
Preemptive Multiprocessor Real-Time
Scheduling with Exact Preemption Cost

Falou Ndoye and Yves Sorel
INRIA Paris-Rocquencourt,

Domaine de Voluceau BP 105, 78153 Le Chesnay Cedex - France
falou.ndoye@inria.fr, yves.sorel@inria.fr

Abstract—We propose a greedy heuristic to solve the
real-time scheduling problem of periodic preemptive tasks
on a multiprocessor architecture while taking into account
the exact preemption cost. In the framework of partitioned
scheduling, this is achieved by combining an allocation
heuristic whose cost function minimizes the makespan, and
a schedulability condition based on the ⊕ operation which
takes into account the exact preemption cost.

I. INTRODUCTION

For computation power and modularity issues, mul-
tiprocessor architectures are necessary to tackle com-
plex applications found in domains such that avion-
ics, automotives, mobile robotics, etc. Some of these
applications are safety critical, leading to hard real-
time task systems whose constraints must be necessarily
satisfied in order to avoid catastrophic consequences.
Although preemptive real-time scheduling allows a better
success ratio than non preemptive real-time scheduling,
preemption has a cost. That cost is usually approximated
in the WCET (Worst Case Execution Time) as assumed,
explicitely, by Liu and Layland in their pioneer article
[1]. However, such approximation is dangerous in safety
critical context since an application may miss some
deadlines during its real-time execution even though
schedulability conditions were satisfied. In oder to tackle
the problem A. Burns and al. in [2] presented an analysis
that enables the global cost due to preemptions to be fac-
tored into the standard equations for calculating the worst
case response time of any task, but they achieved that by
considering the maximum number of preemptions. Other
works aim at bounding the number of preemptions [3],
[4]. In both cases the exact number of preemptions is
not considered leading to waste resources in time and
memory. However, that exact number of preemptions is
difficult to determine since it may vary according to
every instance of a task whereas it is not difficult to
determine the constant cost of every preemption which
includes the context switch necessary to make possible

the preemption and the choice of the task with the
highest priority. It is the reasons why it is necessary to
take care of the the exact preemption cost. In this paper
we address all together the previous issues.

The remainder of the paper is organized as follows:
section II presents the related work on multiprocessor
real-time scheduling and preemption cost, in section III
we describe the model and the schedulability analysis
used, section IV presents the proposed heuristic. Finaly
the section V concludes and gives some directions for
future work.

II. RELATED WORK

A. State of works in multiprocessor scheduling

The scheduling of real-time tasks on multiprocessor
architectures can be achieved according to three main
approaches: partitioned scheduling, global scheduling,
and semi-patitioned scheduling.

In the partitioned scheduling approach [5], [6] the set
of tasks is divided into a number of disjoint subsets
less than the number of processors in the multiprocessor
architecture, and each of these subsets is allocated to
one processor. All the instances (or jobs) of a task are
executed on the same processor and no migration is
permitted. In this approach it is necessary to choose
a scheduling algorithm for every processor, possibly
the same algorithm, and also an allocation algorithm.
On the other hand, the allocation problem has been
demonstrated NP-Hard [7]. This complexity is the main
drawback of the partitioned scheduling approach.

There exist two classes of methods to solve alloca-
tion problems and more generally NP-Hard problems:
the exact methods [8], [9] which examine all possible
solutions and give the optimal solution (the best solu-
tion according to given criteria) but they have a very
large execution time, and the approximate methods [9]
which give the solutions very quickly compared to the
exact methods but these solutions are only near optimal.



