From Algorithm and Architecture Specifications to Automatic Generation of
Distributed Real-Time Executives: a Seamless Flow of Graphs Transformations

Thierry Grandpierre (t.grandpierre@esi ee.fr)

ESIEE Paris, Cite Descarte BP99
93162 Noisy Le Grand Cedex France

Abstract

This paper presents a seamless flow of transformations
which performs dedicated distributed executive generation
from a high level specification of a pair: algorithm, ar-
chitecture. This work is based upon graph models and
graph transformations and is part of the AAA methodol-
ogy. We present an original architecture model which al-
lows to perform accurate sequencer modeling, memory al-
location, and heterogeneous inter-processor communica-
tions for both modes shared memory and message passing.
Then we present the flow of transformations that leads to the
automatic generation of dedicated real-time distributed ex-
ecutives which are deadlock free. This transformation flow
has been implemented in a system level CAD software tool
called SynDEX.

1. Introduction

The increasing complexity of signal, image and control
processing algorithms in embedded applications, requires
high computational power to meet real-time constraints.
This power can be achieved by distributed (parallel) hard-
ware architectures which are often heterogeneous in em-
bedded systems: they are made of different types of pro-
cessors (DSP, RISC...) interconnected by different types
of communication medias (FIFO bus, shared memory...).
The real-time implementation of an application algorithm
onto such architecture is a complex task since numerous
problems (which are not necessarily independent) must be
solved:

e Distributed architectures involve the distributing (map-
ping) and scheduling of each algorithm functionnality onto
each processor. This distribution requires to add costly
(time-consuming) communication operations to the algo-
rithm in order to transfer data between operations executed
by different processors.

e The real-time constraints of the application must al-
ways be met whatever the processor load and the commu-

Y ves Sorel (yves.sorel @inriafr)
INRIA, Domaine de Voluceau BP 105
78153 Le Chesnay Cedex France

nication media load are. In these systems, as explained in
[8], communications are too often neglected although they
may tremendously decrease the actual performances of the
aforementioned applications.

e Since the target architecture is embedded, it is often
necessary to minimize its size: this is a resource allocation
optimization problem.

o Performances, which are required for real-time embed-
ded applications, are mostly obtained by mixing high level
language and low level language. In heterogeneous archi-
tecture each processor may have its own compiler and this
consequently increases the code generation complexity.

e For industrial production, development costs must al-
ways be reduced. Since the debugging of the distributed
application represents a costly part of the development cy-
cle, it should always be minimized. More generally, time-
to-market must always be decreased, the development of
applications must always be shorter, it is then important to
keep a seamless development flow in order to reuse as much
work as possible between prototyping and industrialisation,
but also to improve traceability.

In order to address these issues, we improve the AAAL
rapid prototyping methodology proposed in [13]. AAA is
based on graph theory in order to model hardware archi-
tectures, application algorithms as well as implementations
which are obtained by graph transformations. Afterwards,
for easier readability, we will use the term “algorithm” in-
stead of “application algorithm”. Algorithms are sched-
uled off-line (statically) onto the hardware architecture in
order to predict a corresponding real-time behaviour and to
build an optimized implementation by automatic code gen-
eration. Even communications are routed off-line in order
to ensure real-time response. In the case of real-time (criti-
cal) embedded applications, off-line scheduling is preferred
for two main reasons. First, it induces a very low temporal
and spatial overhead compared to resident OS (because such
OS involves in-line scheduling and then requires time and
memory for the execution of its scheduler). Secondly, the

1 Algorithm Architecture Adequation.

section 2

Architecture
graph

section 4 section 5
prediction
= \ Optimisation Vs “jmplementation
heuristic graph generation
Algorithm

compilation G Macro Sequences of
download executive
code processor macros

execution

Execution
graph

Macro-code
generation

Figure 1. AAA methodology flow and paper
organization

deterministic behaviour of a real-time application is much
easier to prove with off-line scheduling, especially if com-
munications are also scheduled off-line [1][5]. On the other
hand, off-line implementations are rarely compatible with
rapid prototyping since developers must be in charge of ev-
erything (allocation, communication usually left to the OS)
in order to implement a distributed application. Then it is
usually very costly to test different algorithms mapping on
different distributed architectures since this requires rewrit-
ing all the code. The goal of this paper is to address these
issues by combining rapid prototyping and off-line schedul-
ing. The principle is to automatically generate a distributed
dedicated executive using graph transformations of any val-
idated algorithm specification. If each transformation is cor-
rect, the generated executive is necessarily correct and no
other post-validation process is required.

The AAA methodology should help the designer to
rapidly obtain an efficient implementation (i.e. which meets
real-time constraints and minimizes the architecture size) of
these complex algorithms, and to simplify the implementa-
tion task from the specification to the final prototype.

Figure 1 shows the transformation flow of AAA as well
as the paper organization: the first two sections are dedi-
cated to our heterogeneous architecture model and to our
algorithm model. Section 4 presents our implementation
model of an algorithm onto an architecture, and presents our
optimization principles. Section 5 is dedicated to the auto-
matic executive generation from an implementation graph.
The last section presents our software tool SynDEX which
implements AAA, and some applications developed with
this tool.

