
MISTA 2009

Schedulability Analysis for non Necessarily Harmonic

Real-Time Systems with Precedence and Strict Periodicity

Constraints using the Exact Number of Preemptions and no

Idle Time

Patrick Meumeu Yomsi · Yves Sorel

1 Introduction

Scheduling theory as it applies to hard real-time environments with precedence and strict

periodicity constraints — environments where the failure to satisfy any constraint may have

disastrous consequences [1], [2] — seems currently to be enjoying a renaissance. The most

widely studied problems in this field concern periodic non-preemptive tasks for systems

where data are collected throught captors and the control is performed throught actuators [3],

[4]. The tasks corresponding to captors and actuators must satisfy a strict periodicity con-

straint. For reasons of consistency and predictability, we assume in this paper that all tasks

are subject to this constraint. The domains considered here include automobiles, avionics,

mobile robotics, telecommunications, etc. Although preemptive scheduling algorithms are

able to successfully schedule some systems that cannot be scheduled by any non-preemptive

scheduling algorithm, the cost of preemption may not be negligible. Therefore, when pre-

emption is allowed, its exact cost has to be explicitly considered in the schedulability con-

ditions in order to avoid wasting resources and provide safety in terms of guaranteeing the

right behavior of the system at run-time. In this paper, we address the scheduling problem

of hard real-time systems composed of dependent, strictly periodic, preemptive tasks in

the monoprocessor case. The strictly periodic constraint implies that, for such a system, any

task starts its execution at the beginning of its period whereas the dependence constraint

implies that any task cannot start its execution before the end of another task preceding it.

We assume here that no jitter is allowed at the beginning of each task. To clearly distinguish

between the specification level and its associated model, we shall use the term operation

rather than the commonly used “task” [5] which is too closely related to the implementation

level.

For systems with the above-mentioned constraints, in [6] we proved that some of them

can be eliminated because they are definitely not schedulable, then we solved the problem

INRIA Paris-Rocquencourt,

Domaine de Voluceau BP 105, 78153 Le Chesnay Cedex - France

E-mail: patrick.meumeu@inria.fr

INRIA Paris-Rocquencourt,

Domaine de Voluceau BP 105, 78153 Le Chesnay Cedex - France

E-mail: yves.sorel@inria.fr



for systems with harmonic periods 1 in [7]. Here, we first generalize these results to the

case of systems with periods that are not necessarily harmonic. Then, we provide a neces-

sary and sufficient schedulability condition which takes into account the exact number of

preemptions for a system with such constraints when no idle time is allowed. That means

the processor always executes an operation if there is one to execute. Indeed, even though

the cost α of one preemption — the context switching time including the storage as well as
the restoration of the context that the processor needs when a preemption occurs — is easy

to know for a given processor, it remains a challenging problem to count the exact number

of preemptions of each instance for a given operation [8], [9], [7]. As in [10], we consider

only predictable processors without cache or complex internal architecture. We consider a

set of n strictly periodic preemptive operations τi,1 ≤ i ≤ n with precedence constraints.
Each operation τi is an infinite sequence of instances

2 τki , k ∈ N
+, and is characterized by

a Worst Case Execution Time (WCET) Ci, not including any approximation of the cost of

preemption, as is usually the case in the classical real-time scheduling theory [11], [12],

[13], [14], and a period Ti. In each instance τ
k
i , operation τi has to execute forCi time units.

The context switching time corresponding to the activation as well as the termination of an

operation is constant, and thus is included in the WCET. Regarding the constraints, we have

the following information.

The precedence constraint is given by a partial order on the execution of the operations.

An operation τi preceding an operation τ j is denoted by τi ≺ τ j which means that s
k
i ≤

skj, ∀k ≥ 1 thanks to the result given in [4], s
k
i denotes the start time of τ

k
i . In that paper

it was proved that given two operations τi = (Ci,Ti) and τ j = (C j,Tj): τi ≺ τ j =⇒ Ti ≤
Tj. Consequently, the operations must be scheduled in an increasing order of their periods

corresponding to classical fixed priorities, using Rate Monotonic (RM), where the shorter

the period the higher the priority [7], [4]. We re-index operations in such a way that τ1≺ τ2≺
·· · ≺ τn, that is to say τ1 precedes τ2, τ2 precedes τ3 and so on. In the context of this paper
we shall use the term “level” rather than priority, level 1 which corresponds to operation τ1
being the highest, and level n which corresponds to operation τn being the lowest.

