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Abstract

Hardware fault tolerance is an important consideration in critical distributed real-time embedded systems that has

been extensively researched. In these systems, critical real-time constraints must be satisfied even in the presence of

hardware component failures. Our goal is to propose a solution to automatically produce a fault tolerant distributed

schedule of a given algorithm onto a given distributed architecture, according to real-time constraints. The distributed

architectures we consider have bidirectional point-to-point communication links. Our solution is a list scheduling

heuristics, based on disjoints paths to tolerate a fixed number of arbitrary processor and communication link failures.

Because of the resource limitation in embedded systems, our heuristics implements a software solution based on the

active replication technique, where each operation of the algorithm is replicated on different processors. Through

a detailed example, we show the techniques used to satisfy the real-time constraints and to tolerate the failures of

processors and communications links. Simulations show the efficiency of our method compared to other heuristics

found in the literature.
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1 Introduction

Embedded real-time systems are being increasingly used in a major part of critical applications such as avionics,

automotive, nuclear, robotics, and telecommunication. In these systems, critical real-time constraints must be satis-

fied [14, 42], since timing constraints which are not met may involve a system failure leading to a human, ecological,

and/or financial disaster. One of the major problems of these systems is dependability [4, 45], since the malfunction

or the failure of system’s components (hardware or software) can lead to a catastrophe. The dependability of such

real-time systems can be increased through hardware or software fault tolerance techniques [46], such that a system

built with fault tolerance capabilities will keep operating even in the presence of failures [31]. Hardware fault tolerance

improves the dependability of distributed real-time systems by redundancy: adding extra hardware (processors, com-

munication media, actuators, sensors) [11, 34] or extra software (tasks, messages) [30, 23] into the system. However,

in most embedded systems hardware fault tolerance techniques, based on hardware redundancy, are not preferred due

to the limited resources available, for reasons of weight, encumbrance, energy consumption (e.g., autonomous vehi-

cles), radiation resistance (e.g., nuclear or space), or price constraints (e.g., consumer electronics). Therefore, critical

embedded systems increasingly use software redundancy to achieve the required dependability.

The general domain of our research is hardware fault tolerance, based on software redundancy, in distributed crit-

ical embedded systems. Our ultimate goal is to develop new scheduling heuristics to produce automatically a fault

tolerant distributed code from a given specification of the desired system. Concretely, we are given as input a spec-

ification of the algorithm to be distributed (Alg), a specification of the target distributed architecture (Arc), some

distribution constraints (Dis), some information about the execution times of the algorithm operations on the pro-

cessors and the communication times of the algorithm data-dependencies on the communication links (Exe), some

real-time constraints (Rtc), and a fixed number of components failures to be tolerated (Ncf ); components are proces-

sors and communication links. Our goal is to find a static schedule of Alg onto Arc, satisfying Dis , and tolerant to

at most Ncf component failures, with an indication whether or not this schedule satisfies Rtc w.r.t. Exe. The global

picture of our methodology is shown in Figure 1. In this paper, we focus on the distribution algorithm.

Finding an algorithm that gives the best fault tolerant schedule w.r.t. the execution times is a well-known NP-hard

problem [16]. Instead, we propose a heuristics that gives one scheduling, possibly not the best. This heuristics takes

into account the execution time of both the computation operations and the data communications to optimize the critical

path of the obtained schedule. Operations scheduled on the distributed heterogeneous architecture are guaranteed to

complete even in the presence of a specified number of components failures at any instant of time. All the components

are assumed to be fail-silent. But there is no need for a complex failure detection mechanism; and there is no need for

the healthy processors to propagate the state of the faulty ones. The strategy used to schedule operation replicas ensures

a minimum run-time overhead in the faulty system (a system presenting at least one component failure) compared to

the nominal one (with no failures).
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Figure 1: Global picture of our methodology

The paper is organized as follows. Section 2 describes the related work. Section 3 states our fault tolerance

problem and presents the various models used by our method. Section 4 presents the proposed heuristics for providing

fault tolerance for architecture with multiple processors linked by a set of point-to-point links. Section 5 explains

the runtime behavior of the fault-tolerant schedules produced by our heuristics. Section 6 presents the analysis of the

performance of our heuristics and the simulations results. Finally, section 7 concludes and proposes directions for

future research.

2 Related work

The key to building fault tolerant distributed real-time systems in general is redundancy: redundant components and/or

algorithmic blocks are added to the system. There are three classes of redundancy: hardware, software, and time

redundancy [30]. As we are targeting embedded systems with limited hardware resources, in this section we only

present work involving software and time redundancy.

In the literature, we can identify several software fault tolerance approaches for dependable embedded systems,

tolerating: only processors failures, only communication media failures, or both processors and communication media

failures.

