
Front. Comput. Sci., 2013, 7(5): 627–649

DOI 10.1007/s11704-013-2307-z

Exploring system architectures in AADL
via Polychrony and SynDEx

Huafeng YU1, Yue MA1, Thierry GAUTIER 1, Loïc BESNARD2

Jean-Pierre TALPIN1, Paul Le GUERNIC1, Yves SOREL3

1 INRIA Rennes - Bretagne Atlantique, 263, av. du Général Leclerc, Rennes 35042, France

2 IRISA/CNRS, 263, av. du Général Leclerc, Rennes 35042, France

3 INRIA Paris - Rocquencourt, Domaine de Voluceau, BP 105, Le Chesnay Cedex 78153, France

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Abstract Architecture analysis & design language

(AADL) has been increasingly adopted in the design of em-

bedded systems, and corresponding scheduling and formal

verification have been well studied. However, little work

takes code distribution and architecture exploration into ac-

count, particularly considering clock constraints, for dis-

tributed multi-processor systems. In this paper, we present an

overview of our approach to handle these concerns, together

with the associated toolchain, AADL-Polychrony-SynDEx.

First, in order to avoid semantic ambiguities of AADL, the

polychronous/multiclock semantics of AADL, based on a

polychronous model of computation, is considered. Clock

synthesis is then carried out in Polychrony, which bridges

the gap between the polychronous semantics and the syn-

chronous semantics of SynDEx. The same timing semantics

is always preserved in order to ensure the correctness of the

transformations between different formalisms. Code distri-

bution and corresponding scheduling is carried out on the

obtained SynDEx model in the last step, which enables the

exploration of architectures originally specified in AADL.

Our contribution provides a fast yet efficient architecture ex-

ploration approach for the design of distributed real-time and

embedded systems. An avionic case study is used here to

illustrate our approach.

Received February 15, 2013; accepted June 1, 2013

E-mail: Thierry.Gautier@inria.fr

Keywords Polychrony, Signal, AADL, SynDEx, architec-

ture exploration, modeling, timing analysis, scheduling, dis-

tribution

1 Introduction

The architecture analysis & design language (AADL) [1] is

gradually adopted for high-level system co-modeling in em-

bedded systems due to issues of system complexity, time to

market, verification and validation, etc. It permits the fast yet

expressive modeling of a system [2]. Early-phase analysis

and validation can be rapidly performed [3–9]. AADL pro-

vides a fast design entry, however, there are still critical chal-

lenges, such as unambiguous semantics, architecture explo-

ration, code distribution, timing analysis, or co-simulation.

To address these issues, expressive formal models and com-

plete toolchains are required.

Synchronous languages are dedicated to the trusted de-

sign of synchronous reactive embedded systems [10]. Thanks

to their mathematical definition and the software tools that

are founded on these definitions, synchronous languages

are good candidates to address the above issues of AADL.

Among these languages, the Signal language stands out as

it enables to describe systems with multiclock relations [11],

and to support refinement [12]. Polychrony is a toolset based

on the Signal language, dedicated to multiclock synchronous

program transformation and verification.

Various tools exist to help the implementation of ap-

628 Front. Comput. Sci., 2013, 7(5): 627–649

plications onto distributed platforms composed of proces-

sors, specific integrated circuits, and communication media

all together connected. Among them, SynDEx is a system

level computer aided design (CAD) software, based on the

algorithm-architecture adequation (AAA) methodology [13].

It aids the designer to search, manually and/or automatically,

for an optimized implementation of an embedded control ap-

plication onto a distributed platform architecture, while sat-

ifying real-time constraints. SynDEx provides interfaces to

application description languages such as Signal.

The AADL language is designed to be used with analysis

tools. Our aim is to make Polychrony and SynDEx such tools

in an integrated methodology.

In this paper, an overview of our approach is pre-

sented, including the formal timing modeling, timing anal-

ysis, clock synthesis, architecture exploration as well as the

associated toolchain, called AADL-Polychrony-SynDEx.

First, two polychronous/synchronous formalisms [10], Poly-

chrony/Signal [14,15] and SynDEx [16], are adopted to pro-

vide support for formal timing modeling based on a poly-

chronous model of computation (MoC) [11]. We revisit the

timing semantics of AADL as multi-clocked, so that AADL

components are modeled in this polychronous MoC. In this

way, users are not suffered to find and/or build the fastest

clock of the system, which distinguishes from [4,16–18]. Ac-

cording to this principle, AADL models are transformed into

Signal models. To bridge the gap between the polychronous

semantics of Signal and synchronous semantics of SynDEx,

clock synthesis in Polychrony [14], the design environment

dedicated to Signal, is applied. The translation from Signal to

SynDEx is integrated in Polychrony. Finally, SynDEx mod-

els are used to perform distribution, scheduling, and architec-

ture exploration.

Main advantages of our approach are following ones: (1)

a formal model is adopted to connect the three formalisms,

and it helps to preserve the semantic coherence and correct

code generation in the transformations; (2) the formal model

and methods used in the transformations are transparent to

AADL practitioners, and it is fast and efficient to have illus-

trative results for architecture exploration; (3) it provides the

possibility for one of the three formalisms to take advantage

of the functionalities provided by the other ones.

An AADL-Polychrony-SynDEx toolchain has been devel-

oped, which includes automatic model transformations be-

tween the three formalisms, considering both semantic and

syntactic aspects. A tutorial avionic case study is used in this

paper to show the effectiveness of our contribution. This com-

pact yet typical and general case study has been developed in

the framework of the CESAR project [19].

An overview of the tool architecture is given in Section 2.

The three formalisms, Polychrony/Signal, AADL and Syn-

DEx, are introduced in Section 3. Section 4 and Section 5

present our original contribution: the timing modeling, trans-

lations between the different formalisms, clock synthesis, ar-

chitecture exploration. The whole work is illustrated by a case

study in Section 6. Some related works are summarized in

Section 7, and a conclusion is drawn in Section 8.

2 The scenario

Our proposed approach for architecture exploration of AADL

high-level models is illustrated in Fig. 1. Three stages are

presented in the design process, which include: high-level

modeling in AADL, considering both architectural and be-

havioral aspects; model transformations, timing analysis and

clock synthesis using Polychrony; and architecture explo-

ration with the aid of SynDEx. The Polychrony design envi-

ronment [14], associated with the Signal language, provides

a formal framework for back-end semantic-preserving trans-

formations, scheduling, code generation, formal analysis and

verification, architecture exploitation, and distribution [20].

The internal representation used for these purposes is a data

control graph (DCG), composed of a clock hierarchy and a

conditioned precedence graph (see [20] for more details). The

Polychrony toolset is an open-source modeling framework,

DO-330 qualified (as verification tool, criteria 3); it is be-

ing integrated in the PolarSys toolset (Polarsys is an industry

working group of the eclipse foundation [21]).

Fig. 1 The AADL-Polychrony-SynDEx approach

The inherent formal model, associated transformations and

tools used in this approach are transparent to system design-

ers, i.e., AADL practitioners. The results of architecture ex-

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 629

ploration is graphically illustrated. This approach is thus fast

and efficient to perform architecture exploration from a high-

level modeling perspective.

The polychronous model is adopted to bridge between

the three formalisms, i.e., AADL, Signal and SynDEx. This

model helps to preserve the timing semantic coherence and

correct code generation in the transformations between the

different formalisms.

In line with our approach, a complete toolchain (see Fig.

2) for modeling, timing analysis, scheduling, and distribu-

tion of AADL models via Polychrony and SynDEx has been

developed in the eclipse modeling framework (EMF) [22].

An AADL model with timing properties, which conforms to

the AADL metamodel, is created in the OSATE toolkit [23].

A model transformation ASME2SSME allows one to per-

form analysis on ASME models (AADL syntax model un-

der eclipse) and generate corresponding Signal SSME (Sig-

nal syntax model under eclipse) models. ASME2SSME uses

high-level APIs (in the figure, CoL stands for “concept ori-

ented level”). Those high-level APIs are defined in terms of

low-level APIs that provide access to the model implementa-

tion (in the figure, MoL stands for “model oriented level”).

The Signal code, capturing both functional and architectural

aspects of the original application, is then generated from the

SSME models. The Signal compiler (from the Polychrony

toolset) is used for analysis and transformations. It is used in

particular to generate the SynDEx code. Finally, the latter is

fed into the SynDEx tool for architecture exploration.

Fig. 2 The AADL-Polychrony-SynDEx toolchain

3 The casting

3.1 The polychronous model and the Signal kernel lan-

guage

The semantics of Signal is defined over a polychronous

Model of Computation. A Signal process defines a set of (par-

tially) synchronized signals as the composition of equations.

A signal x is a finite ((∃n ∈ N)(x = (xt)t∈N,t�n) or infinite

(x = (xt)t∈N) sequence of typed values in the data domain Dx;

the indices in the sequence represent logical discrete time in-

stants. At each instant t, a signal is either present and holds

a value v in Dx, absent and virtually holds an extra value de-

noted #, or completed and never holds any actual or virtual

value for all instants s such that t � s. The set of instants at

which a signal x is present is represented by its clock x̂. Two

signals are synchronous iff they have the same clock. Clock

constraints result from implicit constraints over signals and

explicit constraints over clocks.

The semantics of the full language is deduced from the se-

mantics of a kernel language, and from the Signal definition

of the extended features. A Signal kernel language process

is either a kernel equation x := f (x1, x2, . . . , xn) where f is

a kernel function, or the composition P|Q of two kernel pro-

cesses P and Q, or the binding P/x of the signal variable x to

the kernel process P. In this Section, we give a sketch of its

functional part using data-flow models.

3.1.1 Semantic domains

For a set of values (a type) D1 we define its extended set D1#
= D1 ∪ {#}, where # � D1 is a special symbol used to denote

the absence of a signal value. The semantics of Signal is de-

630 Front. Comput. Sci., 2013, 7(5): 627–649

fined as least fixed point in domains: for a data domain D1,

we consider the poset (D1# ∪ {•,⊥},�) where:

– (D1#,�) is flat (i.e., x�y⇒ x = y);

– • that denotes the presence of a signal is the infimum of

(D1 ∪ {•},�), • and # are not comparable;

– ⊥ that denotes the absence of information is the infi-

mum of (D1# ∪ {•,⊥},�).