2. Architecture model

In literature we find two main levels of hardware mod-
els: on the one hand there are high level models like PRAM,
DRAM, BSP...[14]. They are known to be very useful
when working on computing complexity, but they are based
on a hypothesis which intentionally neglects the details of
the underlying architecture. On the other hand, we found

®)
@ @@

processorl processorZ

® [t -RHcomt 1{S)-com2 |-Re)—{opr2 |

Figure 2. Two examples of architecture graph

very accurate low level models implemented by HDL? and
ADL3[10]. Such models are mainly used by designers of
processors, simulators and compilers but rarely by high
level programmers because of their high complexity.

In order to efficiently implement any application algo-
rithm onto any multiprocessor architecture, we need com-
parable models to specify the architecture with its available
parallelism, and the algorithm with its potential parallelism.
We can find such models in several CAD tools (Ptolemy[3],
Casch[9], Trapper[12], VCCI[15]...), but they are often im-
plicit and are also dedicated to a restricted subset of multi-
processor machines. We need an architecture model allow-
ing to specify different types of processors, accessing dif-
ferent types of memories and different types of media (each
with its own characteristics: size, bandwidth, etc.).

Here we propose an architecture model which is at
an intermediate level [7] between the two previously
mentioned. The complexity of this model is sufficient to
enable accurate optimization while it is not too fine and
then does not lead to a combinatorial explosion. Based on
graphs, this model highlights the available parallelism of
any architecture. Its accuracy enables the performing of
realistic real-time behaviour predictions of any algorithm
implementation. This model enables different types of
automatic optimizations of this implementation to be
made possible, but it also enables automatic generation of
dedicated executives.

The heterogeneous distributed architecture is specified
as an oriented graph, called architecture graph, denoted by
Gar = (V,E) where V is the set of vertices of G4, and E the
set of edges.

The set of vertices V is made up of four subsets cor-
responding to four kinds of Finite State Machines (FSM)
called operator (Vo), communicator (Vc), memory (Vv) and
Bus/Mux/Demux with or without arbiter (Vg): V =VoU
Ve UVm UV, and VoNVe NV NV = 0. Each edge sekE
represents connections between the input and the output of
FSMs, so that the hardware graph forms a network of FSMs.

There are two types of memory vertices, RAM (Random
Access Memory, Sram € Sm) and SAM (Sequential Access
Memory, Ssam € Sm):

¢ RAM memories may be used to store operations of the
algorithm graph (Cf. algorithm section 3), in this case

2Hardware Description Language.
3Achitecture Description Language.

IX Adapter, W

CEway, A/D and DA Conp

Froat Pand |0

=
[}
=
F
L
<

yabit Serial Lin

VME PZ I'D
—_—

B
4
3
a

Figure 3. Pentek 4290 Quad C6201 board

we call them RAMp (program memory). When RAM
store only data we call them RAMp (data memory). We
call them RAMpp when they store both program and
data. A RAM may be shared (i.e. connected to sev-
eral operators and/or communicators), it then may be
used for data communications. In 5.1 we will see how
we avoid problem due to concurrent access by adding
automatically synchronization operations,

e SAM memories are always shared since they are only
used to communicate data using the message passing
paradigm. In a SAM, data must be read in the same or-
der as it has been written (as FIFO), all access is then
said to be synchronized whereas in a RAM it is not
synchronized since it is possible to read data indepen-
dently of the order of the write operation. SAM may
be peer to peer or multipoint and support or not hard-
ware broadcasting. Each memory is characterised by
its size and its access bandwidth.

There are two types of sequencer vertices, operator and

Figure 4. Architecture graph of Pentek board

RAMpp) which must be connected to the operator. The
worst-case execution duration of an operation o on an
operator s, is denoted 8(0,S,). We use wort-case ex-
ecution duration because we deal with real-time ap-
plications where it is crucial to satisfy the constraints
whatever happens. This duration depends on the op-
erator and memory characteristics. An operation exe-
cuted by an operator reads input data stored in a con-
nected RAMp (or RAMpp) and produces output data
which is written in the RAMp (or RAMpp) connected
to it,

e each communicator sequentially executes communi-

cation operations stored in their connected RAMp (or
RAMpp). These operations transfer data from one
memory (SAM,RAMp, RAMpp) connected to the com-
municator into another memory connected to the same
communicator. The execution duration of a commu-
nication depends on the size of data to be transmitted
but also depends on the available bandwidth computed
from each parameters of the edge. A communicator
is equivalent to a DMA channel for which we build a
sequence of transfers (Cf. 5.3). It allows to decou-
ple computation and communication and then to take
advantage of the parallelism between computation and
communication.

communicator:

e each operator sequentially executes a finite subset
of the algorithm’s operations stored in a RAMp (or

Bus/Mux/Demux (BMD) vertices are used to model the
bus, the multiplexer and the de-multiplexer of an architec-

ture :

e when a single sequencer (operator or communicator)
requires to access more than one memory, a BMD ver-
tex must be inserted between the sequencer and each
memory,

e when a memory is shared by several sequencer ver-
tices, a BMD including an arbiter (a BMDA) must be
inserted between all sequencers and the shared mem-
ory. Its characteristics are stored in tables which enable
the computing of available bandwidth at any time. Ar-
biter are considered to have a deterministic behaviour.
If it is not the case, we will use the worst case be-
haviour again because we deal with real-time applica-
tions.