The first category of approaches tolerates only processor failures. Several heuristics for scheduling real-time tasks

in multiprocessors architectures have been proposed. They are based either on active software replication [9, 10, 17,

29] or passive software replication [36, 2, 39, 7, 3, 35]. In the active replication technique, multiple redundant copies

of each task are scheduled on different processors, which are run in parallel to tolerate a fixed number of processor

failures. For instance, Hashimoto et al. propose a scheduling algorithm to tolerate a single processor failure [29]: each

task is actively replicated on two different processors. However, the proposed algorithm is limited to homogeneous
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systems (the execution characteristics of a given task are identical on all processors) and fully connected architectures.

Our work is more general since we target heterogeneous architectures, and we only require a minimum number of

disjoint paths between any two processors.

In the passive replication strategy, also called primary backup approach, each task is replicated into several copies:

one primary and several backup copies; only the primary replica executes; when the primary fails, one of the backups

is selected to become the new primary. For instance, Xiao proposes a fault tolerant real-time scheduling algorithm

that can tolerate one processor failure in a heterogeneous distributed system [40]. Faults are assumed to be permanent

and the approach describes a primary backup scheme, where each real-time task has two copies. In [36], Oh and Son

propose a one timely fault tolerant scheduling algorithm to tolerate one processor failure and to minimize the obtained

schedule length. They assume that processors are fail-stop and that the failure of a processor can be detected by the

other processors. The backup copies scheduled on the same processor are overlapped with each other in time, in order

to reduce the fault tolerance overhead.

The second category of approaches tolerates communication media failures. Several techniques have been pro-

posed, either proactive or reactive. In the proactive scheme [15, 33, 41, 32, 13], multiple redundant copies of a

message are sent along disjoints paths. In the reactive scheme [44, 28, 27, 8, 5], one copy of the message, called

primary, is sent, and if the primary copy fails, another copy of the message, called backup, will be transmitted.

The last category of approaches tolerates both processors and communication media failures. In [38, 48, 24],

failures are tolerated using the fault recovery scheme and a primary/backups strategy. In [12], Dima et al. propose an

original off-line fault tolerant scheduling algorithm which uses the active replication of tasks and communications to

tolerate a set of failure patterns; each failure pattern is a set of processor and/or communications media that can fail

simultaneously, and each failure pattern corresponds a reduced architecture. The proposed algorithm starts by building

a basic schedule for each reduced architecture plus the nominal architecture, and then merges these basic schedules to

obtain a distributed fault tolerant schedule. It has been implemented very recently by Pinello et al. [37]. In the future,

we plan to compare this method with ours.

Like the other researchers belonging to the last category, we propose an automatic solution to the fault tolerance

distributed problem. The conjunction of the four following points makes our approach original:

1. We take into account the execution time of both the computation operations and the data communications to

optimize the critical path of the obtained schedule.

2. Since we produce a static schedule, we are able to compute the expected completion date for any given operation

or data communication, both in the presence and in the absence of failures. Therefore we are able to check the

real-time constraints Rtc before the execution. If Rtc is not satisfied, we can give a warning to the designer, so

that he can decide whether to add more hardware or to relax Rtc.

3. The source algorithm Alg can be designed with a high-level programming language based on a formal mathe-
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matical semantics. For instance, this is the case of synchronous languages, which are moreover well suited to

the programming of embedded critical systems [26, 6]. The advantage is that Alg can be formally verified with

model-checking and theorem proving tools, and therefore we can assume safely that it is free of design faults.

The scheduling method we propose in this paper preserves this property.

4. Operations scheduled on the distributed architecture are guaranteed to complete if at most Ncf processors or

communication links fail at any instant of time. There is no need for a complex failure detection mechanism.

Finally, due to the scheduling strategy used, the time needed for handling a failure is minimal.

The heuristics presented in this paper is our most recent work for integrating fault tolerance in the SYNDEX 1 tool [22],

a system level CAD software tool for optimizing the implementation of real-time embedded applications on multicom-

ponent architecture. Prior work has been published in [20, 21, 12, 19, 18]. The method presented in this paper is more

general since it tolerates both processors and communication links failures.

3 System models and assumptions

3.1 Architecture model

The architecture is modeled by a graph Arc, where each vertex is a processor, and each edge is a bidirectional com-

munication link. Classically, a processor is made of one computation unit, one local memory, and one or more

communication units, each connected to one communication link. Communication units execute data transfers, called

comms. The chosen communication mechanism is the send/receive [25], where the send operation is non-blocking

and the receive operation blocks in the absence of data. Figure 2(b) is an example of architecture graph, with four

processors P1, P2, P3 and P4, and four point-to-point communications links L12, L14, L23, and L34.

(a)

P2

P3

P1
L12

L34

L14

P4

(b)

L23B

C

O’I’

ODI

A

Figure 2: Example of (a) an algorithm graph Alg and (b) an architecture graph Arc.