We denote by D∞ = D∗ ∪Dω the set of finite (D∗) and infi-

nite (Dω) sequences of “values” in D#. The empty sequence

is denoted by ε. All n-ary signal functions f : D∞1 × D∞2 ×
. . .×D∞n → D∞n+1 are defined using the following conventions:

s1, s2, . . . , sn are (possibly empty) signals inD∞i , v1, v2, . . . , vn

are values inDi (cannot be #), x1, x2, . . . , xn are values in Di#.

As usual, |s| is the length of s, s1.s2 is the concatenation of s1

and s2 (equal to s1 if s1 ∈ Dω).

Given a non empty finite set of signal variables A, a func-

tion b : A → D∞ that associates a sequence b(x) with each

variable of A is named a behavior on A. The length |b| of a

behavior b on A is the length of the smallest sequence b(a).

An event on A is a behavior b : A → D#. For a behavior b

on a set of signal variables A, an integer i � |b|, b(i) denotes

the event e on A such that e(a) = (b(a))(i) for all a ∈ A. An

event e on A is said to be empty iff e(a) = # for all a ∈ A.

The concatenation of signals is coordinatewise extended to

tuples of signals. Two behaviors b1, b2 are stretch-equivalent

iff they only differ on non-final empty events (see [11] for

more details).

3.1.2 The Signal kernel functions

A Signal kernel function is a n-ary (with n > 0) function f

that is total, strict and continuous over domains [24] (w.r.t.

prefix order) and that satisfies the following general rules:

– stretching: f (#.s1, #.s2, . . . , #.sn) = #. f (s1, s2, . . . , sn)

– termination: ((∃i ∈ 1, n)(si = ε)) ⇒ f (s1, s2, . . . , sn) =

ε

A n-ary function f is synchronous iff it satis-

fies: ∀v1, v2, . . . , vn ∈ D1,D2, . . . ,Dn, x1, x2, . . . , xn ∈
D1#,D2#, . . . ,Dn#, s1, s2, . . . , sn ∈ D∞1 ,D∞2 , . . . ,D∞n ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ((∃i, j ∈ 1, n)(∃v ∈ D j)(xi = # ∧ x j = v))⇒
(f (x1.s1, x2.s2, . . . , xn.sn) = ε)

and

– (∃v ∈ D, s ∈ D∞) f (v1.s1, v2.s2, . . . , vn.sn) = v.s

• Definition of stepwise extension kernel functions

Given n > 0 and a n-ary total function f : D1 × D2 × · · · ×
Dn → Dn+1, the stepwise extension of f denoted F is the

kernel synchronous function that satisfies:

– F(v1.s1, v2.s2, . . ., vn.sn)= f (v1, v2, . . ., vn).F(s1, s2, . . ., sn)

Usual infix notation is used for standard operators such as =,

and, +, etc.

• Definition of previous value kernel function

delay: Di × D∞i → D∞i is the kernel synchronous (state-)

function that satisfies:

– delay(v1, v2.s) = v1.delay(v2, s)

The infix notation of delay(v1, s) is s $ init v1.

• Definition of prioritized merge kernel function

default: D∞i × D∞i → D∞i is the kernel function that satis-

fies:

– default(v.s1, x.s2) = v.default(s1, s2)

– default(#.s1, x.s2) = x.default(s1, s2)

The infix notation of default(s1, s2) is s1 default s2.

• Definition of Boolean sampling kernel function

Let B = {ff, tt} denote the set of Boolean values.

when: D∞i × B∞ → D∞i is the kernel function that satisfies:

– for b ∈ {#,ff}, when(x.s1, b.s2) = #.when(s1, s2)

– when(x.s1, tt.s2) = x.when(s1, s2)

The infix notation of when(s1, s2) is s1 when s2. For a

Boolean signal s, when s is the unary notation of when (ŝ, s)

that returns tt iff s is tt, # otherwise.

3.1.3 Deterministic process

An equation is a pair (x, E) denoted x := E. An equation x :=

E associates with the variable x the sequence resulting from

the evaluation of the signal function f denoted by E (defined

as a composition of kernel functions). If A = {x1, x2, . . . , xn}
(x � A) is the set of the free variables in E, the equation

x := E denotes a process on A, i.e., a set of behaviors on

A ∪ {x}; a process is closed by stretch-equivalence (thanks to

the stretching rule).

The parallel composition of processes P1|P2 defined on

kernel equations is a process P equal to a network of strict

continuous functions interconnected on the basis of signal

names, as usual in equations. When P satisfies the Kahn con-

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 631

ditions (no cycle, no double definition. . .), P is a strict contin-

uous function or Kahn process network (KPN) [25], defined

as least upper bound satisfying the equations. This function

satisfies the “stretching” and the “termination” rules. It may

be or not synchronous. It is stretch-closed. The binding P/x is

a projection that makes local the variable x. In the “intersec-

tion” semantics of Signal [11], a process is the set of infinite

behaviors accepted by the above “KPN” semantics.

3.1.4 Non deterministic process

A process with feedback or local variables may be non deter-

ministic. The semantics of a non deterministic process can be

defined using Plotkin’s power-domain construction [26]. The

input free equation x := x $ init 0 is a typical example of

a non deterministic process: x holds a sequence of constant

value 0 separated by any number of # (stretch-equivalence).

3.2 The full Signal language

3.2.1 Process models

A process model is a structuration feature illustrated by the

counter modulo process (Listing 1): at each step, nb is the

number modulo n (static parameter) of the current occurrence

of val.

Listing 1 Definition of the Signal process counter Modulo

process counterModulo = {type tau; integer n}

(? tau val ! integer nb)

(| nb := (0 when reset) default plus_un

| reset := pre_nb = n − 1

| plus_un := pre_nb+(1 when ˆval)

| pre_nb := nb $ init (n − 1)

|)

where boolean reset;

integer pre_nb, plus_un;

end

A process model is made of a name, a list of static param-

eters (formal type tau and constant value n), a list of signal

inputs (the signal val of which occurrences are counted), a

list of signal outputs (the signal nb that holds the number

of each val occurrence modulo n), a body that contains a

composition of equations and a list of local variables. An

occurrence (such as

counterModulo{event,60}(sec_event,sec_count)

in equation form, or

sec_count:=counterModulo{event,60}(sec_event)

in function call form) of an instance of counterModulo

is replaced by the body of counterModulo with required

substitutions.

3.2.2 From non deterministic to deterministic process

The operator var (see [20]) is a typical example of an opera-

tor that is not a function. It is a derived operator, the definition

of which is that of preMemoryCell (Listing 2).

Listing 2 Definition of the Signal process preMemoryCell

process preMemoryCell = {type tau; tau val}

(? tau input ! tau output)

(| mem := input default mem $1

| output := mem when ˆoutput

|)

where tau mem init val;

end

The process model preMemoryCell is a mix of data-

driven and demand-driven operator: output := mem when

output (“ ” is the operator that returns tt when its argument

is present) outputs the current value when it is (implicitly)

required. Thus preMemoryCell is not a function but a rela-

tion. It is a polychronous process that has two independent

clocks, input and output. The clock mem is an upper

bound of the clocks input and output.

Including the relation preMemoryCell (equivalent to the

operator var) in a context for which the clock of the output is

added as an input signal allows to build a deterministic pro-

cess memoryCell (Listing 3).

Listing 3 Definition of the Signal process memoryCell

process memoryCell = {type tau; tau val}

(? tau input; event clk_output ! tau output)

(| mem := var input

| output := mem when clk_output

| mem ˆ= clk_output ˆ+ input

|)

where tau mem init val;

end

The expression mem = clk_output + input means

that the clock of mem is the least upper bound of the clock

clk_output and that of the input signal. The operators

= and + denote respectively a relation and a function over

clocks derived form Signal kernel features.

Another example of a non deterministic process is the

equation x := 0 that defines the constant signal x as being

equal to # or equal to 0. This equation is a shortcut for x := x

$ init 0.

A last example of non deterministic process is the equa-

tion x ::= E that defines x to be equal to E when E is present

and undefined when E is #. This equation is a shortcut for

x := E default x. A signal x can be consistently defined

632 Front. Comput. Sci., 2013, 7(5): 627–649

by several equations x ::= E1, E2, . . . , x ::= En in a process,

provided that for every pair of equations x ::= Ei, x ::= E j,

when Ei and E j are both present, they hold the same value. If

E1, E2, · · · , En do not recursively refer to x and if they denote

functions, then (|x ::= E1| . . . |x ::= En|) is a deterministic

process. These partial definitions are very useful in automata

where the function that computes the value of a signal often

depends on current state. The states being exclusive, the con-

sistency property is satisfied.

3.2.3 Delay sensitivity

Deterministic processes are defined over data types extended

with # symbol. The presence (or absence) of the occurrence

of a signal can be tested in the context of a global program

with a global clock by interface functions such as “present” in

Esterel [10]. In the context of a distributed system, when an

occurrence of a signal is “arrived”, the signal has not nec-

essarily to be considered as present in the logical instant.

Conversely, when the action associated with a logical time

is started, some of the required occurrences may not be ar-

rival. Not only because of the delay sensitivity, but also be-

cause of computation scheduling: for instance, when a pro-

cess P1 computes a signal x that is used in another process P2

to compute a signal y that is used in P1 at the same instant.

Processes are usually delay sensitive. In particular, a reactive

process with more than one input is delay sensitive. Delay in-

sensitive processes are flow functions, i.e., functions on pure

signals that do not contain explicit occurrences of #. Clearly,

stepwise extension functions and delay functions are delay

insensitive. To get a delay insensitive sampling, one can as-

sociate with an equation output := input when sample

a Boolean clock parameterization (C_input, C_sample) of

the sampling equation as in flowSampling (Listing 4).

Listing 4 Definition of delay insensitive sampling

process flowSampling = {type tau}

(? boolean C_input, C_sample;

tau input; boolean sample; ! tau output)

(| output := input when sample

| (| C_input ˆ= C_sample

| input ˆ= when C_input

| sample ˆ= when C_sample

|)

|)

The process model flowSampling denotes an en-

dochronous process: it has a master clock (a tick) C_input

= C_sample, and the other clocks are (recursively) func-

tions of this master clock and the input signal values. One can

similarly define an endochronous extension of a default

equation. A composition P of endochronous processes that

satisfies the Kahn conditions is a strict continuous (flow)

function and then P is delay insensitive. Note that a delay in-

sensitive process may not be endochronous. Usually a KPN

is not endochronous (it may require unbounded fifos to be

implemented in a single thread).