In our model, a processor corresponds to an architecture
sub-graph made of one operator and optionally one or sev-
eral communicator(s) and BMD(s). The whole architecture
model is given in [7] as well as the set of connexion rules
that enable to build a valid architecture graph.

2.1. Example of architecture graphs

Figure 2-a depicts a very simple graph representing a
mono-processor hardware architecture based on only one
processor connected to two memory banks: the unique
operator Oprl is connected to RAM vertices R1 and R2
(which store both data and operation instructions) by a
BMD vertex.

Figure 2-b represents a hardware architecture based on
two processors communicating by a serial link. The two
operators Oprl and Opr2 are connected by two RAMpp
(R1,R2) to their communicators (Com1,Com2) that respec-
tively share a uniqgue SAM memory (S). For example, an
operation executed by Oprl reads its data from R1, pro-
duces and writes a data into R1. Then a pair of communica-
tion operations executed on Com1 and Com2 cooperates to
write this data into R2. Finally an operation B executed on
Opr2 is able to read this data in order to use it in turn.

Figure 3 shows the architecture diagram of a PEN-
TEK 4290 Quad C6201 board* based on four Texas In-
strument DSP (TMS320C6211). Figure 4 represents the
corresponding architecture graph of this board. Each
DSP is able to access three types of local memories (SB-
SRAM,SDRAM,DPRAM) modeled by three memory ver-
tices (Rss,Rsp,Rpp). Each DSP is able to communicate
data to two neighbors through two BI-FIFO modeled by
Spififo Vertices. Each empty circle represents a BMDA ver-
tex. This board has been used to implement real-time image
processing applications with AAA/SynDEX.

“www.pentek.com

MagicFPU

Figure 5. Architecture graph of Mephisto SoC

A @ D
(sensor) @ (actuator)

Figure 6. Basic example of an algorithm graph

Figure 5 shows the architecture graph of the System on
Chip “Mephisto” made by Thales. This SoC [2] is based on
a SIMD processor (Oprl), a DSP processor (Opr2) and an
ARM?7 core cpu (Opr3). Each pair of communicator shares
a SAM (S1,S2,S3,54) or a RAM (RO,R2,R3) in order to
communicate. Each operator is connected to its own mem-
ory (R1,R4,R5).

3. Algorithm Model

An algorithm is a finite sequence (total order) of opera-
tions directly executable by a FSM. If we want to use effi-
ciently a multiprocessor architecture, composed of several
FSM giving some available parallelism, algorithms should
be specified with at least as much potential parallelism as
the available parallelism of the architecture. Notice that it is
always preferable to specify the algorithm with much more
potential parallelism than available parallelism in order to
take advantage of possible choices. Moreover, since we
want to be able to compare the implementation of an algo-
rithm onto different architectures, the algorithm graph must
be specified independently of any architecture graph. Thus,
we extend the notion of algorithm to an oriented hyper-
graph Gy of operations (graph vertices O), whose execu-
tion is partially ordered by their data-dependences (oriented
graph edges D so that D C O x P(0),Gg4 = (O,D)).

This data-dependence graph, also called directed acyclic
graph (DAG), exhibits a potential parallelism: two opera-
tions which are not in data-dependence relation, may be
executed in any order by the same operator or simultane-
ously by two different operators. We need a hyper-graph
model (an example is given in figure 6) because each data-
dependence may have several extremities but only one ori-

processorl processor2

[Opr1 FComl }—@—%{Comz Opr2 |

a) Distribution: partitionning & communication vertices
i

allocl
IR1 B

a TR
/R1 /Rl (B)
@

Figure 7. Implementation graph example

gin (Cf. figure 6: diffusion of data from A to B and C).
Notice that in this case the transmitted data is of the same
type for each extremity of the hyper-edge but you can have
different edges carrying different types of data. In order
to specify loops (f or i =x to y) and conditioned oper-
ations (i f, t hen, el se) we extended in [4, 7] the typical
DAG model by adding repetition (f ork, join, iter-
ate, diffuse)verticesand conditioning edges.

4. Implementation M odel

Given a pair of algorithm and architecture graphs, we
transform the algorithm graph according to the architecture
graph in order to obtain an implementation graph. This
transformation corresponds to a distribution and a schedul-
ing of the algorithm graph.