In the sequel, we note P the set of processors of Arc. For Figure 2(b), P={P1,P2,P3,P4}.

1http://www-rocq.inria.fr/syndex
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3.2 Algorithm model

The algorithm to be distributed is modeled by a data-flow graph Alg . Each vertex is an operation and each edge is

a data-dependency. The algorithm is executed repeatedly for each input event from the sensors (operations without

predecessors) in order to compute the output events for the actuators (operations without successors). This periodic

sampled model is commonly used for embedded systems and automatic control systems. Operations of Alg can be

either:

• a computation operation (comp): its inputs must precede its outputs; the outputs depend only on the input

values; there is no internal state variable and no other side effect;

• a memory operation (mem): the data is held in sequential order between iterations; the output precedes the input,

like a register in Boolean circuits;

• an external input/output operation (extio); operations with no predecessor in the data flow graph (resp. no

successor) are the external input interfaces (resp. output), handling the events produced by the sensors (resp.

actuators).

Figure 2(a) is an example of algorithm graph, with eight operations: (I,I’) are sensor operations, and (O, O’) are

actuator operations, while (A, B, C, D) are computation operations. The data-dependencies between operations are

depicted by arrows. For instance, the data-dependency A . D corresponds to the sending of some arithmetic result

computed by A and needed by D.

operation
time I I’ A B C D O O’
P1 2.5 ∞ 2.5 3.0 2.0 1.5 3.0 3.0
P2 1.5 1.5 1.5 2.0 1.0 0.5 2.0 ∞
P3 2.5 ∞ 2.5 3.0 2.0 1.5 3.0 3.0

pr
oc

.

P4 1.5 1.5 1.5 2.0 1.0 0.5 2.0 ∞

data-dependency
time I . A I . B I’ . B I’ . C A . D B . D C . O’ B . O’ D . O
L12 1.0 2.0 1.5 2.0 1.5 2.0 1.5 1.0 1.5
L23 2.0 4.0 3.0 3.0 4.0 4.0 3.0 2.0 3.0
L14 1.0 2.0 1.5 2.0 1.5 2.0 1.5 1.0 1.5li

nk

L34 2.0 4.0 3.0 3.0 4.0 4.0 3.0 2.0 3.0

Table 1: Distributed constraints Dis and execution/transmission times Exe for operations and data-dependencies.

To each operation o of Alg , we associate in a table Exe its execution time on each processor: each pair 〈o, p〉 of Exe

is the worst case execution time (WCET) of the operation o on the processor p, expressed in time units. Since the

target architecture is heterogeneous, the WCET for a given operation can be distinct on each processor. Similarly, to

each data-dependency of Alg , we associate in a table Exe its transmission time on each communication link: each pair

〈d, l〉 of Exe is the worst case transmission time (WCTT) of the data dependency d on the communication link l, again
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expressed in time units. Since the target architecture is heterogeneous, the WCCT for a given data-dependency can be

distinct on each communication link.

For instance, Exe for Alg and Arc of Figure 2 is given in Table 1. The table only gives the transmission times for

inter-processor communications. For an intra-processor communication, the time is always zero time unit.

Finally, specifying the distribution constraints Dis amounts to associating the value ’∞’ to some pairs 〈o, p〉 of

Exe, meaning that o cannot be executed on p (see Table 1). The reason for this might be because the operation o

requires a specific co-processor to execute, for instance.

3.3 Failure model

As said in the introduction, our goal is to find an Ncf fault tolerant static schedule of Alg onto Arc, satisfying Dis

and Rtc. A fault tolerant static schedule is defined as a schedule in which no real-time constraints Rtc are missed,

despite Ncf arbitrary component (processor and communication link) failures. The failures considered are fail-silent

component failures (permanent or intermittent): each component exhibits only omission or crash failures. Since

software redundancy makes the failure behavior of such system more predictable, masking faults (i.e., never showing

the effect of faults [31]) by redundancy is the basic principle of our method.

We assume that all values returned by the replicas of any given input operation are identical in the same iteration.

The real-time constraints Rtc can be, for instance, a deadline for the completion date of the whole schedule. If the

user wants to be more precise, he/she can specify a deadline on the completion date of a particular operation of Alg .

The fact that the obtained schedule is static allows the computation of any such completion date w.r.t. Exe.

4 The proposed fault tolerant scheduling algorithm

In this section, we discuss the basic principles used in the proposed approach for tolerating component failures in

architectures with point-to-point links, followed by a description of our algorithm.

4.1 Algorithm principles

Our algorithm is a list scheduling heuristics based on an active replication strategy and disjoints paths, which allows

at least Ncf +1 replicas of an operation to be scheduled on different processors, which are run in parallel to tolerate at

most Ncf component failures.