Thanks to the properties of the Signal composition (com-

mutativity, associativity, idempotence), the possibility of

moving inner bindings out of a composition, and the proper-

ties of a powerful clock algebra, the so-called clock calculus

can arrange a process P as a composition of endochronous

components, adding required Boolean inputs as clock param-

eters.

3.2.4 Dependences

The equations of a Signal process induce guarded data-flow

dependences. For instance in the equation z := x default

y, x precedes z(x→ z) and y precedes z when x is not present

((y → z) when (ˆy ˆ- ˆx)). Input/output guarded dependences

of a process are computed in a path algebra. They are written

by Polychrony as abstract interface properties of black box

behaviors. Dependences can be made explicit by the user to

enforce scheduling.

3.2.5 Specification

A process that has no output and that does not call external

functions is a property process. For instance a = b denotes

the equality of clocks of a and b, (a → b) when c can be

written to specify that an input a precedes (is read before)

an other input b when the Boolean input c is tt (and then c

implicitly precedes a and b).

Such a property process can be used as a constraint in the

body of a process or as assumed or asserted properties in its

interface.

3.2.6 Signal open features

An external process (a function, a subprogram, a method, . . .)

can be abstracted (referred to) as a specification of its inter-

face.

A pragma is an annotation that is associated with a process

for specific purpose. Pragmas are sorted by name related to

an action (for instance code generation), a tool (for instance

a model checker), etc. The set of pragma classes is open.

3.3 AADL

AADL [1] is a society of automotive engineers (SAE) stan-

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 633

dard dedicated to design and analyze the architecture of

performance-critical real-time systems. AADL describes the

structure of an embedded application as an assembly of soft-

ware components allocated on execution platform. The com-

ponent interactions and the dynamic behavior can be de-

scribed. The AADL standard specifies software and hardware

components from an external perspective: AADL uses black

box interfaces to describe non functional properties such as

timing requirements or abstractions, fault and error behav-

iors, time and space partitioning, and safety and certification

properties. Thus each component has a type, which represents

the functional interface of the component and its externally

observable attributes. Each type may be associated with zero,

one or more implementation(s) that describe the contents of

the component, as well as the connections between them.

In AADL, three main distinct component categories are

provided:

– a software component is a process, a thread, a subpro-

gram, or a data component;

– execution components model the hardware part of a

system, including (virtual) processor, memory, device,

and (virtual) bus components;

– composite component, named system, contains execu-

tion platform, application software or other composite

components.

In this presentation we ignore other components such as

thread groups that do not introduce new aspects in our trans-

lation scheme.

AADL provides mechanisms of exchange and control of

data: message passing, event passing, synchronized access

to shared components, thread scheduling protocols (peri-

odic, aperiodic, sporadic, background), timing requirements,

remote procedure calls. AADL components interact exclu-

sively through defined interfaces. A component interface con-

sists of directional flow through: data ports for unqueued

data, event data ports for queued message data, event ports

for asynchronous events (triggers for the dispatch of an ape-

riodic thread, initiators of mode switches, alarm communica-

tions), synchronous subprogram calls, explicit access to data

components. Interactions among components are specified

explicitly. For example, data communication (immediate or

delayed) among components is specified through connection

declarations.

Properties are specified to provide more information about

model elements. For example, application components have

properties that specify timing requirements such as period,

worst-case execution time, deadlines, space requirements, ar-

rival rates, and characteristics of data and event streams. In

addition, properties identify the following elements: source

code and data that implement the application component be-

ing modeled, constraints for binding threads to processors,

source code, and data onto memory.

The behavior annex provides an extension to AADL core

standard so that behavior specifications can be attached to

AADL components. The behavior is described with a state

transition system equipped with guards and actions.

Adapting the terminology of [1], we name complete appli-

cation model an instance of a root system in which all com-

ponents are recursively instantiated. A complete application

model is bound if each thread is bound to a processor, each

source text, data component and port is bound to a memory,

each connection is bound to a bus. In this paper we are in-

terested in complete application models for software archi-

tecture and bound complete application models. So a weak

attention will be given to types and other abstraction or par-

tial features.

In the following, an industrial case study of simplified

doors and slides control system (SDSCS) in an avionic

generic pilot application, proposed by Airbus in the frame

of CESAR project, is used to illustrate the basic components

of an AADL model. In this case study (see Fig. 3), a typi-

cal safety critical system takes charge of the management of

passenger doors. It includes different components modeling

hardware and software, and allowing them to communicate

and control the doors.

In the system door_manager, two subsystems, door1 and

door2, are managed by two processes, doors_process1 and

doors_process2 (see Fig. 3). The processor CPIOM1 (resp.

CPIOM2) is responsible for scheduling and executing threads

in process doors_process1 (resp. doors_process2). The de-

vices, e.g., LGS, DPS, etc., interface with external environ-

ment of the system. All the communication between the de-

vices and processors is through the bus AFDX1.

3.4 SynDEx

SynDEx [27] is a system level CAD software based on the

algorithm-architecture adequation (AAA) methodology [13]

which allows the designer to optimize the implementation of

embedded control applications onto distributed platforms,

while satifying real-time constraints. This is a freeware

distributed free of charge [28]. Using graph models, the

AAA methodology allows the designer to perform a func-

tional specification that we call “algorithm”, a non-functional

634 Front. Comput. Sci., 2013, 7(5): 627–649

Fig. 3 An overview of the SDSCS case study in AADL

specification describing the real-time characteristics (worst

case execution time (WCET), worst case communication

time (WCCT), deadline, period, end-to-end latency, etc.) and

the distributed platform (processors, specific integrated cir-

cuits and communication media) that we call “architecture”.

Consequently, all the possible implementations of a given al-

gorithm onto a given architecture are described in terms of

graph transformations. An implementation consists in dis-

tributing and scheduling a given algorithm onto a given archi-

tecture. “Adequation” amounts to choose one optimized im-

plementation among all the possible ones while taking into

account the real-time characteristics. This is achieved auto-

matically through off-line multiprocessor real-time schedu-

lability analyses combined with optimization heuristics. The

result of the adequation is a scheduling table. Finally, from

the scheduling table our graph models allow to generate au-

tomatically, as an ultimate graph transformation, two types

of codes: dedicated distributed real-time executives, or con-

figuration of standard distributed real-time executives, e.g.,

Linux, Linux/RTAI, Windows/RTX, OSEK, etc., for proces-

sors, and structural VHDL for specific integrated circuits. In

this paper we focus only on the specifications and on the op-

timized implementation. See [29] for details about the code

generation.

3.4.1 Algorithm model

If we want to use efficiently multiprocessor architectures of-

fering some available parallelism, algorithms should be spec-

ified with at least as much potential parallelism as the avail-

able parallelism of the architecture. Moreover, since we want

to be able to compare the implementation of an algorithm

onto different architectures, the algorithm graph must be

specified independently of any architecture graph.

Our algorithm model is an extension of the well-known

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 635

data-flow model from Dennis [30]. It is a directed acyclic

hyper-graph (DAG) that we call “conditioned factorized

data dependence graph”, whose vertices are “operations”

and hyper-edges are directed “data or control dependences”

between operations. Hyper-edges are used to model data

diffusion. The data dependences define a partial order on

the execution of the operations, called “potential operation-

parallelism”. Actually, two operations which are not data-

dependent may be executed, in any order, on a unique pro-

cessor or in parallel on two different processors. Each opera-

tion may be in turn described as a graph to allow hierarchical

specification of algorithms. Therefore, a graph of operations

is also an operation. Operations which are the leaves of the

hierarchy are said “atomic” in the sense that it is not pos-

sible to distribute this kind of operation on more than one

processor. The basic data-flow model was extended in three

directions, firstly infinite (resp. finite) repetitions in order to

take into account the reactive aspect [31] of real-time systems

(resp. “potential data-parallelism” similar to loop or iteration

in imperative languages for i = 1 to n do...), secondly

“state” when data dependences are necessary between repe-

titions introducing cycles which must be avoided by specific

vertices called “delays” (similar to z−n in automatic control),

thirdly “conditioning” of an operation by a control depen-

dence similar to conditional control structure in imperative

languages (if...then...else...). A conditioned op-

eration is a hierarchical vertex which contains several sub-

dataflow graphs. According to the value of its specific in-

put called “condition” only one of the possible sub-dataflow

graphs will be executed during the considered reaction. A

finitely repeated operation is also a hierarchical vertex which

contains N times the same sub-dataflow graph. Conditioned

operations may contain repeated operations, and vice-versa.

We denote by Gal = (O,D) the conditioned factorized data

dependence graph where O is the set of vertices (operations)

and D ⊆ O×O is the set of data dependences defining a partial

order on the execution of the operations. As mentioned be-

fore, this graph is repeated infinitely such that every repetition

corresponds to a reaction of the real-time system. During the

functional specification, we do not consider non-functional

specification, i.e., physical time used to define timing charac-

teristics and architecture. Each reaction defines a logical time

and according to the synchronous language principles pre-

sented previously, we do not care about physical time taken

by the execution of operations which will be considered fur-

ther on in the implementation model. Thus, every data depen-

dence d ∈ D is associated with a signal which is an infinite

sequence of events taking values in a domain D. But we do

not have the absent event (#) like in the Signal language and

consequently all the signals have the same clock. This is the

reason why SynDEx is considered “mono-clock”.

3.4.2 Architecture model

An architecture is composed of processors, possibly of dif-

ferent types, specific integrated circuits performing a unique

function, and point-to-point or multi-point communication

media. All these components are together connected. We pro-

pose an architecture model which is at an intermediate level

between high level models neglecting details of the architec-

ture and accurate low level models. The complexity of this

model is sufficient to enable optimizations while it is not too

fine leading to combinatorial explosions.

Our architecture model is an oriented graph, denoted by

Gar = (V, E) where V is the set of vertices, and E the set of

edges. V corresponds to four kinds of finite state machines

(FSM) called operator (VO), communicator (VC), memory

(VM) and Bus/Mux/Demux (BMD) with or without arbiter

(VB): V = VO ∪ VC ∪ VM ∪ VB, and VO ∩ VC ∩ VM ∩ VB = ∅.

Each edge s ∈ E represents a connection between an input

and an output of FSMs.