The strict periodicity constraint means that the start times ski and s
k+1
i of two consecu-

tive instances corresponding to operation τi are exactly separated by its period: s
k+1
i − ski =

Ti, ∀k ≥ 1. The instance started at time s
1
i + kTi has s

1
i +(k+1)Ti as its deadline.

For such a system of operations with precedence and strict periodicity constraints, we

propose a method to compute on the one hand the exact number of preemptions, and on the

other hand the schedule of the system when no idle time is allowed, i.e. the processor will

always execute an operation as soon as it is possible to do so. Although idle time may help

the system to be schedulable, when no idle time is allowed it is easier to find the start times

of all the instances of an operation according to the precedence relation.

For the sake of readability and without any loss of generality, from now on, although it

is not entirely realistic, we will consider the cost of one preemption for the processor to be

α= 1 time unit. It is worth noticing that the analysis performed here would work even if the
preemption cost were not a constant.

The remainder of the paper is structured as follows: section 2 describes the model and

gives the notations used throughout this paper. Section 3 provides the definitions we need to

take into account the exact number of preemptions in the schedulability analysis presented

in section 4. That section explains in detail, on the one hand, our scheduling algorithm

1 A sequence (ai)1≤i≤n is harmonic if and only if there exists qi ∈ N such that ai+1 = qiai. Notice that we
may have qi+1 6= qi ∀i ∈ {1, · · · ,n}.
2 Throughout the paper all subscripts refer to operations whereas all superscripts refer to instances.



which counts the exact number of preemptions and, on the other hand, derives the new

schedulability condition. We conclude and propose future work in section 5.

2 Model

Throughout the paper, we assume that all timing characteristics are non-negative integers,

i.e. they are multiples of some elementary time interval (for example the “CPU tick”, the

smallest indivisible CPU time unit). We denote by τi = (Ci,Ti): an operation, Ti: Period
of τi, Ci: WCET of τi without any preemption approximation, Ci ≤ Ti, α: Temporal cost
of one preemption for a given processor, τki : The k

th instance of τi, Np(τ
k
i ): Exact number

of preemptions of τi in τ
k
i , C

k
i = Ci +Np(τ

k
i ) ·α: Preempted Execution Time (PET) of τi

including its exact preemption cost in τki , s
1
i : Start time of the first instance of τi, s

k
i =

s1i +(k−1)Ti: Start time of τ
k
i , R

k
i : Response time of τ

k
i .

A valid schedule S for the system taking into account the exact number of preemp-

tions will be yielded by the set of start times of the first instance for all operations: S =
{(s11,s

1
2, · · · ,s

1
n)}. Since all the operations except the one with the shortest period w.r.t. the

precedence relations may be preempted, the execution time of an operation may vary from

one instance to another due to the number of preemptions. Therefore, the preempted execu-

tion time (PET) [10] which corresponds to the WCET augmented with the exact cost due

to preemptions for each instance of an operation may also vary from one instance to an-

other. Consequently, the PET denotedCki for instance τ
k
i depends on the instance and on the

number of preemptions occurring in that instance. Its computation will be detailed below.

Because we intend to take into account the exact number of preemptions, and because

all operations may be preempted, except the first one, i.e. the one with the shortest period,

all instances of all operations must be considered since the number of preemptions may

be different from one instance to another. We give a schedulability condition for each op-

eration individually according to operations with shorter periods. For each operation, our

scheduling algorithm first provides the start time of the first instance, then computes the

exact number of preemptions per instance. This individual operation analysis leads, at the

end, to a schedulability condition for all operations.

It has been shown in [4], [7] that systems with precedence and strict periodicity con-

straints repeat identically after a time called the hyperperiod which corresponds to the Least

Common Multiple (LCM) of the periods of all the operations.

3 Definitions

All the definitions and terminologies used in this section are directly inspired by [10] and

are applied here to the case of a model with precedence and strict periodicity constraints.