4.1. Distribution

The distribution, also called partitioning or placement, is
modeled by the relation dist applied to a pair of algorithm
and architecture graphs. This produces a distributed algo-
rithm graph G, such that : (Ga,Gar) d, (Ga)'(.). Distri-
bution is obtained in three main steps:

1. spatial allocation of the operations onto the operators,
leading to inter-operator edges (data-dependence be-
tween two operations belonging to two different oper-
ators),

2. each of these edges is replaced by a linear sub-graph
(sequence of edges and vertices) that will be detailed
in 4.3. We will see that this sub-graph includes com-
munication operationsallocated to communicators,

3. for each operation allocated to an operator, we will see
in 4.3 that new “memory allocation vertices” are added
and allocated to one of the RAM memories connected
to the operator.

4.2. Scheduling

The scheduling is modeled by the relation sched ap-

plied to a pair (G;,Gar) so that (G};,Gar) xhe (G-

For each operator (resp. communicator) the scheduling is
a temporal allocation of the operations (resp. communica-
tion operations) allocated to this sequencer. This amounts to
the adding of “precedence without communication edges”
(ep € Ep) in order to transform the partial order associated
to the operations allocated to an operator (resp. commu-
nication operations allocated to a communicator). This is
necessary because operators (resp. communicators), which
are FSM, require an execution order between the operations
(resp. communication operations) allocated to them. This
order must be compatible with the precedences required by
the data-dependences. Then, if operations executed by a
same sequencer are not directly or transitively ordered, this
execution order is specified by adding precedence edges ep
between them. Valid implementation graphs are obtained
using the following rules, afterwards we will see how to
build optimised implementation graphs.

4.3. Distribution and scheduling rules

In order to execute an operation (resp. a communicat-
ing operation), an operator (resp. a communicator) needs
to read all of the instructions in its connected RAMp: we
model this by adding an allocation vertex in the algorithm
graph. Such vertex, denoted allocp € Vaoc, is associated
to RAMp and connected to the operation by a non-oriented
edge. If the operation requires some local variables to per-
form computation, we add a second allocation vertex de-
noted allocj € Vajioq,, associated to one RAMp connected
to the operation’s operator.

The execution of each operation by an operator consists
in reading the operation’s input data from one of the opera-
tor memories (RAMp, RAMpp), then in combining them to
compute the output data, which is finally written into one
memory connected to the operator. Therefore, when two

processorl,

‘{Coml —@%Comz F Opr2 \

—
send BD rev BD
send CD rcv CD
time! [D j

Figure 8. Temporal representation of imple-
mentation graph of figure 7 (without alloca-
tion vertices)

operations in data-dependence (edge of algorithm graph)
are executed by the same operator, the operation producing
the data must be executed in sequence before the operation
consuming the data. We model the allocation into one of
the connected memories by adding an allocation vertex to
the algorithm graph. This vertex, denoted allocp € Vajjocy
must be associated to the allocated memory.

These three types of allocation vertex are connected to
their producing and consuming operations by non-oriented
hyper-edges ea10c € Ea. As explained hereafter, such allo-
cation vertices will be used in order to predict and minimize
memory allocation as well as the duration of the execution
of operations.

When two data-dependent operations are executed by
two different operators, the data must be transfered, from
the RAM memory of the operator executing the producing
operation (after its execution), into the RAM memory of the
operator executing the consuming operation (before its exe-
cution). Such a data-dependence is called an inter-operator
data-dependence. In order to support it, a route (path in the
architecture graph) must be chosen between the two mem-
ories connected to the operators. For each communicator
(resp. BMD) composing this route, a communication op-
eration® o € V¢ (resp. identity vertex o; € V;) must be in-
serted into the algorithm graph. For each memory between
the producing and the consuming operations an allocation
vertex allocp is also added.

Finally, from a pair of algorithm and architecture graphs
we get the set of the possible implementation by the com-

position of the two previous relations: (G, Gar) dist 0 sghed
(ng)() where G, = (OUVa“OCp UVaJIoc|oUVaJIocD uVeu
Vi,DUER). The partial order of the algorithm graph G
has been transformed in a total order (thanks to the added
precedence edges Ea) on each partition element but the or-
der is globally partial (parallelism). In [7] we proved that
by construction the total order of G, includes the partial
order of G : this ensures the correct execution order of the
application.

Figure 7 shows a simple implementation example of the

5send and receive for a pair of communicators connected to a SAM,
read and write for a pair of communicators connected to a RAM.

programim. local — communicated
area vgrrleaable data area

Figure 9. Temporal representation of the
memory map of RAM R1

algorithm graph presented in figure 6 onto the architecture®
presented in figure 2-b. Such an implementation graph is
automatically (and quickly) generated from the results of
the optimization heuristic given in the next section. In this
example we want A, B and C to be executed by Opr1 and D
executed by Opr2. Consequently two pairs of communica-
tion operations (sendgp, receivegp and sendcp, receivecp)
must be inserted and associated to com1 and com2 in order
to realize data transfers on the shared SAM S (7-a). Alloca-
tion vertices (allocag, allocgp, allocac .. .) have also been
added in order to model all required memory allocations (7-
b). Since operations B and C, which are not dependent, are
allocated to the same operator, they may be executed in par-
allel if allocated to different operators because there is no
data-dependence edge between them: an order of execution
must be chosen between them?’. Thus, we add a dependence
edge between B and C and symmetrically between the com-
munication operations (bold arrows of figure 7-c).

