
Static fault-tolerant scheduling with

“pseudo-topological” orderings

Cătălin Dima1, Alain Girault2, and Yves Sorel5

1 Université Paris 12, 61 av du Général de Gaulle, 94010 Créteil cedex, France
2 INRIA Rhne-Alpes, 655 Av. de l’Europe, 38334 Saint-Ismier cedex, France

3 INRIA Rocquencourt, B.P.105 - 78153, Le Chesnay cedex, France

Abstract. We give a graph-theoretical model for off-line fault-tolerant
scheduling of dataflow algorithms onto multiprocessor architectures with
distributed memory. Our framework allows the modeling of both proces-
sor and channel failures of the “fail silent” type (either transient or per-
manent), and failure masking is achieved by replicating operations and
data communications. We show that, in general, the graph representing
a fault-tolerant scheduling may have circuits; hence, the classical com-
putation of starting/ending times, based upon a topological ordering,
is inapplicable. We then provide a notion of “pseudo-topological order-
ing” that permits the computation of the starting/ending times even in
the case of cyclic graphs. We also derive algorithms for computing the
timeouts that are used for failure detection.

1 Introduction

Embedded systems are systems built for controlling physical hardware in a
changing environment, and therefore are required to react to environmental stim-
uli within limited time. Therefore, the design of such systems requires thorough
temporal analysis of the expected reactions. On the other hand, limitations on
hardware reliability may require additional fault-tolerance design techniques and
need of distributed architectures.

The complexity of the design of such a system is usually coped with by decom-
posing the problem into subproblems. Usually, the fault-tolerance problem is the
hardest to address: one solution is to handle it at the level of hardware; see [15,
14, 20], to cite only a few. This solution has been extensively studied in the past
decade and is very useful for ensuring reliable data transmission, fail-signal, or
fail-silent “processor blocks”, fault masking with “Byzantine” components and
membership protocols. This approach is important as it hides a wealth of mecha-
nisms for fault-tolerance from the software design; however, the types of failures
it cannot handle need to be coped with at the design level.

Another solution is to combine scheduling strategies with fault detection
mechanisms [10, 11, 17, 16]. Such a solution is suited to system architectures in
which communications are supposed to be reliable and communication costs are
small. Moreover, dynamic schedulers require the existence of a reliable “master”
component. All these induce some limitations on the use of such techniques in
embedded systems.



A third solution is to introduce redundancy levels at the design time [19, 12,
2]. Fault masking strategies like primary/backup or triple modular redundancy
(multiple if more than one failure has to be tolerated), voting components, or
membership protocols are then designed for failure masking. The scheduling
strategies take into account durations of communications, and therefore this
approach seems to be the most appropriate to embedded systems in which limited
computational power of part of the processors is combined with tight real-time
constraints at the response level. The drawback of this solution is that it does
not take into account channel failures.

Taking into account both processor and channel failures is crucial in some
highly critical and/or non-maintainable embedded systems, like vehicle control
systems. Usually, this is achieved at the architecture level by triplicating the
number of buses. But sometimes even triplication might not assure enough re-
liability, or just a more involved architecture is imposed, and then fail-silent
channels must be taken into account during scheduling. On the other hand, in
complex architectures, data transmission may involve routings, therefore specific
fault-tolerant routing techniques [22, 4] may need to be applied. This problem is
related to the so-called edge k-connectivity problem for graphs [3].

We propose a theoretical model for the problem of fault-tolerant static schedul-
ing onto a distributed architecture. The basic idea is that a fault-tolerant schedul-
ing will be the union of several non-fault tolerant schedulings, one for each pos-
sible failure patterns. Our model uses only basic notions from graph theory and
a calculus with mins and maxs for computing execution times. We consider dis-
tributed architectures in which the memory is distributed too, in which we only
abstract from the communication protocols onto each channel and the execution
schemes on each “processor node”. Our model does not include any centralised
control for detecting failures, or “membership protocol” for exchanging informa-
tion about failure occurrence. On the other hand, we abstract from the “local
fault-tolerance” mechanisms: we work with fail-silent components, an assump-
tion which hides the mechanisms for achieving such behaviour4. But this is fine,
since our aim is not to provide a model for any fault-tolerant problem, but mainly
for those in which fault-tolerance must be achieved for the whole system, hence
requiring a global approach.