There are two types of memory vertices, random access

memory (RAM, S RAM ∈ S M) and sequential access memory

(SAM, S SAM ∈ S M). RAM memories are used to store opera-

tions of the algorithm graph, in this case we call them RAMP

(program memory). When RAM memories store only data we

call them RAMD (data memory). We call them RAMDP when

they store both program and data. A RAM may be shared

(i.e., connected to several operators and/or communicators),

then it may be used for data communications. SAM memo-

ries are always shared since they are only used to commu-

nicate data using the message passing paradigm. In a SAM,

data must be read in the same order as it has been written (as

FIFO), all access is then said to be synchronized whereas in

a RAM it is not synchronized since it is possible to read data

independently of the order of the write operation. The syn-

chronized, or not, properties are exploited during the code

generation. SAM may be point-to-point or multi-point (bus),

supporting or not broadcasting. Each memory is character-

ized by its size and its access bandwidth.

Each operator sequentially executes a finite subset of the

algorithm operations stored in a RAMP (or RAMDP) which

must be connected to the operator. The WCET of an opera-

tion depends on the operator and the memory characteristics.

An operation executed by an operator reads input data stored

in a connected RAMD (or RAMDP) and produces output data

636 Front. Comput. Sci., 2013, 7(5): 627–649

which is written in the RAMD (or RAMDP) connected to it.

Each communicator sequentially executes communication

operations stored in their connected RAMP (or RAMDP).

These operations transfer data from one memory (SAM,

RAMP, RAMDP) connected to the communicator into another

memory connected to the same communicator. The WCCT of

a communication depends on the size of data to be transmit-

ted but also depends on the available bandwidth computed

from all parameters of the edge.

BMD vertices are used to model the bus, the multiplexer

and the de-multiplexer of an architecture. When a single se-

quencer (operator or communicator) requires to access more

than one memory, a BMD vertex must be inserted between

the sequencer and each memory. When a memory is shared

by several sequencer vertices, a BMD including an arbiter

(a BMDA) must be inserted between all sequencers and the

shared memory.

In our model, a processor or a specific integrated circuit

corresponds to an architecture subgraph made of one operator

and optionally one or several communicator(s) and BMD(s).

The architecture model is detailed in [32] as well as the set of

connection rules for building a valid architecture graph. With

respect to this model, the only difference between a processor

and a specific integrated circuit is that the latter is only able to

execute a unique operation whereas a processor may execute,

sequentially, several operations. Therefore, only a unique op-

eration may be distributed on a specific integrated circuit.

3.4.3 Implementation model

Given a pair of algorithm and architecture graphs, we trans-

form the algorithm graph according to the architecture graph

in order to obtain an implementation graph. This transforma-

tion corresponds to a distribution and a scheduling of the al-

gorithm graph.

A distribution, also called allocation or partitioning, is

modeled by the relation dist applied to a pair of algorithm

and architecture graphs. This produces a distributed algo-

rithm graph G′al such that: (Gal,Gar)
dist−→ (Gal)′(.). The dis-

tribution is obtained in three main steps. Firstly, a spatial al-

location of the operations onto the operators, leading to inter-

operator edges (data dependence between two operations be-

longing to two different operators). Secondly, each of these

edges is replaced by a linear subgraph (sequence of edges

and vertices). The new vertices of this subgraph are commu-

nication operations which are allocated to the communicators

belonging to the different processors forming the route the

data dependence has been allocated to. A route is a path in

the architecture graph. Thirdly, for each operation allocated

to an operator, new “memory allocation vertices” are added

and allocated to one of the RAM memories connected to the

operator.

A scheduling is modeled by the relation sched applied to a

pair (G′al,Gar) so that (G′al,Gar)
sched−→ (G′′al)(.). For each opera-

tor (resp. communicator) the scheduling is a temporal alloca-

tion of the operations (resp. communication operations) allo-

cated to this sequencer. This amounts to create new “prece-

dence edges” without data transfer (ep ∈ Ep) in order to trans-

form the partial order associated with the operations allocated

to an operator (resp. communication operations allocated to

a communicator). This is necessary because operators (resp.

communicators), which are FSMs, require a total execution

order between the operations (resp. communication opera-

tions) allocated to them. This order must be compatible with

the precedences involved by the data dependences of the al-

gorithm graph.

From a pair of algorithm and architecture graphs we get

the set of all the possible implementations by composing the

two previous relations: (Gal,Gar)
dist o sched−→ (G′′al)(.) where

G′′al = (O∪VallocP ∪Valloclo∪VallocD ∪Vc∪Vi,D∪Ep). The par-

tial order of the algorithm graph Gal has been transformed in

an other partial order, thanks to the added precedence edges

Ep, according to the available parallelism of the architecture

graph. In [32] we prove that by construction the partial order

of G′′al includes the partial order of Gal.

For a given pair of algorithm and architecture graphs, there

is a large but finite number of possible implementations,

among which we need to select an optimized one, i.e., which

satisfies real-time constraints and minimizes some cost func-

tion. This optimization problem, as most resource allocation

problems, is equivalent to a “bin packing problem” known

to be NP-hard, and then its set of solutions is tremendously

huge for realistic applications. This is the reason why we

use the term “optimized implementation” rather than “opti-

mal implementation”. Consequently, we need to use a heuris-

tic since exact algorithm, giving the optimal solution, should

take too much time. The heuristic we chose is a fast and effi-

cient “greedy list scheduling” algorithm, with a cost function

based on the “critical path” and on the “schedule flexibility”

of the implementation graph. It takes into account the exe-

cution WCET of operations and WCCT of communications.

This heuristic can be improved by using “local searches”

based on “backtracking” whereas greedy heuristics do not

backtrack.

As mentioned before, real-time characteristics are associ-

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 637

ated with every operation. Some characteristics are dependent

of the architecture like the WCET and the WCCT but other

ones are not. A period and a deadline are characteristics as-

sociated with every operation, which are independent of the

architecture. An operation temporally characterized like that

is usually called a “real-time task” in the real-time schedul-

ing community, as presented for example in the Liu & Lay-

land’s seminal paper [33]. Consequently, we consider data-

dependent task systems according to the algorithm graph.

The proposed heuristic is composed of three main steps:

1) Performs an unrolling of the algorithm graph by dupli-

cating every operation according to the ratio between its pe-

riod and the least common multiple (LCM) of all the opera-

tion periods.

2) Performs a multiprocessor real-time schedulability anal-

ysis assuming the inter-processor communications have no

cost. This analysis is based on schedulability conditions that

are different depending on whether the task system is pre-

emptive or non preemptive.

3) Performs the actual scheduling by computing for ev-

ery processor the start times of every operation that has been

allocated to this processor, for computation as well as com-

munication operations. Therefore, the communication costs

are, now, taken into account. During this last step the re-

sponse time of every operation, distributed and scheduled

on a processor, is minimized according to a cost function

which takes into account its schedule flexibility and the in-

crease of the critical path when an operation has to receive

data because it is data-dependent with an other operation dis-

tributed and scheduled on a different processor, inducing an

inter-processor communication cost. The cost function is de-

tailed in [34]. Moreover, the cost of the communication is

also minimized by choosing the shortest routes of the archi-

tecture graph.

We propose two versions of this heuristic. The first one

considers non-preemptive tasks [35] and thus is best suited

for safety critical applications but has a worse schedulabil-

ity ratio than the other version which considers preemptive

tasks [36]. Finally, the off-line scheduling heuristic produces

a scheduling table that we call further on in the paper “ad-

equation result”. This table is used to generate the real-time

embedded distributed code.

4 From AADL to Signal and clock synthesis

An AADL model describes the architecture and execution

characteristics of an application system in terms of its con-

stituent software and execution platform components and

their interactions. An AADL feature description is mostly

made of: i) properties that abstract the behavior of those com-

ponents as well as their non functionnal characteristics; ii)

interconnections; and iii) scheduling. The polychronous se-

mantics of Signal and its constraint programming style make

it closer to AADL timing semantics and architectural style

than other pure synchronous or asynchronous models.

Such characteristics depend on the hardware executing the

software, where the timing properties and execution binding

properties are associated. In this section, we mainly handle

timing and binding properties of AADL components with re-

gard to our polychronous MoC. Syntactic aspects in the trans-

formation are only briefly described. The timing modeling of

AADL applications in the framework of Polychrony is based

on these properties.

4.1 AADL to Signal translation principles

The transformation from AADL to Signal is a recursive func-

tion applied to an AADL component and its features.

A package, which represents the root of an AADL spec-

ification, is transformed into a Signal module, the root of a

Signal program. Both allow to describe an application in a

modular way.

Each AADL component and its interface is translated into

a Signal process and its corresponding interface. Assembly of

AADL components, considering connections and binding, is

represented by a parallel composition of corresponding trans-

lated Signal processes.

– Data components are translated into signals that are

present at every instant of the overall application. Sig-

nal provides standard data types (Boolean, integer,

char, string, . . .), array, record and union (bundle) types.

It also provides extern type declarations allowing to de-

fine abstract constants and standard operators (=) for

those types.

– AADL data ports are considered as event data ports

that are present on appropriate Dispatch. We consider

an event port as an event data port that can be tt or #.

– AADL (remaining event data) ports are translated into

Signal processes that contain the required fifos (or

memory cell), synchronizations, temporal and non

functional properties, and possible local behavior. A

“port” process is connected to its owning thread and to

its environment owner (as described by the port connec-

tions).

638 Front. Comput. Sci., 2013, 7(5): 627–649

– AADL processes and threads are translated into Signal

processes.

– AADL subprograms are considered as threads with spe-

cific Dispatch and input/output synchronization. When

such a subprogram does not contain subprogram calls,

it is declared as an extern Signal process.

– AADL properties are translated into Signal property

processes (a set of constraints without output).

Each Signal process resulting from translation following

the above rules contains:

– An interface consisting of input/output signals trans-

lated from the features (ports) provided by the AADL

component type.

– Additional control signals depending on the compo-

nent category (for instance Dispatch and Deadline for

a thread).

– A body made of the composition of a process that de-

fines the behavior of the AADL entity and a process that

defines its non functional properties.

– A declaration area for processes resulting of the AADL

local subcomponents translation and the above structur-

ing processes.

4.2 Timing properties of components

AADL supports an input-compute-output model of commu-

nication and execution for threads and port-based communi-

cation (see Fig. 4). The inputs of a thread received from other

components are frozen at a specified point, represented by

Input_Time property (by default the Dispatch time), during

thread execution, and made available to the thread for access.