4.4. Optimization of the implementation

When several operators are able to execute an opera-
tion, one of them must be chosen in order to execute it.
Consequently, for a given pair of algorithm and architec-
ture graphs, there is a large but finite number of possible
implementations, among which we need to select the most
efficient one, i.e. one which satisfies real-time constraints
and uses the least possible architecture resources. This op-
timization problem, as most resource allocation problems is
known to be NP-hard, and its size is usually huge for re-
alistic applications. This is why we need to use heuristics.
The one we chose is based on a fast and efficient greedy
list scheduling algorithm, with a cost function based on the
“critical path” and the “schedule flexibility” of the imple-
mentation graph: it takes into account the execution dura-

6Since space is lacking, it is not possible to illustrate an implementation
on a more complex architecture (such as the four DSP presented in figure
2-c). The one we chose here (figure 2-b) is sufficient and will be used to
illustrate all transformations (including code generation).

“Notice that in this example, for pedagogical reason, we do not take
advantage of the potential parallelism between operation B and C.

processorl processorl
Oprl }“{Coml = Oprl }»—{Coml —
(Suc_empty)

[e
' w]d BD
X pre_empty’

Figure 10. Principle of synchronisation

time

tions of operations and of communications and the size and
bandwidth of each memory. Durations are obtained by a
preliminary step of characterisation. Describing this heuris-
tic is not the purpose of this paper which rather focus on
the implementation flow. The interested reader can refer to
[8] which gives the main principles of the heuristic but does
not take into account arbiter and memory vertices describe
here. The complete heuristic is given in [7].

4.5. Performance prediction

Figure 8 is a temporal representation graph of the imple-
mentation graph given in figure 7. It is drawn by taking into
account operations and communications durations. Verti-
cal length of each box is proportional to its execution du-
ration. This temporal graph is displayed after our heuristic
is performed. Such a graph is useful for the designer who
wants to study real-time behaviour and to verify real-time
constraints.

Moreover, we build a memory allocation diagram. Such
a diagram enables the designer to predict the memory space
required to store and execute the whole application. Fig-
ure 9 is a temporal memory allocation diagram of RAM R1
of figure 8 (memory map). This information is used by our
heuristic in order to make off-line memory re-allocation, en-
abling to safely and deterministically save memory space.
The horizontal size of each allocation vertex is proportional
to the allocated size used in memory. The vertical size cor-
responds to the allocation duration.

For usual applications, made of algorithm graphs of
about 300 vertices and architecture graphs of 10 vertices,
it takes less than one minute to compute the optimized im-
plementation graph.

5. Executive Generation

For each processor the executive is the part of the code
which supports the execution of the application. We assume
that the user provides the code associated to the operations
used to specify the algorithm. Executive provides services
such as memory allocation, inter-processor communication
and synchronization, and operations scheduling, all deter-
mined off-line in our approach. In our approach we do

not require any resident real-time executive since we gen-
erate all the necessary services from a generic library that
we provide, and which is small enough to be easily trans-
lated to support different processors as explain later. The
executives that we will be automatically generated are said
to be dedicated because they are perfectly tailored for each
real-time embedded application. Since no real-time operat-
ing system (RTOS) is required, we can guarantee the deter-
ministic behaviour of our real-time execution. All off-line
optimizations which have been made by the distribution and
scheduling heuristic are then necessarily implemented effi-
ciently.

Executive generation corresponds to the final graph
transformation of our methodology. This generation is per-
formed following four steps [7]: (1) transformation of the
optimized implementation graph into an executive graph,
(2) transformation of the executive graph into as many se-
quences of macro-executive as there are of processors, (3)
transformation of each sequence of macro-executive into a
source file, (4) compilation, downloading and execution of
each source file.

5.1. From implementation graph to execution graph

This transformation is modeled by the relation exec:
(GY,Gar) =5 (G!)(.). It consists in adding new types
of vertex: Loop, EndL oop, pre-full/suc-full, pre-empty/suc-
empty vertices. This is done in two steps:

1. since we deal with reactive applications (i.e. applica-
tions in constant interaction with the environment that
they control) we need to make the sequence of opera-
tions allocated to each operator repetitive: in each op-
erator partition we add and connect a Loop vertex be-
fore the first operation and a EndLoop vertex after the
last operation (Cf. figure 11),