We use timeouts in order to detect failures of data communications, but also
in order to propagate failure information. The reason is that, in our replication
technique, the replicas of the same data transmission do not necessarily have the
same source, the same destination, or the same route. Therefore, some replicas
of the same task may “starve” because their needed data do not arrive, and
therefore they will not be able to send their data as well, propagating further
this starvation to other tasks. This propagation is achieved with timeouts.

The theoretical problem raised by this approach is that, due to the need
of redundant routings, we may have to schedule non-acyclic graphs. In classical
scheduling theory, cyclic graphs pose the problem of the existence of a scheduling.

4 Recent studies on modern processors have shown that fail-silence can be acheived at
a reasonable cost [1].

2



Thanks to the construction principles of our fault-tolerant schedulings, this will
not be the case in our framework, and this forms the core of our work and hence
one of our original contributions.

We solve this problem by introducing an original notion of pseudo-topological
ordering, which models the “state-machine” arbitration mechanism between
replicas of the same operation. We show that each scheduling with replication
can be ordered pseudo-topologically, and therefore there exists a minimal execu-
tion of it. We also prove the existence of the minimal timeout mapping, which
associates to each scheduled operation 1+ the latest time when it should start
its execution, in any of the failure patterns that must be tolerated (all the exe-
cution times are expressed in time units, i.e., integers, hence the “1+”). These
results are based upon two algorithms that can be seen as a basic technique for
constructing a fault-tolerant scheduling.

Though we have named it a “static scheduling” model, the behaviour of each
node is quite dynamic as we construct “decision makers” on each component,
capable of choosing at run time the sequence of operations to be done on that
component. Moreover, both processor and channel failures are treated uniformly
in our model, it is only at the implementation that they will differentiate. In this
sense, we also comment on the restrictions that this uniform treatment imposes
on the implementations.

Finally, let us mention that this paper gives the theoretical framework for
the heuristics studied in a previously published paper [5].

The paper is organised as follows: in the second section we define the problem
of non-fault-tolerant scheduling of a set of tasks with precedence relations. The
third section contains our graph-theoretic model of fault-tolerant scheduling,
together with its principles of execution, formalised in the form of a min-max
calculus of starting and ending times. The fourth section deals with the formal-
isation of the failure detection and propagation mechanisms. The core of this
section is the computation of the minimal timeout mapping, used for failure
detection. We end with some conclusions and future work.

2 Plain schedulings

This section is a brief review of some well-known results from scheduling theory,
presented in a perhaps different form in order to be further generalised to fault-
tolerant scheduling. For reasons of convenience in defining and manipulating
schedulings, and especially due to the possibility of having data dependencies
routed through several channels, we chose to represent programs as bipartite
dags (directed acyclic graphs):

Definition 1. A task dag is a bipartite dag GA = (OA, DA, EA).

Nodes in OA are tasks and nodes in DA are data dependencies between tasks;
e.g., (t1, d1), (d1, t2) ∈ EA, with t1, t2 ∈ OA and d1 ∈ DA means that the task
t1, at the end of its execution, sends data to the task t2, which waits for the
reception of this data before starting its execution.

3



We will rely also on a notion of architecture graph, which is simply a bipartite
undirected graph. Figure 1(left) represents an example of task dag. Here, OA =
{A, B, C, D} and DA = {A→B, A→C, B→D, C→D}. Figure 1(right) represents
an example of an architecture graph. Here, P1, P2, P3 and P4 are the processors
and C1 and C2 are the communication links.

B

C

A

A→B

A→C

D

B→D

C→D

C2C1P1

P2

P3

P4

Fig. 1. Left: a task dag; Right: an architecture graph.