We use the software redundancy of both comps/mems/extios and comms. Each operation of Alg graph is

replicated on R different processors of the architecture graph, where R ≥ Ncf + 1. Each of the best Ncf + 1 replicas

send their results in parallel to all the replicas of all the successor operations in the data-flow graph. Therefore, each

operation will receive its set of inputs Ncf +1 times via disjoints paths; as soon as it receives the first set, the operation

is executed and ignores the later inputs. In some cases, the replica of an operation will only receive some of its inputs
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once, through an intra-processor communication; this will occur whenever one of its predecessor operations has one

of its replicas scheduled on the same processor.

For the sake of simplicity, suppose we have an operation A with only one input produced by its predecessor I

(Figure 3(a)); suppose also that we want to tolerate one component failure (Ncf =1); then, both operations A and I will

be actively replicated on two distinct processors (Figure 3(b)).

data

tw
o replicas of A

tw
o replicas of I data

data

data

three replicas of I

(a) Algorithm sub−graph (b) Replicating operations (c) Replicating communications

tw
o replicas of A

I2

A1

A2

I1

A2

A1

I2
AI

I1

I3

Figure 3: Software redundancy of operations and communications.

Consider the replicas I1 and I2 of I, which are assigned respectively to processors P1 and P3, as shown in the diagram

of Figure 4. In this diagram, each operation is represented by a white box, whose height is proportional to its execution

time. Each comm is represented by a gray box, whose height is proportional to its communication time, and whose

ends are bound by two arrows: one from the source operation and one to the destination operation. In our example,

each replica of A is assigned to a processor distinct from P1 and P3, so the comm from each replica of I to each replica

of A will be actively implemented via disjoints paths as inter-processor communications; indeed, the communications

I1 . A1 and I2 . A1 are implemented via two disjoint paths, and so are I1 . A2 and I2 . A2.

time

I1 −> A1

data

I2 −> A2

data

A2

I2 −> A1

data

I1 −> A2

data

L23

I1 I2

L34 L14P4L12P1 P2 P3

A1

Figure 4: Schedule Ncf +1 replicas of each operation with Ncf =1.

Since the communication cost between operations assigned to the same processor is considered to be zero, replicating

an operation more than Ncf +1 times can reduce the global interprocessor communication overheads of the schedule;

this property is known as the locality of computations. For example, consider the schedule of Figure 4: if I is ad-

ditionally replicated on P4, the temporary schedule length of processor P4 can be reduced, both in the presence and

in the absence of component failures, as shown in Figure 5. Indeed, the comm from I to each replica of A will be

implemented only once, as a single intra-processor communication. This situation corresponds to Figure 3(c).

Finally, the temporary schedule diagrams of Figures 5 and 4 can mask the failures of one arbitrary processor or
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communication link. For example, if the link L12 fails, then operation A1, scheduled on P2, will use the data received

from replica I2 scheduled on P3, as shown in Figure 6.

time

I1 −> A1

data

I2 −> A1

data

A2

L23

I1

L34 L14P4L12P1 P2 P3

A1

I2 I3

Figure 5: Schedule more than Ncf +1 replicas of an operation.

� �
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� �
� �

time

I1 −> A1

data

I2 −> A1

data

A2

A1

L23

I1

L34 L14P4L12P1 P2 P3

I2 I3

Figure 6: The temporary schedule diagram when link L12 fails.

4.2 Notations

Before describing our proposed scheduling heuristics (Figure7), we first define the following notations which are used

in the rest of this paper. Our heuristics runs in a succession of steps. At each step, one operation is selected to be

scheduled on a subset of processors. The superscript number in parentheses refers to the step of the heuristics:

• O
(n)
cand: The list of candidate operations, built from the algorithm graph vertexes. An operation is said to be a

candidate if all its predecessors are already scheduled.

• FT
(n)
sched: The list of already scheduled actions (operations, data-dependencies), with their respective compo-

nent (processor or communication link) and start time.

• pred(oi): The set of predecessors of operation oi.

• succ(oi): The set of successors of operation oi.

• R(n): The critical path length.

• E
(n)
exc(oi, pj): The end of execution time of operation oi scheduled on processor pj .
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• E
(n)
com(oi, oj): The end of data communication time from operation oi to operation oj .

• S
(n)

(oi): The latest start time from end of oi, defined to be the length of the longest path from the outputs

operations to oi.