2. since operator and communicator are independent se-
quencers, it is necessary to synchronize the execu-
tion of data dependent operations executed by differ-
ent operators and/or communicators, i.e. this corre-
sponds to the implementation of inter-partition edges,
drawn with bold arrows on figure 10 and 8. In or-
der to realize these synchronisations we replace each
inter-partition edge by a linear sub-graph made of an
edge connected to a pre-ful | vertex which is it-
self connected to a suc-ful | vertex (right part of
figure 10). The pre-ful |l (resp. suc-full ver-
tex is allocated to the same partition as the produc-
ing (resp. consuming) operation. Pre-full and
suc-ful | vertices model the operations which are
able to read-modify-write a binary semaphore. This
semaphore is allocated into the memory shared by the
sequencers of the producing and consuming operations

which must be synchronized. If suc-ful | (which
precedes the consuming operation) is executed before
the connected pr e- f ul | (which follows the produc-
ing operation) then the suc- f ul | waits until the end
of the pre-ful | execution. This ensures a correct
execution order. If pre-ful | is executed before the
corresponding suc- f ul | it just changes the state of
the semaphore without waiting: the operation follow-
ing pre-f ul | is executed in sequence. We also need
to avoid a producing operation overwrites the content
of a buffer which has not yet been sent: then we in-
serted a pair of pr e- enpt y/ suc- enpt y vertices.
Pr e- enpt y isinserted after the consuming operation
while suc- enpty is inserted before the producing
operation. Notice that synchronisation transformations
are not required if the sequencers share a SAM since
this type of memory ensures a write-read synchronisa-
tion in hardware.

Synchronizations operations are fundamental in dis-
tributed systems since they guarantee that each data-
dependence of the algorithm graph is implemented cor-
rectly. They guarantee that all buffers are always accessed
in the order specified by the data-dependences in a way that
this order is satisfied at runtime independently of the execu-
tion durations of the operations. Therefore the implementa-
tion optimization, even if it may be biased by inaccurate ar-
chitecture characteristics, is safe in the sense that it cannot
induce runtime synchronization errors (such as deadlocks,
or lost data). This certitude allows big savings in applica-
tion coding and at debugging times. Such synchronizations
are often hand-written in usual design: deadlocks may then
occur if the designer misses one of them or does not write
them in the the correct order.

Finally, since synchronizations operations are added in
order to guarantee the partial execution order specified in
the initial algorithm graph, and because the implementation
of our synchronization reflects exactly our models, we do
not have to consider any run-time overhead (as consensus
waiting problem) induced by synchronization.

Figure 11 depicts a complete example of the execution
graph obtained after the transformation of the implementa-
tion graph drawn in figure 8. Loop/ EndLoop vertices has
been added on Oprl,Com1,Com2 and Opr2 operations. In
order to lighten the graph allocation vertices are not drawn.

5.2. From execution graph to macro-executives

Once the executive graph has been built, we transform
the sub-graph allocated to each operator (processor) of the
architecture graph into a sequence of macro-instructions.
The use of a macro code enables to mix easily different
programming languages (C, asm, Fortran, SystemC...) that
can be found in heterogeneous architecture.

processorl processor2

3C0m2 F{Oprz \
Suc_em

rcv BD

re_full >\

Suc_empty

rcv CD
re_ full)- === (8

I i
v i} ‘
time (EndLoop (EndLoop (_vﬂ)EndLou

Figure 11. Execution graph after transforma-
tion of implementation graph of figure 8

The structure of a macro-executive sequence of an oper-
ator opr is sequentially composed of 3 sections:

e a list of macros allocating memory buffers (lines 2-
5 of fig.12): for each allocation vertex allocated to
each RAM connected to opr we generate an al -
| oc(nane, type, si ze) macro. Where nane is
name of the operation producing the data, t ype the
data format and si ze the number of data,

e as many communication sequences (lines 6 to 14) as
existing communicators connected to opr (only one
communicator is connected to each operator in our ex-
ample). This sequence is generated between a pair of
comt hread_, end_t hread_ macros. Such a se-
quence is built by exploration of the sequence of to-
tally ordered vertices allocated to the communicator
partition. For each vertex of the sequence we gen-
erate a corresponding macro (send_, receive,
read_,wite,, pre-enpty...). The argu-
ments of these macros are computed from the edges
connected to their corresponding vertices,

e a unique computation sequence (line 16 to 29). This
sequence is generated between a pair of nain_
end_mai n_ macros. Such a sequence is also built
by exploration of the sequence of totally ordered
vertices allocated to the operator partition. The
spawn_(coml) macros (line 17) has to run the com-
munication thread com1. This thread is executed under
DMA interrupt (end of transfers interrupt) of the main
computation thread which have a lower priority in or-
der to be able to be interrupted. In the computation se-
quence suc macros are implemented by “active wait-
ing” (polling) while in the communication sequences
they are implemented by “passive waiting”.