In the field of data-flow scheduling, each operation is placed onto some pro-
cessor and each data dependency onto some channel, hence yielding a kind of
copy of the task dag GA, in which it is possible to have some data dependencies
routed through several channels between their source and destination. Here we
will call such a “placement” a plain scheduling and define it as follows:

Definition 2. A plain scheduling of a task dag A = (OA, DA, EA) is a labelled
dag G = (V, E, λ) with λ : V −→ OA ∪ DA, satisfying the following properties:

S1 For each v ∈ V such that λ(v) = a ∈ OA, for each b such that (b, a) ∈ EA,
there exists v′ ∈ V with λ(v′) = b and (v′, v) ∈ E. That is, each scheduled
operation must receive all its incoming data dependencies.

S2 For each v ∈ V such that λ(v) = a ∈ DA, for each b such that (b, a) ∈ EA,
there exists a sequence v1, . . . , vk ∈ V with vk = v, λ(v1) = b, λ(v2) =
. . . = λ(vk) = a and (vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. That is, data
transmissions may be routed through several channels from their source to
their destination.

S3 For each a ∈ OA there exists exactly one v ∈ V such that λ(v) = a. That is,
each operation is scheduled exactly once.

S4 For each a ∈ DA, the set
{

v ∈ V | λ(v) = a
}

forms a linear subgraph in G
(and is nonempty by condition S2). That is, the routings of any given data
dependency go directly from the source operation to the destination operation.

Given an architecture graph GS = (P, C, ES) and a mapping π : V −→ P∪C,
we say that the pair (G, π) is a plain scheduling onto GS if π satisfies the
following condition:

∀v ∈ V, λ(v) ∈ OA =⇒ π(v) ∈ P

Several clarifications and comments are needed concerning this definition. Firstly,
note that in our definition, the architecture is “hidden” within the edges of the
graph A. Moreover, the scheduling order on each processor is abstracted as edges
(v, v′) for which (λ(v), λ(v′)) 6∈ E and λ(v) 6= λ(v′).

Then observe that properties S1 and S2 show the difference between how
operations and data dependencies are scheduled, hence the “bipartite dag” model

4



for task dags. Finally, note that there can be nodes v ∈ V such that λ(v) ∈ DA

(that is, carrying a data dependency) and π(v) ∈ P (that is, scheduled onto
some processor). These nodes model two things: reroutings between adjacent
channels, and intra-processor transmissions of data.

Figure 2 represents one plain scheduling of the task dag of Figure 1(left)
onto the architecture graph of Figure 1(right). The notation “A/P4” means that
π(A) = P4; ovals are operations scheduled onto some processor (e.g., A/P4);
square rectangles are data dependencies scheduled onto some communication
channel (e.g., A→B/C1); and rounded rectangles are data dependencies sched-
uled onto some processor for re-routing (e.g., A→B/P3). A plain scheduling, in
our sense, is the result of some static scheduling algorithm. The restrictions on
the placement of tasks or data dependencies, which guide the respective algo-
rithm, are not visible here – we only have the result produced by such restrictions.

A→B/C1

B→D/C1 D/P3
C→D/C2 C/P4

A→C/P4
B/P1

A/P4A→B/P3 A→B/C2

Fig. 2. A plain scheduling of the task dag onto the architecture graph of Figure 1.

Once a plain scheduling is created and we know the execution time of each
task and the duration of sending each data dependency onto its respective chan-
nel, we may compute the starting time for each of them by a least fix-point
computation, based upon the following definition of an execution:

An execution of a plain scheduling onto a distributed architecture is gov-
erned by the following three principles:

P1 Each task is executed only after receiving all the data dependencies it needs.

P2 Each data dependency is executed only after the task issuing it terminates.

P3 Each operation (task or data-dependency) is executed only after all the op-
erations that precede it on the same architecture component are finished.

This worst-case computation is
based on the knowledge of maxi-
mal duration of execution for each
task, resp. data dependency, when
it is scheduled onto some processor,
resp. channel. The mapping d is con-
structed from this information in the
straightforward manner. As an ex-
ample, our scheduling in Figure 2
may give the minimal execution rep-
resented graphically in the figure at
the left, where the duration of exe-
cution of each node in G is equal to
the height of its corresponding box.