From the point of view of any operation τi, we define the hyperperiod at level i, Hi,
which is given by Hi = LCM{Tj}τ j∈sp(τi), where sp(τi) is the set of operations with a period
shorter than or equal to that of operation τi. The set sp(τi) may include τi. It is obvious that
Hi time units after the first start time s

1
i of operation τi, the start time of the next instance is

exactly the same as that of s1i w.r.t. the start time of the first instances of operations preceding

τi. This characteristic derives from both the precedence and the strict periodicity constraints.
Without any loss of generality we assume that the first operation τ1 starts its execution at
time t = 0. Since at each level i the schedule of τi repeats indefinitely, it is sufficient to
perform the scheduling analysis in the interval [s1i ,s

1
i +Hi] for τi and [0,s1n+Hn] for the



whole set of operations. Therefore, τi starts σi times in each hyperperiod at level i starting

from 0, with σi =
Hi

Ti
=
LCM{Tj}τ j∈sp(τi)

Ti
.

Because operation τi may only be preempted by the set of operations with a period
shorter than τi denoted sp(τi), then there are exactly σi different PETs for operation τi.
In other words, from the point of view of any operation τi, we can define the function π,
inflatingCi, as π :N

+×N
+ −→N

+σi×N
+, where π(Ci,Ti) = π(τi) = ((C1i ,C

2
i , · · · ,C

σi
i ),Ti),

which maps the WCETCi of operation τi into its respective PETC
k
i in each instance τ

k
i when

τi is schedulable.
Because of the precedence constraints among operations and because we proceed the

schedule from the operation with the shortest period towards the operation with the longest

period. At each priority level the goal is to fill available time units in the previous schedule

thus far obtained, with slices of the WCET of the current operation taking into account the

exact number of preemptions, and hence we obtain the next current schedule. Consequently,

we represent the previous schedule of every instance τki of the current operation τi = (Ci,Ti)
by an ordered set of Ti time units where some are already executed because of the execu-

tion of operations with shorter periods relatively to ≺, and the others are still available for
the execution of operation τi in that instance. We call this ordered set which describes the
state of each instance τki the M

k
i Ti-mesoid. We denote a time unit already executed by an

“e” and a time unit still available by an “a”. The switch from an a to an e represents a

preemption if the WCET of the current operation is strictly greater than the cardinal of the

sub-set corresponding to the first sequence of a. Depending on the remaining execution time

while filling available time units, this situation may occur again leading therefore to sev-

eral preemptions which themselves may result in causing others. The cardinal of a sub-set

corresponding to a sequence of consecutive time units already executed is called a consump-

tion. It will be denoted by its value inside brackets. We enumerate the sequence of available

time units according to natural numbers. This enumeration is done from the end of the first

sequence of time units already executed in that instance. Each of these natural numbers cor-

responds to the number of available time units since the end of the first consumption. They

represent all the possible PETs of the operation under consideration in the corresponding

instance. Each of these natural numbers ai is called an availability. For example, the 13-

mesoid {e,e,e,a,a,a,e,e,a,a,e,a,a} will be represented by {(3),1,2,3,(2),4,5,(1),6,7},
(3),(2),(1) are consumptions and 1,2,3,4,5,6,7 are availabilities. More details on the def-
inition of a Ti-mesoid are given in [10].

From the point of view of the current operation τi=(Ci,Ti), there are as many Ti-mesoids
as instances in the hyperperiod Hi at level i. Therefore, there are σi Ti-mesoids in Hi which

will form a sequence of Ti-mesoids. We call L
b
i =

{

M
b,1
i ,M

b,2
i , · · · ,M b,σii

}

the sequence

of σi Ti-mesoids before τi is scheduled in the current schedule. The process used to build the

sequence Lbi of operation τi will be detailed later. We define for each Ti-mesoid M
b,k
i the

corresponding universe Xki to be the ordered set, compatible with that of the corresponding

mesoid, which consists of all the availabilities ofM
b,k
i . That is to say, all the possible values

that Cki can take in M
b,k
i . Recall that C

k
i denotes the PET of τi in τ

k
i , the k

th instance of τi.
Operation τi will be said to be potentially schedulable if and only if

{

Ci ∈ X
k
i ∀k ∈ {1, · · · ,σi}

M
b,k
i starts with an available time unit for each k ∈ {1, · · · ,σi}

(1)

The first σi equations of (1) verify that Ci belongs to each universe at level i. Then, the

next σi equations verify that everyM
b,k
i starts with an availability as no idle time is allowed.