For the approximate methods we distinguish heuristics
and metaheuristics [9], [10]. Metaheuristics are methods
inspired from domains such that biology, chemistry, arti-
ficial intelligence, etc. They give near optimal solutions
but they have an execution time larger than the heuristics.
The heuristics methods are inspired from the considered
domain, here the real-time scheduling, but the solutions
produced are generally less close to the optimal than
those obtained with metaheuristics. Since the allocation
problem is NP-Hard heuristics are considered to be
the best suited solutions when the execution time is
crucial as in the rapid prototype phase of the design
process. Davari and Dhall were the first to propose
in [11] two preemptive scheduling algorithms RM-FF
(Rate Monotinic First Fit) and RM-NF (Rate Monotinic
Next Fit) to solve the fixed priority multiprocessor real-
time scheduling problem. In the proposed algorithm, the
uniprocessor RM algorithm [1] is used to verify if a task
is schedulable on a processor, and respectively first-fit
and next-fit bin-packing heuristics are used to achieve the
allocation to the different processors. In both allocation
heuristics the tasks are sorted in decreasing order of
their periods before the allocation started. With RM-NF
tasks are allocated to a processor, called curent processor,
until the RM schedulability condition is violated. In this
case the current processor is marked ”full” and a new
processor is selected. RM-FF tries to allocate, first, a
task to the marked processor before allocating it to a
new processor. In [10] a greedy heuristic is proposed to
solve the problem of allocating tasks on a multiproces-
sor architecture while reducing the makespan, but the
scheduling algorithm is non preemptive.

In the global scheduling approach [5], [6] a unique
scheduling algorithm is applied globally for every pro-
cessor of the multiprocessor architecture. All the ready
tasks are in a unique queue shared by all the processors.
In this queue the m tasks with the highest priorities are
selected to be executed on the m available processors.
Besides preemptions, task migrations are permitted. The
advantage of the global scheduling approach, is that it
allows a better use of the processors. The main drawback
of the global scheduling approach, is that each migration
has a prohibitive cost.

In the semi-partitioned scheduling approach [12], [13],
derivated from the partitioned scheduling approach, each
task is allocated to a specific processor as long as the
the total utilization of the processor does not exceed its
schedulable bound. In this approach some tasks can be
portioned for their executions among multiple proces-
sors. During run-time scheduling, a portioned task is per-
mitted to migrate among the allocated processors, while

the partioned tasks are executed on specific processors
without any migration. The semi-partitioned scheduling
approach allows a reduction of the number of migrations.
However, be aware that migrations have a prohibitive
cost.

B. Our choices

The migrations cost in the global and semi-partition
scheduling approaches lead us to choose the partitioned
scheduling. Moreover, since the partitioned sheduling
transforms the multiprocessor scheduling problem in
several uniprocessor scheduling problems we can take
advantage of the numerous research results obtained for
the uniprocessor scheduling problem. Because we aim at
rapid protyping we propose an allocation heuristic rather
than metaheuristic or exact methods, and a schedulability
test to verify if a task is schedulable on a specific proces-
sor. Bin-packing heuristics try to reduce the number of
processors involving an increase of the makespan, i.e. the
global response time of tasks on all the processors. On
the other hand, multiprocessor architectures used in the
industrial applications, we are interested in, have a fixed
number of processors. This number of processors may
be minimized later on but this is not the primary goal.
That is the reason why we propose a greedy heuristic
similar to the heuristic given in [10]. This heuristic
allocates the tasks on the processors and, in addition,
minimizes the makespan. This latter optimization is
important when feedback control is intended, like in
avionics, automotives, mobile robotics applications, etc.

Although preemptive scheduling algorithms are able
to successfully schedule some task systems that cannot
be scheduled by non preemptive scheduling algorithms,
the preemption has a cost. Indeed, Liu and Layland in
[1] assume that the preemption cost is approximated
in the WCET. Thus, there are two possible cases: the
approximation in time and memory space is high enough
and thus leads to wasting, the approximation is low and
thus a task system declared schedulable by, let say RM,
may miss some deadlines during its real-time execution.
Consequently, we propose to use the ⊕ operation [14],
[15]. It is an algebraic operation that verifies either two
tasks are schedulable, or not, taking into account the
exact preemption cost.

III. MODEL AND SCHEDULABILITY ANALYSIS

Let Γn = {τ1, τ2, · · · , τn} be a system of n peri-
odic real-time tasks where τi = (r1i , Ci, Di, Ti) and
Ci ≤ Di ≤ Ti. Based on the typical characteristics of
a periodic task, r1i is the date of first activation, Ci is
the WCET without any approximation of the preemption



cost [15], Di the relative deadline, and Ti is the period
of τi. We want to schedule the system of tasks Γn on m
identical processors 1.