0

6

8

2

4

10

11

P3 P4

C

A

P1

B

D

C1 C2

A→B

B→D

A→B

C→D

5



Formally, given a function d : V −→
�
, denoting the duration of executing

each scheduled task and data dependency, we define two applications α, β : V −→
�
, called resp. the starting and the ending time, by the two following equations:

∀v ∈ V, α(v) = max
{

β(v′) | (v′, v) ∈ E
}

, β(v) = α(v) + d(v) (1)

The computation of α and β lies on the notion of topological ordering, which
says that each dag G = (V, E) can be linearly ordered, such that each node has
a bigger index than all of its predecessors in G. Placements that satisfy all the
four requirements S1 to S4 of a plain scheduling, failing only on the requirement
to be acyclic, cannot be executed: the system of equations (1) has no solution,
which means that the schedule is deadlocked.

It is important to note that the way such a plain scheduling (hence non fault-
tolerant) is obtained is outside the scope of our article. There exist numerous
references on this problem, e.g. [21, 7, 9, 6, 13].

Before ending this section, let us remind the union operation on graphs:
given two graphs G = (V, E) and G′ = (V ′, E′), their union is the graph G′′ =
(V ∪V ′, E∪E′). Note that the two sets of nodes might not necessarily be disjoint,
and in this case the nodes in the intersection V ∩V ′ might be connected through
edges that are in E or in E′.

3 Schedulings with replication

Our view of a static scheduling that tolerates several failure patterns is as a
family of plain schedulings, one for each failure pattern which must be tolerated.
This informal definition captures the simplest procedure one can design to obtain
a fault tolerant scheduling: compute a plain scheduling for each failure pattern,
then put all the plain schedulings together.

There may be several ways to put together the plain schedulings, each one cor-
responding to a decision mechanism for switching between them in the presence
of failures. For example, we may have a table giving the sequence of operations
to be executed on each processor in the presence of each failure pattern. But
this choice corresponds to a centralised failure detection mechanisms. And, as
we are in a distributed environment and therefore the information on the failure
pattern is quite sparse, we would rather have some distributed mechanisms for
propagating failure pattern information, based on a local decision mechanism.

To this end, we will assume that, in our family of plain schedulings, any two
plain schedulings are not “contradictory” on the order they impose on each com-
ponent in the architecture. That is, if in one plain scheduling G1 a task a precedes
a task b on the processor p, and both tasks are scheduled onto p in another plain
scheduling G2, then in G2 these two tasks must be in the same order as on p.
This assumption implies that, in the combination of all plain schedulings, each
task or data dependency occurs at most once on each component in the architec-
ture. This implies that we do not mask failures by rescheduling some operations
and/or re-sending some data dependency. The propagation mechanism is then

6



the impossibility to receive some data dependency within a bounded amount of
time – that is, a timeout mechanism on each processor.

Consider, for example, the case of the task dag and the architecture graph
given in Figure 1, and suppose that we want to tolerate either one failure for each
channel, or one failure for each processor, with the exception of P3 (say, an ac-
tuator whose replication cannot be supported at scheduling). Suppose also that
task D must always be on processor P3. We will consider the plain scheduling
of Figure 2(c) (it supports the failure of P2), and the plain schedulings of Fig-
ures 3(a) (for the failures of P1 and/or C1), and 3(b) (for the failures of P4 and/or
C2). We will then combine these three plain schedulings into the scheduling with
replication of Figure 3(c).

A/P4A→B/C2

C/P4

B→D/C2

C→D/C2

A→C/P4

B/P2

D/P3

(a)

A→C/C1A/P1

B/P1

A→B/P1

C/P2

B→D/C1

C→D/C1 D/P3

(b)

A→C/P4

C→D/C1

A→C/C1A/P1

A→B/C1

B→D/C1

A/P4

B/P2

D/P3

C/P2

B/P1 B→C/P2

A→B/P1

A→B/P3 A→B/C2

C/P4

B→D/C2

C→D/C2

(c)

Fig. 3. (a) A plain scheduling tolerating the failures of P1 and C1. (b) A plain scheduling
tolerating the failures of P4 and/or C2. (c) The scheduling with replication resulting
from the combination of the two plain schedulings (a), (b) and the one from Figure 2.