In order to generate an implementation code whose par-
tial order is identical to the implementation graph, it is im-

1 processor _(Processorl) ; file of proc. 1

2 alloc_(alloc_AC int, 1) ; buffer allocation to transfer
3: alloc_(alloc_AB,int, 1) ; data between operations

4: alloc_(alloc_BD,int, 1) ; alloc_(nane, type, size)

5: alloc_(alloc_CD,int, 1)

6 com t hread_(cont)

7 Loop_()

8

; Conmuni cati on sequence

: suc_(BD full) ; wait shared buffer BD writed
9: send_(al l oc_BD, conR); send shared buffer BD to con®

10: pre_(BD_enpty) ; tell shared buffer is now free

11: suc_(CD full)

12: send_(al | oc_CD, con®)

13: pre_(CD_enpty)

14: EndLoop_()

15: end_thread_(coml) ; End of conm sequence

16: main_ ; Begining of conputing sequence

17: Spawn_(cont) ; Run the thread of communication

18: Loop_()

19: A (alloc_AB, alloc_AC) ;sensor operation store data in

20: ;buffers alloc_AB and buffer alloc_AC

21: suc_(BD_enpty) ;wait until buf.BDis enpty (not on 1st tinme)
22: B (alloc_AB, alloc_BD) ;conputing opn read fromAB, result in BD
23: pre_(BD full) ;tell buffer BDis wited, allows conm sequence
24: ;to exec. send BD

25: suc_(CD_enpty)

26: C (all oc_AC, al | oc_CD)

27: pre_(CD full)

28: EndLoop_()

29: end_mai n_ ; End conputing sequence

30: end_processor _

Figure 12. Macro code from graph of figure 8

portant to remind that the translation/print process follows
the exact order given by intra-sequencer vertices.

5.3. From macro-executives to source code

Each sequence of macro-instruction is translated by a
macro-processor (we use gnu-M4) into a source code writ-
ten in the best suited compilable language for each target
operator. A macro is translated either into a sequence of
in-lined instructions, or into a call to a separately compiled
function. These macros are classified into two sets corre-
sponding to two kind of libraries. The first one is a fixed set
of system macros, which support code downloading, mem-
ory management, sequence control, inter-sequence syn-
chronization, inter-operator transfers, and runtime timing
(in order to characterise algorithm operations and to pro-
file the application). The second one is an extensible set of
application dedicated macros, which support the algorithm
operations.

Once the executive libraries have been developed for
each type of processor, it takes only few seconds to au-
tomatically generate, compile and download the deadlock
free code for each target processor of the architecture. It is
then easy to experiment different architectures with various
interconnection schemes.

Figure 12 is a simplified example of code generation ob-
tained by transformation of the execution graph given in fig-
ure 11. This example will focus on processor 1 (the code of
processor 2 is generated symmetrically):

e generation of al | oc_ macro (line 2-5) for each each
allocation vertex associated to RAM R1 of figure 7 (the
reader must remember that for readability allocation
vertex are not drawn on figure 11) ,

e the unique communicator sequence is generated
between a pair of comthread_(coml) and
end_t hr ead_(con®) macros. Then we build the
contents of the communication sequence (line 6 to
14) of the communicator coml of figure 12. Each
communication vertex scheduled on coml is trans-
lated into a send_ (line 9) or a r ecei ve_ macro,
each synchronization vertex is translated into the cor-
responding macros pre-enpty/full _and suc-
enpty/ full _in order to synchronize the commu-
nication sequence with the operator sequence (pair of
macro on line 10/21, 23/8, 13/25, 27/11 synchronize
locally the operator sequence with the communication
sequence),

e the unique operator sequence is generated between a
pair of mai n_and end_rmai n_macros (line 16 to 29):
each operation vertex is translated into a macro with
the same name (A, B and C for oprl, line 19, 22 and
26) taking the allocation vertex name as an argument.

Theses files are then translated into the language of
the target processor by the m4 macroprocessor with the
help of a generic processor specific library (contain-
ing the definitions of each “system” macro, and the
application library). For example, if the compiler of
the target processor accept the C language, the transla-
tion of a all oc_(all oc AC,int, 1) macro will be
int alloc AC,. The translation of a send_ macro
may be DVMA_send_(al | oc BD, si zeof (al | oc_BD),
conR) with com2 the address of a media writable by a
DMA channel of the processor. The implementation of
synchronization macros are often coded in assembly lan-
guage since performance and context switching minimiza-
tion between communications and computation sequence
are required, i.e. context switches only occur between the
communication sequences (which are composed of system
macros only) and the computation sequence, then only few
registers need to be saved and restored. The size of the cur-
rent C executive library for DSP TMS320C6211 from Texas
Instrument is 23Ko of source code, the size of the executive
library dedicated to the DMA/FIFO communications of the
Pentek4290 board is less than 10ko of source code. It is not
a complex task to support a new architecture since skeleton
of each library may be identical.

Finally, since the execution order of the generated code
is coherent with the partial order of the algorithm graph, this
ensures a correct real-time execution.

6. Related Work

The whole methodology is implemented in the system
level CAD software SynDEx®[8]. lts graphical user inter-

8http://www-rocg.inria.fr/syndex

face enables the user to specify both the algorithm and the
architecture graphs, to execute the aforementioned heuristic
and then to display the resulting distribution and scheduling
on a timing diagram. When the user is satisfied by the pre-
dicted timing, SynDEXx can automatically generate the dead-
lock free executive for the real-time execution of the algo-
rithm onto the multiprocessor. Real-time distributed execu-
tive libraries have been developed for networks based on
DSPs (TMS320C6x, TMS320C40, ADSP21060), micro-
controllers (MPC555, i87C196KC, MC68332), and general
purpose processors (PC and UNIX workstations). SynDEX
has been used to develop several real-time heterogeneous
applications, among which [11]: a semi-autonomous ur-
ban electric vehicle (controlled by five Motorola PowerPC
MPC555 micro-controllers and a CAN bus), image process-
ing application on multi-DSP [6], digital signal processing
on a System On a Chip [2].