• S
(n)
best(oi, pl): The earliest time at which operation oi can start execution on processor pl, computed as follows:

S
(n)
best(oi, pl) = max

oj∈pred(oi)

{

Npf+1

min
k=1

E(n)
com(ok

j , oi)

}

where ok
j is the kth replica of oj . If oi and ok

j are scheduled in the same processor pl, then

E(n)
com(ok

j , oi) = E(n)
exc(o

k
j , pl)

• S
(n)
worst(oi, pl): The latest time at which operation oi can start execution on processor pl, taking into account all

the predecessors replicas; it is computed as follows:

S
(n)
worst(oi, pl) = max

oj∈pred(oi)

{

Npf+1
max
k=1

E(n)
com(ok

j , oi)

}

where ok
j is the kth replica of oj . If oi and ok

j are scheduled in the same processor pl then

E(n)
com(ok

j , oi) = E(n)
exc(o

k
j , pl)

As a cost function for our greedy list scheduling heuristics, we use the dependable schedule pressure, noted δ(n), in

order to give priority between operations. It uses a variant σ̃(n) of the schedule pressure σ(n) defined in [43]. The

schedule pressure σ(n) is computed, for each operation oi ∈ O
(n)
cand and each processor pj ⊂ P , as follows:

σ(n)(oi, pj) := S
(n)
best(oi, pj) + S

(n)
(oi) − R(n−1) (1)

Then, σ̃(n) is computed as follows:

σ̃(n)(oi, pj) := S
(n)
worst(oi, pj) + S

(n)
(oi) − R(n−1) (2)

where the use of S
(n)
worst instead of S

(n)
best allows the reduction of the schedule length overhead in the presence of Ncf

arbitrary component failures. Then, the dependable schedule pressure δ(n) is computed for each operation oi ∈ O
(n)
cand

and a set of processors Popts ⊂ P (recall that P is the set of all processor) as follows:

δ(n)(oi, Popts) := max
pj∈Popts(oi)

σ̃(n)(oi, pj) (3)

where

Popts(oi) :=

{

pj |pj ∈
Ncf +1

min
pj∈P

σ̃(n)(oi, pj)

}

(4)

The dependable schedule pressure measures how much the scheduling of an operation lengthens the critical path of

the algorithm in the absence of component failures.
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4.3 Scheduling algorithm
Our heuristics is a greedy list scheduling [47], called the improved Fault Tolerance Based Active Replication strategy

(iFTBAR) algorithm 2. Initially, FT
(0)
sched is empty and O

(0)
cand is the list of operations without any predecessors. At

the n-th step (n ≥ 1), the list of already scheduled operations FT
(n)
sched is kept. Also, the list of candidate operations

O
(n)
cand is built from the algorithm graph vertexes.

The iFTBAR Algorithm:

Inputs: Alg , Arc, Exe , Rtc , Dis , Ncf ;

Output: a fault-tolerant distributed schedule FT sched;

begin

Initialize the lists of candidate and scheduled operations:

n := 0;

O
(0)
cand := {o ∈ O | pred(o) = ∅};

FT
(0)
sched := ∅;

while O
(n)
cand 6= ∅ do

➀ Compute the modified schedule pressure σ̃(n) for each operation ocand of O
(n)
cand on each processor pj of P using

Equation (2).

➁ Compute the set of optimal processors Popts for each candidate operation ocand of O
(n)
cand using Equations (3) and (4).

➂ Select the best candidate operation obest, such that:

δ
(n)
urgent(obest) := max

ocand∈O
(n)
cand

δ
(n)(ocand, Popts);

➃ Schedule Ncf +1 replicas of the best candidate operation obest on each processor of Popts computed at micro-step ➁.

The comms implied by this scheduling decision are also scheduled here, such that each replica of obest receives its

input data via disjoints links from only the best Ncf +1 replicas of each of these predecessor operations.

➄ Try to reduce the worst start time S
(n)
worst of each replica of obest by applying the procedure “Minimize Start Time” (see

Figure 8).

➅ Update the lists of scheduled and candidate operations :

FT (n+1)
sched := FT (n)

sched ∪Ncf +1
k=1 {〈ok

best, Popts(k), Sbest(o
k
best, Popts(k))〉};

O
(n+1)
cand := O

(n)
cand − {obest} ∪ {o′ ∈ succ(obest) | pred(o′) ⊆ FT (n+1)

sched };

➆ n := n + 1;

end while

return the fault-tolerant distributed schedule FT (n)
sched;

end

Figure 7: The fault tolerant scheduling algorithm iFTBAR.

2FTBAR was first presented in [18, 19]. The difference with iFTBAR is that it tolerates only processor failures.
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At each step n, one operation of the list O
(n)
cand is selected to be scheduled. To select an operation, we select at the

micro-steps ➀ and ➁, for each candidate operation ocand, the Ncf +1 optimal processors Popts having the minimum

schedule pressure. Then, among those pairs 〈ocand, Popts〉, we select at the micro-step ➂ the best one 〈obest, Popts〉

having the maximum schedule pressure, i.e., the most urgent pair.