This approach hides the following theoretical problem: the graphs that model
such fault-tolerant schedulings may contain circuits. Formally, the process of
“putting together” several plain schedulings must be modelled as a union of
graphs, due to the requirement that, on each processor, each operation is sched-
uled at most once. But unions of dags are not necessarily dags. An example is
provided in Figure 4. We have a symmetric “diamond” architecture, given in
Figure 4(a), on which we want to tolerate two failure patterns: {C1, C5} and
{C2, C4}. We want to schedule the simple task dag of Figure 4(d), but with
the constraint that A must be put on P1 and B must be put on P4 (say, be-
cause these processors are dedicated). The two failure patterns yield respectively
the two reduced architectures of Figures 4(c) and (d). For both reduced archi-
tectures, we obtain respectively the plain schedulings of Figures 4(e) and (f).
When combined, we obtain the scheduling with replication of Figure 4(g). More
precisely, on the middle channel C3, the data dependency A→B may flow in
both directions! However none of the circuits obtained in the union of graphs
really come into play in a real execution – they are there only because such a
scheduling models the set of all possible executions.

7



C5

P2 C3 P3

C1

P1

C2

C4

P4

C4

P2 C3 P3

C2

P1

P4 P4

P2 C3 P3

C1

P1

C5

A

B

A→B

(a) (b) (c) (d)

A/P1

A→B/C2

A→B/P3

A→B/C3

A→B/P2

A→B/C4

B/P5

A/P1

A→B/C1

A→B/P2

A→B/C3

A→B/P3

A→B/C5

B/P5

A/P1

A→B/C3

B/P5

A→B/C4 A→B/C5

A→B/P3A→B/P2

A→B/C2A→B/C1

(e) (f) (g)

Fig. 4. (a) An architecture graph. (b− c) The two reduced architectures corresponding
to the failure patterns {C1, C5} and {C2, C4}. (d) The task dag to be scheduled. (e−f)
The two plain schedulings of (d) onto (b) and (c) respectively. (g) The union of (e)
and (f), which is not a dag!

The sequel of this section is dedicated to showing that the existence of circuits
is not harmful when computing the execution of a scheduling with replication.
We start with the formalisation of the notion of scheduling with replication.

Definition 3. A scheduling with replication of a task dag A = (OA, DA, EA)
is a labelled dag G = (V, E, λ), with λ : V −→ OA ∪DA satisfying the properties
S1 and S2 of Definition 2, and the following additional property:

S5 For each circuit v1, . . . , vk, vk+1 = v1 of G, there exists d ∈ DA s.t. for all
1 ≤ i ≤ k, λ(vi) = d. That is, the only allowed circuits in G are those labelled
with the same symbol, which must be in DA.

Since in schedulings with replication some operations might occur on several
processors and some data dependencies might be routed through different paths
to the same destination, the principles of execution stated in the previous section
need to be relaxed. It is especially the first and the second principles that need
to be restated as follows:

An execution of a plain scheduling onto a distributed architecture is gov-
erned by the following three principles:

P1’ Each task can be executed only after it has received at least one copy of each
data dependency it needs.

P2’ Each data dependency can be transmitted only after one of the replicas of the
tasks which may issue it has finished its execution, and hence has produced
the corresponding data.

P3’ Same as principle P3.

8



We use a mapping d : V −→ � , which denotes the duration of executing
each node of the task dag (resp. from OA or DA) onto each component of the
architecture (resp. processor or communication link). We accept that some of the
nodes may have zero duration of execution: it is the case with intra-processor
data transmission; sometimes, even routings of some data dependencies between
two adjacent channels may be considered as taking zero time. However we will
consider that each complete routing of data through one or more channels takes
at most one time unit. We will also impose a technical restriction on mappings d:
for each circuit in G, if we sum up all the durations of nodes in the circuit, we get
a strictly positive integer. This technical requirement will be essential in the proof
of the existence of the minimal timeout mapping in the next section. Mappings
d : V −→ � satisfying this requirement will be called duration constraints.