These verifications are necessary for the strict periodicity constraints to be satisfied. As a

matter of fact, if a Ti-mesoid starts with a consumption it is not possible to fill the previous

schedule with slices of the WCET of the current operation τi taking into account the cost of
preemption as it belongs to a lower level than those already scheduled w.r.t ≺. Therefore its
start time is postponed to the end of the consumption in the previous schedule, and thus does

not satisfy the strict periodicity constraint of τi. In this case the system is not schedulable.
Notice that when this situation arises the three non schedulability conditions given in [6]

hold. Since Ci ∈ {1,2, · · · ,Ti}, ∀1 ≤ i ≤ n, let us define the following binary relation on
each instance.

R : “availability ai1 leads to the same number of preemptions as availability ai2”,

ai1 ,ai2 ∈ {1,2, · · · ,Ti}

R is clearly an equivalence relation on {1,2, · · · ,Ti} (reflexive, symmetric, transitive). Now,
since Xki ⊆ {1,2, · · · ,Ti}, ∀1≤ k≤ σi, thus R is also an equivalence relation on X

k
i and each

Xki together with R is a setoid
3. From now on, we consider only the restriction of R on

Xki ,k = 1, · · · ,σi because X
k
i represents all the available time units in instance τ

k
i .

Each Ti-mesoid consists of a sequence of time units already executed, i.e. consumptions,

due to the schedule of operations with shorter periods, followed or preceded by a sequence

of times units still available, i.e. availabilities. Since each switch from an available time unit

to an already executed time unit possibly corresponds to a preemption, then according to

the value of Ci several preemptions may occur. Among the possible values that Ci can take,

those which will lead to the same number of preemptions will be said to be equivalent w.r.t.

to R , and thus will belong to the same equivalence class. Therefore, the equivalence classes

of each universe correspond to the subsets of availabilities determined by two consecutive

consumptions in the associated mesoid. The start time of the first instance s1i of operation

τi occurs at least after the end time of that of operation τi−1 in order to satisfy the strict
periodicity constraint. Moreover, s1i occurs as soon as possible since no idle time is allowed.

The latter statement implies that operation τi starts ∆i−1 time units after the start time s
1
i−1

of the first instance of operation τi−1. The computation of ∆i−1 will be detailed later on.
Already, it is worth noticing that ∆i−1 is longer than or equal to the response time of τi−1
in its first instance because when the last piece of the PET of τi−1 fits exactly a sequence of
consecutive availabilities, then the start time of the first instance of τi is postponed. Hence,
we can derive the first start time of any potentially schedulable operation τi as the sum of
the start time s1i−1 of the first instance of operation τi−1 and ∆i−1: s

1
i = s1i−1+∆i−1.

When equation (1) holds for a given operation τi, we callL
a
i =

{

M
a,1
i ,M

a,2
i , · · · ,M a,σii

}

the sequence of σi Ti-mesoids of operation τi after τi is scheduled. L
a
i is a function of L

b
i

which itself is a function of Lai−1, both detailed as follows. Thanks to everything we have

presented up to now, we can assume without any loss of generality that the start time of the

first instance of the operation with the shortest period, here τ1, starts its execution at time
t = 0, i.e. s11 = 0.
Let f be the function such that Lbi = f (Lai−1) which transforms the sequence L

a
i−1 of

σi−1 Ti−1-mesoids after operation τi−1 has been scheduled at level i− 1 into the sequence
Lbi of σi Ti-mesoids before operation τi is scheduled at level i.

As mentioned above, a mesoid consists only of time units already executed denoted

by “e” and time units still available denoted by “a”. Moreover, the cardinal of a mesoid is

equal to the period of the operation under consideration whatever the level is. As such, the

3 A setoid is a set equipped with an equivalence relation.



function f transforms a time unit already executed (resp. still available) in the sequence Lai−1
into a time unit already executed (resp. still available) in the sequence Lbi by following an

index ψ which enumerates according to natural numbers, the time units (already executed or
still available) in the sequence Lai−1 of operation τi−1 after τi−1 is scheduled. ψ starts from

the first available time unit of the first mesoid M
a,1
i−1 towards the last time unit of the last

mesoid M
a,σi−1
i−1 , and then circles around to the beginning of the first mesoid M

a,1
i−1 again,

until we get the σi Ti-mesoids of L
b
i . During this process each time ψ = Ti, a Ti-mesoid is

obtained for the sequence Lbi and then the next Ti-mesoid is obtained by starting to count

again from the next time unit to the current one. Indeed, the previous schedule at level i

(the schedule obtained at level i−1) consists of Hi−1 time units whereas the schedule of the
current operation τi is computed upon Hi time units after the start time of its first instance s

1
i .