From that point on, its content is not affected by the arrival

of new values for the remainder of the current execution until

an explicit request for input, e.g., the two new arrival val-

ues 2 and 3 (see Fig. 4) will not be processed until the next

Input_Time. Similarly, the output is made available to other

components at time specified by Output_Time property (for

data ports by default at Complete or Deadline time depending

on the associated port connection communication type).

The key idea for modeling AADL computing latency and

communication delay in Signal is to keep the ideal view

of instantaneous computations and communications, mov-

ing computing latency and communication delays to specific

memory processes, which introduces delay and well suited

synchronizations [37].

4.3 Example: translation of an in event data port

Event data ports are intended to message transmission.

An event data port can have a queue associated with it.

The default port queue size is 1 and can be changed

by explicitly declaring a Queue_Size property association

for the port. Queues will be serviced according to the

Queue_Processing_Protocol, by default in a first in first out

order (fifo). For an in event data port, the items are frozen at

Input_Time, and a number of items (depending on the De-

queue_Protocol property) are dequeued and made available

to the receiving application through the port variable (imple-

mented as constraint in the property part). This mechanism

induces that the content of the port which is accessible to the

application does not change during the execution of a dis-

patch even though the sender may send new values, and as-

sures an input-compute-output model of thread execution.

To take into account the different events used to speficy the

semantics of the port, the translation of an in event data port

xx, with fifo as Queue_Processing_Protocol, is implemented

as an instance of Signal process model xx_InEventDataPort,

composed of xx_InEventDataPort_Behavior() and xx_

InEventDataPort_Property() subprocesses (see Fig. 5).

The process xx_InEventDataPort_Behavior() calls the In-

EventDataPort_Behavior() process model, which is defined

in a Signal library. Two fifos are used: in_fifo that stores

the receiving in event data (write_flow), and frozen_fifo

that is accessible by the thread (through read_flow). At

Frozen_time_event (depending on the Input_Time, it is pro-

vided by the scheduling part), the actual items of the in_fifo

are frozen: certain items are moved to frozen_fifo. The inputs

arrived after the Frozen_time_event will be available at the

Fig. 4 A time model of the execution of a thread

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 639

Fig. 5 In event data port translation

next occurrence of Frozen_time_event. The signal Refer-

ence_time_event is the event sent when the port is read.

The properties associated with the port are imple-

mented as Signal processes composed in the body of

xx_InEventDataPort_Property(): the property values are

provided as parameters, and a Signal process (called

Input_time_property) is defined in a library to verify

whether the constraints are satisfied using the input signals

Frozen_time_event and Reference_time_event (in a simula-

tion for example).

4.4 Example: translation of a thread

To further illustrate the principles of the translation, consider

(Listing 5) a thread (T implemented by T .RS) with an input

event data port called iport and an output event port called

oport. A property Input_Time is assigned to the port iport:

Input_Time=>(Time =>Start;Offset=>10 ms..15 ms;). It

specifies that the input is frozen at some amount of exe-

cution time from the beginning of execution (Start). The time

is within the specified time range (10 ms..15 ms).

Listing 5 Example of an AADL thread

thread T

features

iport: in event data port Integer

{ Input_Time=>((Time =>Start; Offset=>10 ms..15 ms;));};

oport: out event port;

end T ;

The translation in Signal is given in Listing 6. The

interface contains the input/output signals that represent

the features provided by the thread declaration, and also

some added control signals (top, ctl1, time1, ctl2, alarm).

These added signals are provided by the scheduler (input

ones) or sent to it (output ones). The body is composed

of processes that represent the translation of the proper-

ties associated with the thread (T_RS_Thread_property())

and the behavior of the thread (T_RS_Thread_behavior(

), which may be described, for example, by some tran-

sition system), and the ports with their timing seman-

tics (iport_InEventDataPort(), oport_OutEventPort()). The

translation of the iport follows the principles described above.

The translation of an output event port is quite similar.

The properties of a port (default ones or specified ones)

are also translated (iport_InEventDataPort_Property() and

oport_OutEventPort_Property()): the port queue processing

(size, protocol, overflow), and the input/output timing (Input

time, Output time) are explicited.

Restrictions. The current version of the AADL to Signal

translator does not yet implement all the AADL components.

Among non implemented components we distinguish:

– Expected ones: mode, behavior annex, bus access.

– Components that will not be implemented: thread

group, subprogram group, virtual processor, virtual bus,

flow.

– Other ones that are partly translated (translated with

some restrictions on properties such as Dequeue_ Pro-

tocol restricted to one item, Queue_Processing_ Proto-

col restricted to fifo).

4.5 Processor and its affine-scheduling

An AADL model is not complete and executable if the

processor-level scheduling is not resolved. A scheduler

is therefore required to be integrated so that a complete

model is used for the subsequent validation, distribution and

640 Front. Comput. Sci., 2013, 7(5): 627–649

Listing 6 Translation of the T thread in Signal

process T_RS_Thread =
(? integer iport;

CTL1 ctl1;
T_TIME_EVENT time1;
event top;

! boolean oport;
CTL2 ctl2;
boolean Alarm;)

(% thread behavior %
| (l_oport,ctl2) := T_RS_Thread_behavior{ }

(l_iport,ctl1.Dispatch,Start,ctl1.Resume)
% thread properties %
| (Start,Alarm) := T_RS_Thread_property{ }(ctl1,top)
% iport translation %
| l_iport := iport_InEventDataPort{Integer_INIT,1,1}

(time1.iport_Frozen_time_event,iport,ctl1.Dispatch)
% oport translation %
| oport := oport_OutEventPort{1}

(time1.oport_Output_time_event,l_oport,ctl2.Complete)
|)

where
process iport_InEventDataPort = {. . . } (. . .)
(| read_flow := iport_InEventDataPort_behavior

{def_value,size,dequeue_number,"iport"}
(write_flow,Frozen_time_event)

| iport_InEventDataPort_Property{ }
(Frozen_time_event,Reference_time_event)

|)
where

type msg_type =Integer;
process iport_InEventDataPort_behavior = {. . . } (. . .)
(| read_flow := InEventDataPort_Behavior {. . . }(. . .) |)
;

process iport_InEventDataPort_Property = {. . . } (. . .)
(| Input_Time_property{Time_Units#ms,Time_Units#ms,

10,15}(Frozen_time_event,Reference_time_event)
| Overflow_Handling_Protocol_property

{Overflow_Handling_Protocol#DropOldest}()
| Queue_Size_property{1}()
| Queue_Processing_Protocol_property

{Queue_Processing_Protocol#Fifo}()
| Dequeued_Items_property{1}()
| Dequeue_Protocol_property{Dequeue_Protocol#OneItem}()
|)

end;
process oport_OutEventPort = . . .

(| sent_flow := oport_OutEventPort_behavior
{size,"oport"}(write_flow,Output_time_event)

| oport_OutEventPort_Property{ }(Output_time_event,
Reference_time_event)

|)
where

type msg_type = boolean;
process oport_OutEventPort_behavior = {. . . } (. . .)
(| sent_flow := OutEventPort_Behavior{size,

port_name}(write_flow,Output_time_event) |)
;

process oport_OutEventPort_Property = . . .
(| Output_Time_property{Time_Units#ns,Time_Units#ns,

0,0}(Output_time_event,Reference_time_event)
| Queue_Size_property{1}()
| Queue_Processing_Protocol_property

{Queue_Processing_Protocol#Fifo}()
| Overflow_Handling_Protocol_property

{Overflow_Handling_Protocol#DropOldest}()
|)

end;
end;

simulation. A scheduling based on affine clock systems [38]

is thus developed for each AADL processor. A particular case

of affine relations is affine sampling relation, expressed as

y = {d · t + φ | t ∈ x}, of a reference discrete time x (d, t, φ are

integers): y is a subsampling of positive phase φ and strictly

positive period d on x. Affine clock relations yield an expres-

sive calculus for the specification and the analysis of time-

triggered systems. The scheduling based on the affine clocks

can be easily and seamlessly connected to Polychrony for

formal analysis.

4.6 Binding

For a complete system specification, the application compo-

nent instances must be executed by the appropriate execution

platform components. How to combine the components of a

system to produce a physical system implementation is called

binding in AADL.

A process is bound to the processor specified by

the Actual_Processor_Binding property. Support for pro-

cess/threads execution may be embedded in the processor

hardware, or it may require software that implements proces-

sor functionality. Such software must be bound to a mem-

ory component that is accessible to the processor via the

Actual_Memory_Binding property. The interactions among

these execution platform components are enabled through a

bus via the Actual_Connection_Binding property.

Binding properties are declared in the system implementa-

tion that contains in its containment hierarchy both the com-

ponents to be bound and the execution platform components

that are the target of the binding. This binding information,

as well as timing properties, is reflected in the generated Sig-

nal program by Signal property processes representing these

properties. In a further step, the Signal program is analyzed

and useful properties are kept as specific pragmas.

4.7 Timing analysis and clock synthesis

The previous translation from AADL to Signal concentrates

on the timing modeling of software architectures in AADL.

This modeling enables a formal timing analysis and clock

synthesis, based on the polychronous MoC.

4.7.1 Timing analysis

Timing analysis in this paper mainly refers to analyzing clock

relations based on clock hierarchy. The clock hierarchy of a

process is a component of its data control graph (DCG). The

DCG is made of a multigraph G and a clock system .

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 641

– Description of G:

– A node n in G represents a polychronous process

process(n); it has input signals input(n) and output

signals output(n) which are those of process(n);

it has a clock clock(n) which is either a Boolean

variable or a clock formula acting as a guard.

– A directed edge (n1, n2, a, h) links a source node

n1 to a target node n2; it is labeled by the name

a of the signal that is sent by n1 and received by

n2; it has a clock h. The signal a is transmitted

when h is tt. Two nodes n1 and n2 may be linked

by several edges.

– Description of :

– Given X the set of signal names and B ⊂ X the

set of Boolean signal names, an elementary for-

mula is either 0̂ that stands for #, x̂ that denotes

the clock of a signal x, [b] that denotes the clock

representing the tt occurrences of a Boolean sig-

nal b, or [−b] that denotes the clock representing

the ff occurrences of a Boolean signal b. The set

of elementary formulas is denoted EF.

– The set of clock formulas CF is the smallest set

that satisfies:

– EF ⊂ CF

– for all formulas f1, f2 ∈ CF, f1+̂ f2 and f1∗̂ f2
belong to CF.

– A clock equation is a class of equivalent clock for-

mulas.