We use the scheduling operation ⊕ [15] to verify
either a task is schedulable, or not, on a processor. This
operation applied to a pair of tasks (x, y), such that x
has the highest priority, gives as result a task r, that is
r = x ⊕ y. As mentioned before, ⊕ takes into account
the exact preemption cost suffered by the task y. Here is
briefly the principle of that operation which is explained
in details in [15]. It consists in replacing the available
time units of the highest priority task x with the time
units of the lowest priority task y. In order to do that,
both tasks are initially referenced to the same time origin.
Then, task x is rewritten according to the number of
instances of task y in the LCM (Least Common Multiple)
of both task periods. That latter operation allows the
identification of the available time units in task x, but
also the verifcation that task y does not miss its deadlines
for each instance. Since task y can be preempted by task
x the exact number of preemptions is counted for each
instance of y. For each instance of y, using a "fixed point
algorithm", the preemption cost is added to the WCET,
without any approximation, in order to obtain the PET
(Preemption Execution Time). If the amount of PET unit
of times fits in the available time units in task x the task
y is schedulable giving as result task r, otherwise it is
not schedulable. Since ⊕ is an internal operation, i.e. the
result given by ⊕ is also a task, that result may be in turn
used as the highest priority task in another ⊕ operation.
Thanks to this property it is possible to consider more
than two tasks.

IV. HEURISTIC

The heuristic presented in Algorithm 1 is a greedy
heuristic. The solution is built step by step. In each
step a decision is taken and this decision is never
questioned during the following steps (no bactracking).
The effectiveness of such greedy heuristic is based on
the choice of the decision to built a new element of the
solution. In our case the decision is taken according to a
cost function which aims at minimizing the makespan.

A. Cost function for allocation

The cost function allows the selection of the best
processor pj to schedule a task τi. In our case this
cost funtion is defined for a processor pj and a task
τi to be the response time on pj after the scheduling
of τi taking into account the exact preemption cost.

1All the processors have the same computation power.

The processor which minimizes this cost function of
τi among all the processors is considered to be the
best processor to schedule the task τi. The minimization
of the response time on the set of processors has the
advantage of reducing the makespan.

B. Principle of our allocation heuristic

We use a "list heuristic" [16] whose order allows the
allocation of the tasks to the different processors. In
our case, we initialize this list, called “set of canditate
tasks”, with the set of tasks according to the decreasing
order of their priorities. At each step of the heuristic, the
task with the highest priority is selected among the set
of candidate tasks, and we attempt to allocate it to its
best processor according to the cost function presented
previously. Of course, the task is actually scheduled on
its best processor. Then, this task is removed from the
set of candidate tasks.

We use the scheduling operation ⊕ to verify either a
task is schedulable, or not, on a processor taking into
account the exact preemption cost. The first activation
date is crucial for the schedulabilty of a task τi. A
non schedulable task can become schedulable if its
date of first activation is modified [15]. In the proposed
heuristic we exploit this property to improve the success
ratio of the heuristic, as follows. When we attempt to
allocate the task τi to a processor pj , if that task is not
schedulable with its initial date of first activation r1i ,
before attempting to allocate it on another processor,
we delay its date of first activation by incrementing
its value of one time unit (r1i = r1i + 1), and that
until the task τi becomes schedulable or r1i exceeds
the value of the makespan computed in the precedent
step. In this case the task τi is not schedulable on the
processor pj . This principle allows a set of tasks to be
schedulable while they where not with their initial date
of first activation. However, that iterative search of a
date of first activation, which leads to a schedulable
task, increases the complexity of the heuristic.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a greedy heuristic
which allocates and schedules, on a multiprocessor ar-
chitecture, a set of real-time tasks while reducing the
makespan. In addition, this heuristic takes into account
the exact preemption cost that must be carefully con-
sidered in safety critical applications we are interested
in.