The selected operation obest is replicated and scheduled at the micro-step ➃ on each processor of Popts(obest), and

the comms implied by these scheduling decisions are also scheduled here via disjoint paths. At this micro-step, the

start time of each replica of the selected operation obest is possibly reduced by replicating its predecessors using the

procedure Minimize Start Time, which is an extended procedure of the one proposed in [1] (see Figure 8).

The Minimize Start Time Procedure (MSTP):

Inputs: an operation o, a processor p, Sworst, a schedule FT sched ;

Output: an improved schedule FT sched;

begin

➊ if (o cannot be scheduled on p) or (o is an input operation) then return FT sched;

➋ Find out the Latest Immediate Predecessor (LIP) of o;

➌ Minimize the start time of this LIP by recursively calling this procedure:

FT sched := MSTP〈LIP, p, Sworst(LIP, p),FT sched〉;

➍ Compute the new Sworst(o, p);

➎ if ( new Sworst(o, p) ≥ Sworst(o, p) ) then

• Undo all the replications just performed in ➌;

• Reschedule o to p at Sbest(o, p); the comms implied by this schedule are also scheduled here.

• return FT sched;

➏ else

• FT sched := FT sched ∪ {〈LIP, p, Sbest(LIP, p)〉};

• Find out the new LIP of o and goto ➌;

end

Figure 8: A procedure to minimize the start time of an operation.

For each replica ok
best of the selected candidate operation obest and for each pair 〈oj , o

k
best〉 where oj ∈ pred(obest),

the data dependency 〈oj , o
k
best〉 is implemented as Ncf +1 comms assigned to as many disjoint paths. However, if

there exists one replica of oj implemented on the same processor as ok
best, then no comms are added since the data

dependency is an intra-processor communication (see Section 4.1 and Figure 5).
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When a comm is added, it is assigned to the set of communication units bound to the communication media

connecting the processors executing the source and destination operations. At the end, all the comms assigned to the

same communication unit are statically scheduled. The comms are thus totally ordered over each communication

medium. Provided that the network preserves the integrity and the ordering of messages, this total order of the

comms guarantees that data will be transmitted correctly between processors. The obtained schedule also guarantees a

deadlock free execution [22]. Also, the strategy used to schedule operations ensures a minimum run-time overhead in

the faulty system (a system presenting at least one arbitrary component failure) by using S
(n)
worst(o, p) to give priority

to operations and S
(n)
best(o, p) to schedule operations.

Finally, the time complexity of the Minimize Start Time procedure (MSTP) is O(E), where E denotes the number

of edges in Alg [1]. The time complexity of the iFTBAR algorithm is computed as follows. In each iteration of the

loop, the computational complexity of the micro-steps ➀, ➁, ➂, ➃, ➅ and ➆ is O(PN), where N denotes the number

of operations in Alg and P denotes the number of processors in Arc. Since there are Ncf +1 (≤ P ) calls to MSTP

and since E < N2, the time complexity of the micro-steps ➄ is O(PN 2). Thus, for n iterations the overall time

complexity of iFTBAR algorithm is O(nPN 2). Finally, since exactly one operation is scheduled at each iteration,

n = N , and the time complexity is thus O(PN 3).

4.4 An example

We have implemented our fault tolerant heuristic iFTBAR within the SYNDEX tool [22]. To illustrate the principles of

our heuristic, we apply it to the example of Figure 2(a) for Alg and Figure 2(b) for Arc. The execution characteristics

of each comp/extio and comm are specified by Table 1. The user requires the system to tolerate one component

failures, i.e., Ncf = 1, and requires the run-time of the system to be less than 15 time units, i.e., Rtc = 15.00.

After the first four steps of our heuristic, we obtain the temporary schedule of Figure 9, where two replicas of I, I’,

B and C are scheduled on P2 and P4.

tim
e

I2

I’2

B2

C2C1

B1

I’1

I1

L23 L34 L14L12P1 P3 P4P2

Figure 9: The temporary schedule at step 4 of the heuristics.

In the next step, O
(5)
cand = {A,O’} and A is selected as the urgent operation. The two processors P1 and P3 are selected

to be the optimal processors Popts for A, so the two replicas of A are scheduled on P1 and P3, as shown in Figure 10.

The comms required by these two replicas are also scheduled on the communication links L12, L23, L34, and L14.
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data
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data

A1

data

Figure 10: Schedule two replicas of A.

The start time of the two replica of A can be reduced by scheduling two additional replicas of I, the LIP of A, on P1

and P3 respectively, as shown in Figure 11. As we can see, this has the effect of suppressing all the interprocessor

communications.

tim
e

I1

I’1

B1

C1

I4

A2A1

I3
I2

B2

I’2

C2

L23 L34 L14L12P1 P3 P4P2

Figure 11: Minimize the start time of the replicas of A.