– is a forest (set of trees) of clock equations.

– The node n of a tree is a clock equation; it contains

the list of signals signal(n) the clock of which is

equal to this class.

– A tree is en endochronous process.

– Each subtree S of a tree T is itself an en-

dochronous process; its clock is a (“non recur-

sive”) function of the signals signal(n) where n is

a node in T .

The following DCG levels are distinguished (see Fig. 6) in

the compiling stages of Signal programs:

– Every Signal process is represented by a general DCG

as described above, the DCGPoly; its clock system

can be normalized using:

– elementary Boolean to event transformations such

as E when (a and b)→ (E when a) when b,

Fig. 6 Clock hierarchy transformations in the timing analysis and synthesis
in Signal

– transformations based on algebraic properties

such as transitivity of partial order.

– When the forest of a process P is a tree, P is an en-

dochronous process; its DCG belongs to the DCGEndo
level. One can reduce a consistent forest to a tree by:

– building a triangular system of equations equiva-

lent to the original one, and

– adding supplementary required parameters to the

system as it is done to build memoryCell from

preMemoryCell (Listings 2, 3).

– An endochronous process P may be free of event type

signals and binary event expressions (+̂, ∗̂). It can still

use signals that are not always defined. Then P is said

to be a Boolean clocked process and its DCG belongs to

the DCGBool level. It is always possible to transform

a usual endochronous process into a Boolean clocked

process that is equivalent: an event signal h can be as-

sociated with a (possibly new) Boolean signal C such

that each occurrence of h is replaced by true when C

provided that C is equal to # or ff when h is #.

– A Boolean clocked process in which all Boolean clock

signals are synchronous is named flat. Its associated

DCG belongs to the DCGFlat level. The clock of these

Boolean clock signals is the root of the clock hierarchy.

The clock hierarchy has at most two levels: subclocks

of the root represent the instants at which Boolean

clocks are tt: Boolean clocks are used as guards for the

processes associated with the nodes of the DCG. It is al-

642 Front. Comput. Sci., 2013, 7(5): 627–649

ways possible to transform a Boolean clocked process

into an equivalent flat one. Quartz [39] and SynDEx be-

long to this class of processes.

4.7.2 Clock synthesis

In a clock tree with only one root, the simulation clock (the

fastest clock in the system) is based on the root clock (i.e., the

tick). In this case, the system is endochronous and it is possi-

ble to build the unique deterministic behavior in the code gen-

eration. But if there is no common root for all the trees, i.e.,

there is no fastest clock, the system is polychronous, and non

deterministic concurrency is thus introduced. In an AADL

multi-processor specification, it is generally hard to find the

fastest clock, as each component may have its own activation

clock or frequency. Code generation considering the deter-

ministic behavior is therefore difficult, even impossible. To

tackle this issue, independent clocks, particularly the root

clocks in different trees, are required to be synchronized. This

synchronization, called endochronization, can be performed

in an ad-hoc way by the compiler, or in a specific way in a

manual manner. More details can be found in [20]. A more

general clock synchronization method via controller synthe-

sis is also possible [40]. Endochronization leads to the trans-

formation from the DCGPoly level to the DCGEndo level.

5 From Signal to SynDEx and architecture
exploration

Both SynDEx and Signal belong to the family of syn-

chronous/polychronous languages. However, there are still

differences to consider for the translation. First, Signal is

based on a polychronous MoC, whereas SynDEx relies on the

synchronous MoC. Clock synthesis is therefore required to

endochronize multi-clocked specifications before the transla-

tion (presented in Section 4). Secondly, system representa-

tions of Signal and SynDEx, based on graphs, are at differ-

ent abstraction levels. Transformation between these levels

is thus required. The DCGFlat level is appropriate for trans-

lating Signal programs to SynDEx algorithm graphs. At this

level, all the clocks have been expanded up to the most fre-

quent clock, and state variables are also defined at this most

frequent clock. Other signals can have a “don’t care” interpre-

tation at the instants at which they are #. This corresponds to

the SynDEx interpretation. Execution platform and real-time

characteristics, preserved in Signal pragmas, are translated

into SynDEx architecture and constraints.

5.1 Syntactic translation rules

The correspondence between Signal and SynDEx represen-

tations is defined in two aspects:

– The first one is related to the algorithm [41], includ-

ing clock hierarchy, nodes and dependences. Clock hi-

erarchy plays the semantic role in Signal and serves as

a structural backbone in the translation: each clock in

the hierarchy is associated with a SynDEx algorithm

graph. This algorithm combines the computations to be

performed according to this clock, which is represented

by a SynDEx condition. The translations of nodes

and dependences are mainly syntactic, which will be

detailed later.

– The second one is related to architecture, allocation

constraints, temporal information: these information

are preserved in pragmas of the original Signal pro-

grams and will be finally translated into SynDEx archi-

tecture and constraints (presented in next subsection).

As this translation includes large syntactic details, only some

key rules are briefly presented.

In the DCGFlat representation of a Signal program, the

clock hierarchy, which is a tree, contains at most two lev-

els: the root of the tree (the tick), and the children level,

which comprises less frequent clocks defined by the tt values

of the Boolean clock signals. Let us denote these Booleans

by b1, b2, . . . , bn, and the clock [bi] denotes the instants at

which bi is tt. These clocks are subclocks of the clock tick.

Since during the Signal compilation, each clock is associated

with the subgraph containing the nodes that are defined at

this clock, the translation strategy is the following: whenever

a graph is associated with a clock, this graph is translated as

an algorithm in SynDEx.

5.1.1 Translation of the clock hierarchy

Any graph g, associated with a clock that is a child of the

tick, is translated into a SynDEx algorithm (which is a graph

of operations), with a condition defined from the clock [bi] of

this graph. The translation of g can be sketched as follows:

def algorithm P_bi:

? ...

! ...

conditions: bi = 1

The top level graph P contains the nodes associated with

the tick, as well as references to each of the graphs associated

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 643

with the subclocks of tick. The translation of P is a SynDEx

algorithm P with conditions: true.

The input and output signals (called ports in SynDEx)

are translated from signals communicating between clock

graphs. Interface signals of a whole program are translated

into sensors and actuators in SynDEx.

5.1.2 Translation of nodes

A SynDEx algorithm is mainly composed of four elements:

ports, conditions, references, and dependences. Ports and

conditions are generated along with the translation of the

clock hierarchy, references and dependences are generated

according to the attached nodes of the considered clock. In

DCGFlat, the nodes can be categorized into:

– Constants The constants are explicitly represented by

references to constant vertices in SynDEx.

– Equations A general form of equations is considered:

X := F(Y1, Y2, . . . , Yn), where F represents Signal n-ary

operators. Only elementary expressions are considered

as it is always possible to translate other expressions

into a composition of elementary definitions. SynDEx

defines libraries to provide basic algorithm (atomic op-

eration) declarations for Signal elementary operators.

Let X := F(Y1, Y2, . . . , Yn) an operation of type T , a cor-

responding SynDEx algorithm named F with type T is

declared in a predefined library. For example, the prede-

fined algorithm corresponding to the Signal default

for integer type (as it is represented in the DCG) is de-

fined as follows (dependences are discussed below):

def algorithm default:
? int i1; ? bool i2; ? int i3;
! int o;
conditions: i2 = 1;
references:
dependences: strong_precedence_data i1− > o;
conditions: i2 = 0;
references:
dependences: strong_precedence_data i3− > o;
description: "x := (i1 when i2) default

(i3 when (not i2))"

When translating such an equation, only a reference to

F associated with T is used, T/F.

Note that there is no need of predefined algorithm rep-

resenting the when operator. Indeed, in the DCG repre-

sentation, for a process X := E when b, b represents

the clock of X and the corresponding node is associated

with the subclock [b]. This subclock is taken into ac-

count when translating the clock hierarchy, thus, in the

algorithm corresponding to this subclock, X := E when

b may be considered as X := E.

– Memorizations The translation of a memorization

ZX := X$ is similar to the translation of the equations,

except that it is a reference to a memory.

– Partial definitions Let us consider the following partial

definitions: X ::= E1 when b1, . . . , X ::= En when bn.

In the DCG representation, b1, b2, . . . , bn are clocks that

are exclusive. When translating such partial definitions,

the original graph is rewritten as follows:
X := (E1 when b1) default ...

default (En when bn)

– Process calls The called process Q is defined explicitly

as a SynDEx algorithm. A call to the process Q is trans-

lated into a reference to the algorithm Q.

– External calls The translation of an external process is

similar to the translation of any process, except that the

body of the algorithm is empty since the process is not

defined in Signal.

5.1.3 Translation of dependences

After the references are declared for each node, dependences

between them are set. The dependences (the edges of the Syn-

DEx graph) are built either from data-flow connections of the

Signal graph or from explicit precedence relations.

For each data-flow connection d from the mth out-

put of a node pk to the nth input of a node pl, the

translation associates a strong precedence data

with the corresponding translated vertices in SynDEx:

strong_precedence_data p_k.o_m -> p_l.i_n;

(an example of such a dependence has been given for the

predefined default).

Another kind of dependence is used to express precedence

relations. A precedence Ei → E j in the DCG is translated

directly as a corresponding precedence in SynDEx.

5.2 Translating non-functional aspects

In the ASME2SSME transformation, execution platform,

timing properties and binding specified in AADL are pre-

served in the pragma part of Signal programs. In the trans-

lation from Signal to SynDEx, the information of execution

platform, related to processing and communication units, are

taken from the pragmas and translated into an architecture

graph in SynDEx. For example, the architecture of the SD-

SCS case study is translated as follows (extract):

def architecture IMA:

644 Front. Comput. Sci., 2013, 7(5): 627–649

operators:
CPIOM CPIOM1;
RDC RDC1;

medias:
AFDX AFDX1 no_broadcast;

connections:
CPIOM1.io AFDX1;
RDC1.io AFDX1;

CPIOM and RDC are types of computing units and AFDX

is the type of bus. The computing units are connected via the

bus.

