: A statistical
approach. In 12th Real-Time Embedded Systems Conference,
pages 259–277, Paris, France, 30-31 March 2004.

[2] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid
prototyping for real-time embedded heterogeneous multipro-
cessors. In CODES’99 7th International Workshop on Hard-
ware/Software Co-Design, Rome, Italy, May 1999.

[3] C. Lu, J. Stankovic, G.T., and S. Son. Feedback control
real-time scheduling: Framework, modeling, and algorithms.
Real-Time Systems Journal Special Issue on Control Theo-
retical Approach to Real-Time Computing, 23(1/2):85–126,
September 2002.

[4] W. Shih and J.-S. Liu. Algorithms for scheduling imprecise
computations. IEEE Transactions on Computers, 24(5):58–
68, 1991.

[5] J. Stankovic, C. Lu, S. Son, and G. Tao. The case for feedback
control real-time scheduling. In 11

th Euromicro Conference
on Real-Time Systems, pages 11–20, York, UK, 1999.

4