Then, operations D, O and O’ are scheduled. At the end of our heuristic, we obtain the final schedule presented in

Figure 12 (a screen capture from SYNDEX). Each operation of the algorithm graph is replicated at least twice and

these replicas are assigned to different processors; furthermore, each replica receives its inputs at least twice and from

disjoint paths. In this example, the real-time constraint is satisfied since the total time is 13.00 < Rtc.

5 Runtime Behavior

In our iFTBAR heuristics, Ncf faults can be tolerated by scheduling R replicas for each operation on different pro-

cessors, such that R ≥ Ncf +1. If no fault occurs, each of the R replicas of an operation receives its inputs in parallel

from the best Ncf +1 replicas of its predecessor operations in the data-flow graph; as soon as it receives the first set,

the operation is executed and ignores the later Ncf inputs. If there are k permanent faults (k ≤ Ncf ), each replica of

an operation scheduled on a non-faulty processor receives its inputs in parallel from all the replicas of its predecessors

scheduled on non-faulty processors; as soon as it receives the first set, the operation is executed and ignores the later

inputs. Concerning the failure detection, there are two options:
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Figure 12: The final fault tolerant schedule.

1. Either we do not perform any failure detection, in which case, after a failure, the remaining components will

continue to send their results to the faulty ones. This will not help in reducing the communication overheads. On

the other hand, if a component experiences an intermittent failure, then since it will continue to receive inputs

from the healthy components, it will be able to produce its results again when recovering from its intermittent

failure.

2. Or we perform a failure detection procedure by knowing at what time each comm is supposed to happen (we

are able to compute these times because the obtained schedule is static), and by deciding accordingly that when

a comm did not happen, then the sending component is faulty. Each processor can therefore maintain an array

of faulty components and avoid further comms towards these components. The drawback is that an intermittent

failure cannot be recovered. Indeed, when a processor is detected to be faulty, the other healthy processors will

update their array of faulty components, and will not send any more data to it. So even if this faulty component

comes back to life, it will not receive any inputs and will not be able to perform any computation. Therefore, in

the subsequent iterations, it will fail to send any data on its adjacent communication links, and the other healthy

components will never be able to detect that it came back to life. The same reasoning applies to failure detection

mistakes.

The choice between these two options can be left to the user. It will depend on the intermittent failure rate of the

application as well as on the actual topology and bandwidth of the network.

6 Performance evaluation

To evaluate our fault tolerant scheduling heuristics iFTBAR, we have compared its performance with two other al-

gorithms: HBP (Height-Based Partitioning) and NFTA (Non Fault Tolerance Algorithm); HBP is the fault tolerant
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algorithm proposed by Hashimoto and al. [29], which is the closest to iFTBAR that we have found in the literature,

and NFTA is the modified iFTBAR algorithm that produces a non fault tolerant algorithm by taking Ncf = 0. We have

implemented all three algorithms within the SYNDEX tool. SYNDEX generates automatically executable distributed

code, by first producing a static distributed schedule of a given algorithm onto a given distributed architecture, and

then by generating the real-time distributed executive implementing this schedule.

The performance comparisons were done in two ways, with various parameters and a variety of random Alg

graphs: first iFTBAR with Ncf = 1 against HBP with only the software redundancy of Alg’s operation, then iFTBAR

against NFTA with the software redundancy of both Alg’s operation and communications.

The random algorithm graphs were generated as follows: given the number of operations N , we randomly generate

a set of levels, each with a random number of operations. Then, operations at a given level are randomly connected

to operations at a higher level to stress-test the proposed algorithm. The execution times Exe of each operation are

randomly selected from a uniform distribution with the mean equal to the chosen average execution time. Similarly, the

communication times Exe of each data dependency are randomly selected from a uniform distribution with the mean

equal to the chosen average communication time. The average operation’s execution times and data dependency’s

communication times are linked by the Communication to Computation Ratio parameter (CCR), given as an input.

A CCR smaller than 1 indicates that communications are cheaper than computations, while a CCR greater than 1

indicates that communications are more expensive than computations.

6.1 Impact of duplicating operations and communications

We start our performance study by evaluating the impact of the software redundancy of both Alg’s operation and com-

munications on the iFTBAR algorithm. For this, we have applied iFTBAR to a set of random algorithm graphs with

N = 50, and CCR = 0.1, 0.5, 1.0, 5.0. The architecture graph was a fully connected network of 6 processors (fully

connected to comply with HBP’s hypotheses). In this simulation experiment, both operations and communications are

allowed to be replicated at least twice. Thus, we have compared the average fault tolerance schedule overheads pro-

duced by iFTBAR for Ncf = 1, averaged over 50 random Alg graphs. The average schedule overheads is computed

in the following way:

Overhead =
schedule length(iFTBAR)− schedule length(NFTA)

schedule length(NFTA)
× 100

where, schedule length(iFTBAR) (resp. schedule length(NFTA)) is the schedule length produced by iFTBAR for

Ncf = 1 (resp. Ncf = 0).