In future works we plan to study the complexity of
the proposed heuristic, as well as its performance, by



Algorithm 1 Greedy heuristic
1: Initialize the candidate tasks W with the set of tasks

in the decreasing order of their priorities, initialize
the boolean variable SystemTasksSchedulable to
true

2: while W is not empty and
SystemTasksSchedulable = true do

3: Select in W the highest priority task τi
4: % We verify on each processor pj if task τi is

schedulable.
5: for j=1 to m (the number of processors) do
6: if with its initial date of activation r1i , the task τi

is schedulable on pj with the exact preemption
cost (scheduling operation ⊕ [15]) then

7: Compute the cost function of task τi on the
processor pj , i.e. the response time of τi on
pj

8: else
9: while τi is not schedulable on pj and r1i do

not exceed the value of the makespan of the
previous step do

10: r1i = r1i + 1
11: end while
12: if τi is schedulable on pj then
13: Compute the cost function of τi on pj with

the new date of first activation of τi
14: else
15: τi is not schedulable on pj with the exact

preemption cost
16: end if
17: end if
18: end for
19: % Now, using again the cost function, we choose

the best processor for τi among all the processors
on which τi is schedulable.

20: if τi is schedulable on one or several processors
then

21: Schedule the task τi on the processor which
minimizes the cost function

22: Remove the task τi from W .
23: SystemTasksSchedulable = true
24: else
25: SystemTasksSchedulable = false
26: end if
27: end while

comparing it with an exact algorithm. In addition we
plan to study the case of dependent tasks.

REFERENCES

[1] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environnment. JACM, vol.
20(1), Jan 1973.

[2] A. Burns, K. Tindell, and A. Wellings. Effective analysis for
engineering real-time fixed priority schedulers. IEEE Trans.
Softw. Eng., 21:475–480, May 1995.

[3] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemptively
scheduling with high context switch cost. In Proceedings of 7th
Euromicro workshop on Real-Time Systems, Los Alamitos, CA,
USA. IEEE Computer Society.

[4] A. Easwaran, I. Shin, I. Lee, and O. Sokolsky. Bounding
preemptions under edf and rm schedulers. Technical Report MS-
CIS-06-07, University of Pennsylvania, Department of Computer
and Information Science.

[5] R. I. Davis and A. Burns. A survey of hard real-time scheduling
algorithms and schedulability analysis techniques for multipro-
cessor systems. Technical Report YCS-2009-443, University of
York, Department of Computer Science, 2009.

[6] O. U. P. Zapata and P. M. Alvarez. Edf and rm multiproces-
sor scheduling algorithms: Survey and performance evaluation.
http://delta.cs.cinvestav.mx/ pmejiamultitechreport.pdf, Oct 2005.

[7] Garey and Johnson. Computers and intractability : a guide to
the theory of NP-completeness. W. H. Freeman and Company,
1979.

[8] J. E. Mitchell. Branch-and-cut algorithms for combinatorial
optimization problems. pages pp 65–67, 2002.

[9] E. G. Talabi. Metaheuristics. Wiley, 2009.
[10] O. Kermia and Y. Sorel. A rapid heuristic for scheduling non-

preemptive dependent periodic tasks onto multiprocessor. In Pro-
ceedings of ISCA 20th International Conference on Parallel and
Distributed Computing Systems, PDCS’07, Las Vegas, Nevada,
USA, sep 2007.

[11] S. K. Dhall and C. L. Liu. On a real-time scheduling problem.
Operation Research, vol. 26(1), 1978.

[12] S. Kato and N. Yamasaki. Semi-partitioning technique for
multiprocessor real-time scheduling. In Proceedings of WIP
Session of the 29th Real-Time Systems Symposium (RTSS), IEEE
Computer Society, 2008.

[13] J. H. Anderson, V. Bud, and C. U. Devi. An edf-based scheduling
algorithm for multiprocessor soft real-time systems. In Proceed-
ings of the 17th Euromicro Conference on Real-Time Systems,
pages 199–208, Washington, DC, USA, 2005. IEEE Computer
Society.

[14] P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time sys-
tems. In Proceedings of 19th Euromicro Conference on Real-Time
Systems, ECRTS’07, Pisa, Italy, July 2007.

[15] P. Meumeu Yomsi and Y. Sorel. An algebraic approach for
fixed-priority scheduling of hard real-time systems with exact
preemption cost. Research Report RR-7702, INRIA, August
2011.

[16] L.T. Adams, K. M. Chandy, and J. R. Dickson. A comparison of
list schedules for parallel processing systems. Commun. ACM,
17:685–690, December 1974.