That amounts to extending the previous schedule from Hi−1 to Hi time units by identically

repeating the previous schedule as often as necessary to obtain Hi time units.

Due to the precedence and strict periodicity constraints, notice that ψ in contrast to
index ζ used in [10] which started from the first time unit, starts from the first available
unit of the first Ti−1-mesoid as no idle time is allowed. The value of ∆i−1 is therefore the
consumption before the first available time unit in the sequence Lai−1 of operation τi−1.

Since τ1 is the operation with the shortest period, sp(τ1) = {τ1} and thus σ1 =
H1

T1
= 1.

Moreover, because τ1 is never preempted, we have L
b
1 =

{

M
b,1
1

}

= {{1,2, · · · ,T1}} and

La1 =
{

M
a,1
1

}

= {{(C1),1,2, · · · ,T1−C1}}.

Let g be the function such that Lai = g(Lbi ) which transforms the sequence L
b
i of σi

Ti-mesoids before operation τi has been scheduled at level i into the sequence L
a
i of σi

Ti-mesoids after operation τi has been scheduled at level i.

For each Ti-mesoidM
b,k
i of L

b
i we compute the PETC

k
i that we add to all the consump-

tions appearing in that Ti-mesoid before the availability corresponding to that PET. This

yields the response time Rki of operation τi in instance τ
k
i . The PET is computed by using

a fixed-point algorithm which is detailed in the next section. Now, for each Ti-mesoid of

Lbi , function g transforms a time unit already executed in the sequence L
b
i into a time unit

already executed in the sequence Lai , and transforms a time unit still available into either

a time unit still available or a time unit already executed w.r.t. the following condition. We

use an index which enumerates using numerals the time units from the first to the last one in

each Ti-mesoidM
b,k
i of L

b
i . If the current value of the index is less than or equal to R

k
i , then

function g transforms the time unit still available into a time unit already executed due to

the execution of instance τki , otherwise g transforms it into a time unit still available. Indeed,
function g fills available time units in the current schedule with slices of the PETs in each

Ti-mesoid, leading to the previous schedule for the next operation at level i+1 w.r.t ≺.

4 The proposed approach

In this section, we outline our approach for a system with an arbitrary number of opera-

tions. This approach leads to a new schedulability condition for hard real-time systems with

precedence and strict periodicity constraints using the exact number of preemptions and no

idle time allowed. This condition is new in the sense that it takes into account the exact

number of preemptions in the schedulability analysis for such systems rather than using an

approximation in the WCETs.



Since the schedule proceeds from the operation with the shortest period corresponding

to the highest level, to the one with the longest period corresponding to the lowest level,

then for every potentially schedulable operation, we determine its schedule thanks to those

with shorter periods. At each priority level i, the basic idea consists in filling availabilities

in each mesoid of the sequence Lbi , before operation τi is scheduled, with slices (cardinal
of equivalence classes) of its inflated WCET while taking into account the cost of the exact

number of preemptions. At each preemption occurrence, α time units add to the remaining
execution time of the instance of the operation under consideration. This situation may oc-

cur again w.r.t. the remaining execution time, leading therefore to several preemptions which

themselves may cause others. This is why it is crucial to calculate the exact number of pre-

emptions. Finally, we obtain for each mesoid the PET, and then the corresponding response

time. Determining the worst case among these response times allow us to conclude on the

schedulability of operation τi w.r.t. ≺. When τi is schedulable, we build the sequence L
a
i ,

after τi is scheduled, in order to check the schedulability of the next operation, and so on,
otherwise the system is not schedulable.

4.1 Scheduling algorithm

We assume that the first i−1 operations with 2≤ i≤ n have already been scheduled, i.e. the
sequence Lai−1 of operation τi−1 is known, and that we are about to schedule operation τi,
which is potentially schedulable, i.e. equation 1 holds.