Timing properties, such as period, deadline, computation

time, are also taken from pragmas and finally set to corre-

sponding SynDEx nodes. Here is an example from SDSCS,

where the computing time of AIRSPEED and CLL on RDC is

1 000 units:

extra_durations_operator RDC:
AIRSPEED = 1 000;
CLL = 1 000;

The binding information of software and hardware are

translated into groups and allocation constraints in SynDEx,

i.e., all the software components allocated on the same pro-

cessing unit are put into the same group, and then an allo-

cation constraint is specified in SynDEx so that this group is

allocated on the same processing unit. In the following ex-

ample, on_ground and in_flight are declared in group

g_rdc1, which is allocated onto the computing units, RDC1

or RDC2.

operation_group g_rdc1:
[\\aadl_door\on_ground,attach_all]
[\\aadl_door\in_flight,attach_all]

absolute constraint:
g_rdc1 on IMA.RDC1 IMA.RDC2;

5.3 Architecture exploration with SynDEx

SynDEx allows the designer to explore manually and/or au-

tomatically the design space solutions using schedulability

analyses and optimization heuristics for distributing (allo-

cating) and scheduling the application functions (operations)

onto the processors while satifying real-time constraints and

minimizing computing resources. The exploration results

(multiprocessor scheduling table) show the real-time behav-

ior of the functions allocated onto components of the archi-

tecture, i.e., processors, specific integrated circuits, and com-

munication media. This approach conforms to the typical ar-

chitecture exploration process [42, 43]. In addition, code is

automatically generated as a dedicated real-time executive, or

as a configuration file for a resident real-time operating sys-

tem such as Linux, Linux/RTAI, Windows/RTX, Osek [44].

6 An avionic case study

SDSCS is a generic simplified version of the system that

manages passenger doors on Airbus series aircrafts. As a

safety-critical system, in addition to the fulfillment of safety

objectives, high-level modeling and component-based devel-

opment are also expected for fast and efficient design.

In this example, each passenger door has a software han-

dler, which achieves the following tasks: (1) monitor door

status via door sensors; (2) control flight lock via actua-

tors; (3) manage the residual pressure of the cabin; (4) inhibit

cabin pressurization if any external door is not closed, latched

and locked. The four tasks are implemented with simple logic

that determines the status of monitors, actuators, etc., accord-

ing to the sensor readings. In addition to sensors and actua-

tors, SDSCS is equipped with other hardware components,

e.g., CPIOMs (Core Processing Input/Output Modules) and

RDCs (Remote Data Concentrators) are connected via the

Fig. 7 A simple example of the SDSCS architecture

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 645

Fig. 8 A partial view of the SynDEx algorithm graph

AFDX (Aircraft Full DupleX) network (see Fig. 7). Sensors

and actuators are also connected to RDCs and communicate

with other systems via AFDX.

An overview of SDSCS modeled in AADL is shown in

Fig. 3. The whole system is presented as an AADL system.

The two doors, modeled as subsystems, are controlled by two

processes doors_process1 and doors_process2. Each process

contains three threads to perform the management of doors.

All the threads and devices are periodic and share the same

period. The process doors_process1 (resp. doors_process2) is

executed on a processor CPIOM1 (resp. CPIOM2). The bus

AFDX connects the processors, CPIOM1 and CPIOM2, and

devices that model the sensors and actuators, such as DPS,

OCU, etc.

The case study was successfully transformed with the

toolchain described in Fig. 2. From a .aadl file (AADL textual

file), we first get.aaxl (AADL model file) with OSATE. Aided

by high-level and low-level APIs, ASME2SSME is able to

read the AADL models. While performing the model trans-

formation towards the SSME model, a thread-level scheduler

is also integrated. The SSME model is transformed into Sig-

nal code, from which static analysis can be performed. The

Signal code can be transformed into .sdx file (SynDEx code),

as well as other format for model checking [45] and simula-

tion [46]. From the SynDEx tool, the .sdx file is read, and the

adequation (optimized multiprocessor real-time scheduling)

can be carried out. Figure 8 illustrates a partial view of the

SynDEx algorithm graph describing a partial order on the ex-

ecution of the functions (vertices of the graph) through data

dependences (edges of the graph). This algorithm graph is

translated from the AADL functional part of SDSCS. Fig-

ure 9 shows the SynDEx architecture graph, which is trans-

lated from the AADL architectural part of SDSCS. The ar-

chitecture is composed of two processing units (CPIOM1 and

CPIOM2), two concentrators (RDC1 and RDC2) and a com-

munication media (AFDX1) of AFDX bus type, that are to-

gether connected.

Fig. 9 The SynDEx architecture graph

Figure 10 illustrates a partial view of the adequation results

(scheduling table) obtained with SynDEx: the algorithm (see

Fig. 8) is distributed and scheduled onto the architecture (see

Fig. 9). There are five columns in the figure, which represent

the five components of the architecture. From left, the first

column represents the bus AFDX1. The second and fourth

646 Front. Comput. Sci., 2013, 7(5): 627–649

Fig. 10 A partial view of the SynDEx adequation result: a scheduling table

columns represent RDC1 and RDC2 concentrators. The third

and fifth columns represent CPIOM1 and CPIOM2 proces-

sors. For every column, the start time and the complete time

of every operation (function) and every communication op-

eration are given and materialized by a horizontal line. Thus,

the processing time, flowing from top to bottom, of every op-

eration is represented by a vertical box. In this case study, the

algorithm has more than 150 nodes and the architecture has

five nodes in SynDEx. The adequation takes about 15 min-

utes 35 seconds in average. With this toolchain, it is easy

to change the configuration of the execution platform and

binding. For example, the number of processing units can be

changed, as well as the type of processing units and commu-

nication media. The influence of these changes has finally a

repercussion in SynDEx in order to be exploited. In addition,

generation of dedicated distributed real-time executives with

optional real-time performance measurement is also possi-

ble for different processors and communication media [29].

The names of AADL components are always kept in all the

transformations in order to enable traceability. Hence, our ap-

proach provides a fast yet efficient architecture exploration

for the design of distributed real-time and embedded systems.

7 Related work

Many contributions on schedulability analysis and schedul-

ing tools exist for AADL specifications, such as [3], [47],

and [48]. The main reason to choose SynDEx in our work

is that SynDEx and Signal have similar synchronous seman-

tics; this proximity reduces the difficulties in the translation.

In addition, the scheduler generated by SynDEx can be inte-

grated, in a manual manner currently, into the original Signal

programs for formal verification purpose.

AADL has been connected to many formal models for

analysis and validation. The AADL2Sync project [17] and

the compass approach [4] provide complete toolchains from

modeling to validation, but they are generally based on the

synchronous semantics, which is not close to AADL tim-

ing semantics. AADL2BIP [6] allows simulation of AADL

models, as well as application of particular verification tech-

niques, i.e., state exploration and component-based deadlock

detection. The AADL2Fiacre project [49] mainly concen-

trates on model transformation and code generation, in other

words, formal analysis and verification are performed exter-

nally with other tools and models. The previous projects do

not address code distribution and real-time scheduling in a

general sense. The Ocarina project [7] considers code gener-

ation for distributed real-time and embedded systems, but us-

ing formal models and semantics is not reported in the work.

8 Conclusion

In this paper, we present our proposed approach to address

architecture exploration based on AADL, Polychrony, and

SynDEx. Software architecture is specified in AADL at a

high level of abstraction; Polychrony provides the poly-

chronous model of computation, formal analysis, clock syn-

thesis, and transformations to bridge between AADL and

SynDEx; SynDEx is finally used for multiprocessor real-

time schedulability analyses and resource optimizations, both

allowing architecture explorations. With a reduced design

cost of embedded systems, our approach and its associated

toolchain make it possible to perform architecture exploration

at the earliest design stage. An avionic case study is used to

illustrate our approach.

In a longer term, as a perspective, the translation between

Signal and SynDEx is expected to be bidirectional, i.e., a par-

ticular distribution and scheduling determined by SynDEx

is automatically synthesized in the Signal programs for the

purpose of formal verification, performance evaluation, and

other analyses.

References

1. SAE (Society of Automotive Engineers) Aerospace. Aerospace Stan-

dard AS5506A: architecture analysis and design language (AADL).