We have plotted in Figure 13 the average fault tolerance overheads as a function of CCR. It shows that the average

overheads decreases with CCR: this is due to the use of the locality of computations in our algorithm through the

Minimize Start Time procedure.
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Figure 13: Impact of duplicating both operations and communications for Ncf = 1, P = 6 and N = 50.

6.2 Performance of iFTBAR against HBP

The performance measure used in this simulation is the fault tolerance overheads, computed in the following way:

Overhead =
schedule length(iFTBARor HBP ) − schedule length(NFTA)

schedule length(NFTA)
× 100

where, schedule length(HBP) is the schedule length produced by HBP.

Since HBP assumes homogeneous systems and only uses software redundancy of the algorithm’s operations to

tolerate exactly one processor failure, iFTBAR is downgraded to these assumptions, so that the comparison be mean-

ingful. We thus set Ncf to one in this simulation study.

We have applied iFTBAR and HBP to a set of random algorithm graphs with a wide range of parameters: N =

10, 20, . . . , 80, and CCR = 0.1, 0.5, 1, 5, 10. The architecture graph was a fully connected network of 4 processors.

We have compared the average fault tolerance schedule overheads produced by iFTBAR and HBP, averaged over 60

random Alg graphs.

We have plotted in Figures 14 and 15 the average fault tolerance overheads as a function of N and CCR, both in

the absence (Figures 14(a) and 15(a)) and in the presence of one arbitrary processor failure (Figures 14(b) and 15(b));

here we have computed the average overheads when each of the four processors failures, and plotted the max overheads

over these four processors.

Figure 14 shows that average overheads increases with N . This is due to the active replication of all operations

and communications. We also see that that iFTBAR performs better than HBP, by roughly 20%.

Figure 15 shows that the average overheads decreases while CCR increases. For CCR ≤ 1, there is little difference

between HBP and iFTBAR. In contrast, for CCR ≥ 2, iFTBAR performs significantly better than HBP (by at least

20%). This is due to our dependable schedule pressure cost function, which tries to minimize the length of the critical

path.
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Figure 14: Impact of the number of operations for Ncf = 1, P = 4 and CCR = 5.
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Figure 15: Impact of the communication-to-computation ratio for Ncf = 1, P = 4 and N = 50.

Finally, let us note that the time complexity of iFTBAR, O(PN 3) is less than the time complexity of HBP, O(PN 4).

The reason is that HBP investigates more possibilities than iFTBAR when selecting the processor for a candidate

operation [29].

7 Conclusion and future work

The literature about fault tolerance of distributed and/or embedded real-time systems is very abundant. Yet, there are

few attempts to combine fault tolerance and automatic generation of distributed code for embedded systems. In this

paper, we have studied this problem and proposed a software implemented fault tolerance solution.

We have proposed a new scheduling heuristics, called iFTBAR (improved Fault Tolerance Based Active Repli-

cation), which produces automatically a static distributed fault tolerant schedule of a given algorithm onto a given
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distributed architecture. Our solution is based on the software redundancy of both the computation operations and the

communications. The produced schedules tolerate Ncf hardware component failures, be it of processors or commu-

nication links. This is achieved by replicating all computation operations at least Ncf +1 times on distinct processors;

all the best of these Ncf +1 replicated operations send their results but only the one which is received first by the

destination processor is used; the other results are discarded. All the components are assumed to have a fail-silent

behavior, and the network topology is assumed to have at least Ncf +1 disjoint paths between any two processors (an

assumption weaker than being fully connected).

The implementation uses a scheduling heuristics for optimizing the critical path of the obtained distributed sched-

ule. It is best suited to architectures with point-to-point links. There is some communication overheads, but on the

other hand, several failures in a row can be tolerated. Also, depending on the failure detection mechanism chosen,

intermittent failures can be tolerated as well.

We have implemented our iFTBAR heuristics within the SYNDEX tool [22]. SYNDEX is able to generate auto-

matically executable distributed code, by first producing a static distributed schedule of a given algorithm on a given

distributed architecture, and then by generating a real-time distributed executive implementing this schedule. We have

also implemented the HBP (Height-Based Partitioning [29]) heuristics for comparison purpose. Although HBP only

considers homogeneous architectures and only tolerates one processor failure, it is the closest to our work that we have

found in the literature. The experimental results show that iFTBAR performs significantly better than HBP, both in the

absence and in the presence of failures.

Finally, we are currently working on new solutions to take also the failures of sensors and actuators into account.

This raises many problems: How to validate an input produced by several sensors? How to guarantee the coherence

between replicated actuators? How to deal with disjoint architectures?
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