Sequence Lbi = f (Lai−1) of operation τi is built thanks to index ψ on sequence L
a
i−1 of

operation τi−1 without forgetting to start at the first available time unit rather than the first
time unit as in [10]. Again this is due to the constraints on the system and the fact that no idle

time is allowed: the start time of the first instance of operation τi is at s
1
i = s1i−1+∆i−1. The

sequence Lbi consists of σi Ti-mesoidsM
b,k
i with k = 1, · · · ,σi since operation τi may only

be preempted by operations belonging to sp(τi). We can therefore determine the universes
Xki ∀k ∈ {1, · · · ,σi} when the sequence L

a
i−1 is known. The response time R

k
i of operation

τi in its k
th instance, i.e. in the kth Ti-mesoid will be obtained by summing C

k
i with all

consumptions prior to Cki in the corresponding mesoid. The worst-case response time Ri
of operation τi will be given by Ri = max{1≤k≤σi}(R

k
i ). This equation leads us to say that

operation τi is schedulable if and only if Ri ≤ Ti. Again, L
a
i = g(Lbi ) will be deduced from

sequence Lbi like L
a
1 = g(Lb1 ) in the previous section. For the sake of clarity, whenever there

are two consecutive consumptions in the same mesoid, this amounts to considering only one

consumption which is the sum of the previous consumptions.

Below, we present our scheduling algorithm which, for a given operation, on the one

hand first determines the start time of its first instance relatively to ≺, then counts the exact
number of preemptions in each of its instances, and on the other hand provides its PET

in each of its instances in order to take into account the exact number of preemptions in

the schedulability condition. It has the following twelve steps. Since the operation with the

shortest period, namely operation τ1, is never preempted, the loop starts from the index of
the operation with the second shortest period, namely operation τ2.

1: for i= 2 to n do
2: Compute the number σi of times that operation τi = (Ci,Ti) has started in the hyper-

period at level i.



3: Determine the start time of the first instance of operation τi: s
1
i = s1i−1+∆i−1 where

∆i−1 is the consumption before the first available time unit in the sequence L
a
i−1 of

operation τi−1.

4: Build the sequence Lbi = f (Lai−1) of Ti-mesoids of operation τi before it is scheduled.

This construction consists of σi Ti-mesoidsM
b,k
i with k = 1, · · · ,σi, and is based on

a modulo Ti arithmetic using index ψ on the sequence L
a
i−1 without forgetting to start

at the first available time unit rather than the first time unit as in [10].

5: For each Ti-mesoid M
b,k
i resulting from the previous step, build the corresponding

universe Xki which consists of the ordered set of all availabilities ofM
b,k
i . Notice that

this set corresponds to the set of all possible values that the PET Cki of operation τi

can take inM
b,k
i .

6: Build all the equivalence classes for each universe Xki . An equivalence class of X
k
i is

composed of the subset of availabilities determined by two consecutive consumptions

in the associated mesoid M
b,k
i . m ∈ N in expression [m]k denotes the subset of Xki

composed of the availabilities which are preempted m times.

7: Compute both the exact number of preemptions and the PET Cki of operation τi in
each universe Xki ,1≤ k≤ σi, resulting from the previous step thanks to the algorithm
inlined in this step. Since τi is potentially schedulable, i.e. its WCET Ci belongs to
one and only one equivalence class [θ1]

k in each universe Xki , we must verify that it is

actually schedulable given that some preemptions may occur. The recursive inflation

of the execution time of the operation, due to preemptions, starts from the value of the

WCET. Indeed, the current inflatedWCET is obtained by adding the previous inflated

WCET and the cost of preemptions incurred by this latter WCET. This explains the

following fixed-point algorithm.







θ0 = 0

C
k,0
i =Ci ∈ [θ1]

k

C
k,m
i =Ck,m−1i +(θm−θm−1) ·α ∈ [θm]

k ∀m≥ 1

This computation stops as soon as either the PET is reached, i.e. two consecutive

values of C
k, j
i , j ≥ 1 are equal , or there exists µ2 ≥ 1 such that C

k,µ2
i > card(Xki ). In

the latter case, operation τi is not schedulable. In the first case, C
k
i = Ci+

l

∑
j=1

(θ j −

θ j−1) ·α=Ci+Np(τ
k
i ) ·α.

8: Deduce the image τ
′

i = π(τi) = (
(

C1i ,C
2
i , · · · ,C

σi
i

)

,Ti) of operation τi resulting from
the previous step.