7. Conclusion

As it has been mentioned in section 3 our algorithm
model supports more complex specification with loops and
conditioned operations which has not been detailed in this
paper since this does not modify the transformation flow.

The implementation task, from the high level specifi-
cation to the code execution, has been expressed in terms
of graph transformations and lead to a seamless develop-
ment flow which improves traceability and which can be au-
tomatized. Thanks to these transformations, the partial or-
der given by the automatic executive generation is coherent
with the algorithm partial order, this guarantees a deadlock
free distributed execution. Thanks to our implementation
model, and although the algorithm graph is a unique assig-
nation model, off-line memory re-allocation is achievable
and enables memory optimizations. Thanks to our architec-
ture model, it is possible to cover a large amount of archi-
tectures based on various memory and communication net-
works. Thanks to the chosen level, this model enables the
accurate performing of behaviour prediction. It is then well
suited for resources optimization. Communications, which
are crucial in real-time embedded application, are carefully
taken into account during optimization and executive gener-
ation. Finally, these models and transformations rules make
possible the generating of off-line optimized distributed ex-
ecutives even for the rapid prototyping step.

Efforts are now made in order to specify and implement
an equivalent seamless transformation flow in order to sup-
port architectures based on reconfigurable circuit [4].

References

[1] Behrooz A. Shirazi, A. Hurson, and Krishna M. Kavi.
Scheduling and load balancing in parallel and distributed

system. IEEE Computer Society Press, 1995.

[2] M. Barreteau, P. Bonnot, T. Grandpierre, P. Kajfasz,
C. Lavarenne, J. Mattioli, and Y. Sorel. Prompt : A mapping
environment for telecom applications on soc. In CASE2000,
Int. Conf. on Compilers, Architecture and Synthesis for Em-
bedded Systems, San Jose, USA, nov. 2000.

[3] J.T. Buck, S. Ha, E.A. Lee, and D. G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping het-
erogeneous systems. In Int. Journal of Computer Simula-
tion, special issue on “Simulation Software Development,
volume 4, pages 155-182, April 1994.

[4] A. Dias, C. Lavarenne, M. AKkil, and Y.Sorel. Optimized
implementation of real-time image processing algorithms on
field programmable gate arrays. In ICSP’98 4’th Int. Conf.
on Signal Processing, Beijing,, 1998.

[5] R.Ernst. Codesign of embedded systems: Status and trends.
IEEE Design and Test of Computers, pages 45-53, April-
June 1998.

[6] V. Fresse, M. Assouil, and O. Desforges. Rapid prototyp-
ing for mixed architectures. In proc. of IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, Istanbul, Turkey,
Jun. 5-9 2000.

[7] T. Grandpierre. Modele d’architecture parallele heterogene
pour la generation automatique d’executif temps reel opti-
mise. PhD thesis, Univ. Paris XI - Orsay, 2000.

[8] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid
prototyping for real time embedded heterogeneous multipro-
cessors. In proc. of IEEE CODES’99 7th Int. Workshop on
Hardware/Software Co-Design, Rome, May 1999.

[9] VY. K. Kwok, I. Ahmad, M. Y. Wu, and W. Shu. A graphical
tool for automatic parallelization and scheduling of programs
on multiprocessors. In Europar, pages 36-43, Octobre 1997.

[10] P. Mishra, P. Grun, N. Dutt, and A. Nicolau. Processor-
memory co-exploration driven by a memory-aware architec-
ture description language. In 14th International Conference
on VLSI Design (VLSI Design 2001), Jan. 2001.

[11] W. Mooncheol, T.Grandpierre, G. Fleutot, and Michel Par-
ent. A joystick driving algorithm with a collision stop feature
on an electric vehicle (cycab). In IEEE 1V’2002 Intelligent
Vehicle Symp., 2002.

[12] L. Schfers and C. Scheidler. Trapper: A graphical program-
ming environment for embedded MIMD computers. In S.C.
Hilton M.R. Jane R. Grebe, J. Hektor and P.H. Welch, edi-
tors, Transputer Applications and Systems’93, pages 1023—
1034. Proc. of 1993 World Transputer Congress, 10S Press,
1993.

[13] Y. Sorel. Massively parallel computing systems with
real time constraints, the algorithm architecture adequation
methodology. In Proc. of the Massively Parallel Computing
Systems, May 1994.

[14] A. Tiskin. The bulk synchronous parallel random access ma-
chine. In Proc. of EURO-PAR’96, volume 2, pages 327-338,
August 1996.

[15] Virtual component co-design. http://www.cadence.com.