SAE AS5506A, 2009

2. Feiler P, Gluch D. Model-based engineering with AADL. Addison

Wesley Professional, September 2012

3. Singhoff F, Legrand J, Nana L, Marcé L. Scheduling and memory re-

quirements analysis with AADL. Ada Letters. 2005, 1–10

4. Bozzano M, Cimatti A, Katoen J P, Nguyen V, Noll T, Roveri M.

Safety, dependability, and performance analysis of extended AADL

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 647

models. The Computer Journal, 2011, 54(5): 754–775

5. Feiler P, Hansson J. Flow latency analysis with the architecture analysis

and design language (AADL). Technical Report, CMU, 2007

6. Chkouri M, Robert A, Bozga M, Sifakis J. Models in software engi-

neering. Translating AADL into BIP-Application to the Verification of

Real-Time Systems. Springer-Verlag, 2009

7. Hugues J, Zalila B, Pautet L, Kordon F. From the Prototype to the final

embedded system using the ocarina AADL tool suite. ACM Trans-

actions in Embedded Computing Systems (TECS), 2008, 7(4): 42:1–

42:25

8. Yang Z, Hu K, Ma D, Pi L. Towards a formal semantics for AADL

behavior annex. In: Proceedings of the 2009. Conference on Design,

Automation and Test in Europe. 2009, 1166–1171

9. Ma Y, Yu H, Gautier T, Le Guernic P, Talpin J P, Besnard L, Heitz M.

Toward polychronous analysis and validation for timed software archi-

tectures in aadl. In: Proceedings of the 2013 Conference on Design,

Automation and Test in Europe. 2013, 1173–1178

10. Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Si-

mone R. The synchronous languages twelve years later. Proceedings

of the IEEE, 2003, 9(1): 64–83

11. Le Guernic P, Talpin J P, Le Lann J C. Polychrony for system design.

Journal for Circuits, Systems and Computers, 2002, 12: 261–304

12. Talpin J P, Le Guernic P, Shukla S, Doucet F, Gupta R. Formal re-

finement checking in a system-level design methodology. Fundamenta

Informaticae, 2004, 62(2): 243–273

13. Sorel Y. Massively parallel computing systems with real time con-

straints: the “algorithm architecture adequation” methodology. In: Pro-

ceedings of the 1st International Conference on Massively Parallel

Computing Systems. 1994, 44–53

14. The polychrony toolset. http://www.irisa.fr/espresso/Polychrony/

15. Gamatié A. Designing embedded systems with the SIGNAL program-

ming language. Springer, 2010

16. Sorel Y. SynDEx: system-level CAD software for optimizing dis-

tributed real-time embedded systems. ERCIM News, 2004, 59: 68–69

17. Jahier E, Halbwachs N, Raymond P. Synchronous modeling and vali-

dation of priority inheritance schedulers. In: Fundamental Approaches

to Software Engineering, Springer, 2009, 140–154

18. Girault A. A survey of automatic distribution method for synchronous

programs. In: Maraninchi F, Pouzet M, Roy V, eds, Proceedings of

the 2005 International Workshop on Synchronous Languages, Appli-

cations and Programs, ENTCS. April 2005

19. Cost-efficient methods and processes for safety relevant embedded sys-

tems (CESAR project). http://www.cesarproject.eu/

20. Besnard L, Gautier T, Le Guernic P, Talpin J P. Compilation of poly-

chronous data flow equations. In: Shukla S, Talpin J P, eds, Synthesis

of Embedded Software: Frameworks and Methodologies for Correct-

ness by Construction, Springer, 2010, 1–40

21. An industry working group focusing on open source tools for the de-

velopment of embedded Systems. http://polarsys.org/

22. Eclipse modeling framework project (EMF). http://www.eclipse.org/

modeling/emf/

23. OSATE V2 project. http://gforge.enseeiht.fr/projects/osate2/

24. Abramsky S, Jung A. Domain theory. In: Abramsky S, Gabbay D,

Maibaum T, eds, Handbook of Logic in Computer Science, volume

3, 1–168. Oxford University Press, 1994

25. Kahn G. The semantics of a simple language for parallel programming.

Information Procesing, 1974, 471–475

26. Plotkin G. A powerdomain construction. SIAM Journal on Computing,

1976, 5: 452–487

27. Sorel Y. Syndex: system-level cad software for optimizing distributed

real-time embedded systems. Journal ERCIM News, 2004, 59: 68–69

28. The syndex software. http://www.syndex.org

29. Grandpierre T, Sorel Y. From algorithm and architecture specification

to automatic generation of distributed real-time executives: a seamless

flow of graphs transformations. In: Proceedings of the 1st ACM/IEEE

International Conference on Formal Methods and Models for Codesign

(MEMOCODE’03). 2003, 123–132

30. Dennis J. First version of a dataflow procedure language. In: Lecture

notes in computer science, volume 19, 362–376. Springer-Verlag, 1974

31. Harel D, Pnueli A. On the development of reactive systems. In: Apt K,

ed, Logics and Models of Concurrent Systems. Springer Verlag, New

York, 1985

32. Grandpierre T. Modèisation d’architectures parallèes hétérogènes pour

la génération automatique d’exéutifs distribués temps réel optimisés.

PhD thesis, Universitéde Paris Sud, Spéialité éectronique, 2000

33. Liu C, Layland J. Scheduling algorithms for multiprogramming in a

hard real-time environment. Journal of ACM, 1973, 14(2): 46–61

34. Grandpierre T, Lavarenne C, Sorel Y. Optimized rapid prototyping for

real-time embedded heterogeneous multiprocessors. In: Proceedings

of the 7th International Workshop on Hardware/Software Co design,

CODES’99. 1999, 74–78

35. Kermia O, Sorel Y. A rapid heuristic for scheduling non-preemptive de-

pendent periodic tasks onto multiprocessor. In: Proceedings of ISCA

20th International Conference on Parallel and Distributed Computing

Systems, PDCS’07. September 2007, 1–6

36. Ndoye F, Sorel Y. Safety critical multiprocessor real-time scheduling

with exact preemption cost. In: Proceedings of the 8th International

Conference on Systems, ICONS’13. January, 2013, 127–136

37. Ma Y, Yu H, Gautier T, Talpin J P, Besnard L, Le Guernic P. System

synthesis from AADL using polychrony. In: Proceedings of the 2011

Electronic System Level Synthesis Conference. 2011, 1–6

38. Smarandache I, Gautier T, Le Guernic P. Validation of mixed Signal-

Alpha real-time systems through affine calculus on clock synchroni-

sation constraints. In: Proceedings of the 1999 World Congress on

Formal Methods. 1999, 1364–1383

39. Brandt J, Gemünde M, Schneider K, Shukla S, Talpin J P. Representa-

tion of synchronous, asynchronous, and polychronous components by

clocked guarded actions. Design Automation for Embedded Systems,

2012, 1–35

40. Yu H, Talpin J P, Besnard L, Gautier T, Marchand H, Le Guer-

nic P. Polychronous controller synthesis from MARTE CCSL timing

specifications. In: Proceedings of the 9th IEEE/ACM International

Conference on Formal Methods and Models for Codesign (MEM-

OCODE’11). 2011, 21–30

41. Pan Q, Gautier T, Besnard L, Sorel Y. Signal to SynDEx: translations

between synchronous formalisms. 2003

42. Pimentel A, Erbas C, Polstra S. A systematic approach to exploring

embedded system architectures at multiple abstraction levels. IEEE

Transactions on Computers, 2006, 55(2): 99–112

43. Gries M. Methods for evaluating and covering the design space during

early design development. Integration, the VLSI Journal, 2004, 38(2):

131–183

44. Osek. http://www.osek-vdx.org/

648 Front. Comput. Sci., 2013, 7(5): 627–649

45. Ma Y. Compositional modeling of globally asynchronous locally syn-

chronous (GALS) architectures in a polychronous model of compota-

tion. PhD thesis, University of Rennes 1, 2010

46. Yu H, Ma Y, Glouche Y, Talpin J P, Besnard L, Gautier T, Guernic L P,

Toom A, Laurent O. System-level co-simulation of integrated avionics

using polychrony. In: Proceedings of the 2011 ACM Symposium on

Applied Computing (SAC’11). 2011, 354–359

47. Sokolsky O, Lee I, Clarke D. Schedulability analysis of AADL mod-

els. In: Proceedings of the 20th International Conference on Parallel

and Distributed Processing. 2006, 179

48. Gui S, Luo L, Li Y, Wang L. Formal schedulability analysis and simu-

lation for AADL. In: Proceedings of the 2008 International Conference

on Embedded Software and Systems (ICESS). 2008, 429–435

49. Berthomieu B, Bodeveix J P, Farail P, Filali M, Garavel H, Gaufillet P,

Lang F, Vernadat F. Fiacre: an intermediate language for model ver-

ification in the topcased environment. In: Proceedings of the 2008

International Conference of Embedded Real Time Software. 2008

Huafeng Yu has been an expert re-

search engineer within INRIA Rennes,

France. His work is involved in tim-

ing analysis, formal verification, simu-

lation, and synthesis of MARTE-based

timed systems, AADL, and Simulink

in the framework of several European

projects, such as CESAR and OPEES.

He completed his Master’s study in Systems and Software at Uni-

versité Joseph Fourier Grenoble 1 (France) in 2005. He received his

PhD in Computer Science from Université des Sciences et Tech-

nologies de Lille (France) in 2008. He is now working in Toyota In-

foTechnology Center USA as a senior researcher. His main research

interests include model-based systems engineering, automotive and

aerospace engineering, embedded systems design, formal methods,

and synchronous languages.

Yue Ma has been a post-doc fellow

in IRISA/INRIA Rennes, France. She

works on the modeling, temporal anal-

ysis, formal verification and simulation

of globally asynchronous locally syn-

chronous systems, especially AADL

using polychrony in the framework

of European TopCased, CESAR and

OPEES projects. She received her PhD in Computer Science from

University of Rennes 1 (France) in 2010. She is now working in

itemis France as a senior software architect. Her research inter-

ests include software engineering, embedded systems design, syn-

chronous programming, AADL modeling and analysis, automotive

engineering, such as AUTOSAR and EAST-ADL.

Thierry Gautier is a researcher with IN-

RIA. He received the graduate degree

from the Institut National des Sciences

Appliqu’ees, Rennes, France, in 1980,

and the PhD in Computer Science from

Université de Rennes 1 in 1984. He

is one of the designers of the signal

language, the polychronous model of

computation and the Polychrony toolset. His main research inter-

ests lie in the safe design of complex embedded systems, including

formal modeling, formal validation, and transformations of models

to target architectures.

Loïc Besnard is currently a senior engi-

neer at CNRS, France. He received his

PhD in Computer Science from Uni-

versité de Rennes, France (1992). His

research interests include the software

reliability for the design of embedded

systems: modeling, temporal analy-

sis, formal verification, simulation, and

synthesis of embedded systems. He is involved in the development

of the polychony toolset based on the synchronous language signal.

Jean-Pierre Talpin is a senior researcher

with INRIA and leads the project-team

who develops the open-source poly-

chrony environment. He received his

PhD from Université Paris VI Pierre

et Marie Curie in 1993. He then was

a research associate with the European

Computer-Industry Research Centre in

Munich before to join INRIA in 1995. Jean-Pierre edited two books

with Elsevier and Springer, guest-edited more than ten special is-

sues of ACM and IEEE scientific journals, and authored more than

20 journal articles and book chapters and 60 conference papers. He

received the 2004 ACM Award for the most influential POPL pa-

per, for his 2nd conference paper with Mads Tofte, and the 2012

LICS Test of Time Award, for his 1st conference paper with Pierre

Jouvelot.

Huafeng YU et al. Exploring system architectures in AADL via Polychrony and SynDEx 649

Paul Le Guernic graduated from Insti-

tut National des Sciences Appliquées

de Rennes in 1974. He performed his

Thèse de troisième cycle in Computer

Science in 1976. From 1978 to 1984 he

had a research position at INRIA. He is

the Directeur de Recherche in this insti-

tute since 1985. He has been the head

of the “Programming Environment for

Real Time Applications” group, which has defined and developed

the signal language. His main current research interests include the

development of theories, tools, and methods, for the design of real-

time embedded heterogeneous systems. He is one of the architects

of the polychrony toolset.

Yves Sorel is a research director at IN-

RIA (National Institute for Research in

Computer Science and Control), and

scientific leader of the Rocquencourt’s

team AOSTE (models and methods

of analysis and optimization for sys-

tems with real-time and embedding

constraints). He is a member of the

Steering Committee of the Competi-

tivity Cluster OCDS/SYSTEM@TIC Paris-Region. His main re-

search topic concerns the analysis and the optimization of dis-

tributed real-time embedded systems. He is also the founder of

the AAA methodology (Algorithm Architecture Adequation) and of

SynDEx, a system level CAD software downloadable free of charge

at: www.syndex.org. More details, including a publication list, can

be found at: www-rocq.inria.fr/ sorel/work.