9: Determine the response time Rki ,1 ≤ k ≤ σi of operation τi in its k
th instance, i.e. in

the kth Ti-mesoid. This is obtained by summingC
k
i with all the consumptions prior to

Cki in the corresponding mesoid. Deduce the worst-case response time Ri of operation

τi: Ri = max{1≤k≤σi}(R
k
i ). Operation τi is schedulable if and only if Ri ≤ Ti.

10: If Ri ≤ Ti then build the sequence L
a
i = g(Lbi ), increment i, and go back to step 2 as

long as there remain potentially schedulable operations in the system.

11: If Ri > Ti, then the system {τi = (Ci,Ti)}1≤i≤n is not schedulable.
12: end for



Thanks to the above algorithm, a system {τi = (Ci,Ti)}1≤i≤n, with precedence and strict
periodicity constraints where no idle time is allowed and which takes into account the exact

number of preemptions, is schedulable if and only if Ri ≤ Ti for all i ∈ {1,2, · · · ,n}.

5 Conclusion and future work

We are interested in hard real-time systems with precedence and strict periodicity constraints

where it is mandatory to satisfy these constraints. We are also interested in preemption which

offers great advantages when seeking schedules. Since classical approaches are based on an

approximation of the cost of the preemption in WCETs, possibly leading to an incorrect

real-time execution, we proposed an approach that takes its exact cost into account. We

proposed a scheduling algorithm which counts the exact number of preemptions for a given

system and thus gives a stronger schedulability condition than those in the literature.

Currently, we are adding the latency constraints to our model and we are planning to

study the same problem when jitter is allowed on the periods of operations and then, the

complexity of our approach. Afterwards, because idle time may increase the possible sched-

ules, we also plan to allow idle time, even though this would increase the complexity of the

scheduling algorithm.

References

1. Joseph Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic, real-time tasks.

Information Processing Letters, 1980.

2. Ray Obenza and Geoff. Mendal. Guaranteeing real time performance using rma. The Embedded Systems

Conference, San Jose, CA, 1998.

3. K. Ramamritham. Allocation and scheduling of precedence-related periodic tasks. IEEE Transactions

on Parallel and Distributed Systems, 1995.

4. L. Cucu and Y. Sorel. Schedulability condition for systems with precedence and periodicity constraints

without preemption. In Proceedings of 11th Real-Time Systems Conference, RTS’03, Paris, March 2003.

5. J.H.M. Korst, E.H.L. Aarts, and J.K. Lenstra. Scheduling periodic tasks. INFORMS Journal on Com-

puting 8, 1996.

6. P. Meumeu Yomsi and Y. Sorel. Non-schedulability conditions for off-line scheduling of real-time sys-

tems subject to precedence and strict periodicity constraints. In Proceedings of 11th IEEE International

Conference on Emerging technologies and Factory Automation, ETFA’06, WIP, Prague, Czech Republic,

September 2006.

7. P. Meumeu Yomsi and Y. Sorel. Schedulability analysis with exact number of preemptions and no idle

time for real-time systems with precedence and strict periodicity constraints. In Proceedings of 15th

International Conference on Real-Time and Network Systems, RTNS’07, Nancy, France, March 2007.

8. Burns A., Tindell K., and Wellings A. Effective analysis for engineering real-time fixed priority sched-

ulers. IEEE Trans. Software Eng., 1995.

9. J. Echagüe, I. Ripoll, and A. Crespo. Hard real-time preemptively scheduling with high context switch

cost. In Proceedings of the 7th Euromicro Workshop on Real-Time Systems, 1995.

10. P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic analysis with exact cost of preemptions for

hard real-time systems. In Proceedings of 19th Euromicro Conference on Real-Time Systems, ECRTS’07,

Pisa, Italy, July 2007.

11. C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environ-

ment. Journal of the ACM, 1973.

12. J. Goossens. Scheduling of offset free systems. The Journal of Real-Time Systems, 2003.

13. J. Goossens and Devilliers R. The non-optimality of the monotonic priority assignments for hard real-

time offset free systems. Real-Time Systems, 1997.

14. M. Grenier, J. Goossens, and N. Navet. Near-optimal fixed priority preemptive scheduling of offset free

systems. 14th International Conference on Real-time and Network Systems, Poitiers, 2006.