Definition 4. An execution of a scheduling G = (V, E, λ), with duration con-
straints d : V −→ � , is a pair of functions f = (α, β), with α, β : V −→ � ,
respectively called starting time and ending time, and defined as follows:

1. Any task must start after it has received the first copy of each needed data
dependencies: for each a ∈ OA and v ∈ V with (a, λ(v)) ∈ EA,

α(v) ≥ min
{

β(v′) | λ(v′) = a, (v′, v) ∈ E
}

2. Any data dependency starts after the termination of at least one of the tasks
issuing it: for each a ∈ DA and v ∈ V with (a, λ(v)) ∈ EA,

α(v) ≥ min
{

β(v′) | (v′, v) ∈ E, λ(v′) = λ(v) or λ(v′) = a
}

3. Any task or data-dependency starts after the termination of all operations
preceding it on the same architecture component:

for each v, v′ ∈ V with (v′, v) ∈ E and (λ(v′), λ(v)) 6∈ EA, α(v) ≥ β(v′)

4. The ending time of any given task or data-dependency is equal to its starting
time plus its duration: for each v ∈ V , β(v) = α(v) + d(v).

Executions can be compared componentwise, i.e., given two executions f1 =
(α1, β1) and f2 = (α2, β2), we put f1 ≤ f2 if, for each node v ∈ V , α1(v) ≤
α2(v) and β1(v) ≤ β2(v).

We may then prove that the set of executions associated to a scheduling
with replication forms a complete lattice w.r.t. this order, that is, an infimum
and a supremum exists for any set of executions. Definition 4 is in fact a fixpoint
definition in the lattice of executions. But we have not yet showed that this
lattice is nonempty – fact which would imply that there exists a least element
in it, which will be called the minimal execution.

For plain schedulings, the existence of an execution is a corollary of the
acyclicity of the graph G. As schedulings with replication may have cycles, we
need to identify a weaker property that assures the existence of executions. The
searched-for property is the following:

Definition 5. A pseudo-topological ordering of a scheduling G = (V, E, λ)
is a bijection φ : V −→ [1 . . . n] (where n = card(V )), such that for all v ∈ V ,
the following properties hold:

9



1. If λ(v) ∈ OA, then for each d ∈ DA for which (d, λ(v)) ∈ EA, there exists
v′ ∈ V such that λ(v′) = d, (v′, v) ∈ E, and φ(v′) < φ(v).

2. If λ(v) ∈ DA, then there exists v′ ∈ V with (v′, v) ∈ E and φ(v′) < φ(v),
such that either λ(v′) = λ(v) or (λ(v′), λ(v)) ∈ EA.

3. For each v′ ∈ V , if (v′, v) ∈ E, (λ(v′), λ(v)) 6∈ EA, and λ(v′) 6= λ(v), then
φ(v′) < φ(v).

Lemma 1. Any scheduling G = (V, E, λ) has a pseudo-topological ordering .

The proof of this lemma is constructive: we consider the following algorithm,
whose entry is a scheduling G = (V, E, λ) of a graph A = (OA, DA, EA) and
whose output is a bijection φn : V −→ [1 . . . n] which represents a pseudo-
topological ordering of G:

Algorithm 1 Pseudo-topological ordering
1 begin

2 k := 1; X0 := ∅;
3 while k ≤ n do

4 Choose some node w ∈ V such that:
✤ For all w′′ ∈ V such that (w′′, w) ∈ E, λ(w′′) 6= λ(w),
and (λ(w′′), λ(w)) 6∈ EA, λ(w′′) 6= λ(w), we have w′′ ∈ Xk−1;
✤ If λ(w) ∈ DA, then ∃ w′ ∈ Xk−1 ∩ V with either λ(w′) = λ(w)
or (λ(w′), λ(w)) ∈ EA and such that (w′, w) ∈ E;
✤ If λ(w) ∈ OA, then ∀ b ∈ DA with (b, λ(w)) ∈ EA, ∃ w′ ∈ Xk−1

such that λ(w′) = b and (w′, w) ∈ E;
5 Xk := Xk−1 ∪ {w};
6 φ(k) := w;
7 k := k + 1;
8 end while

9 end

Claim. The choice step at line 4 can be applied for any k ≤ card(V ).

This claim can be proved by contradiction, since the impossibility to make
the choice step in the algorithm would imply the existence of a circuit in the
graph, whose nodes would be labeled with different symbols from OA ∪ DA, in
contradiction with requirement S5.

It follows that the algorithm terminates, that is, Xn = V . Therefore, the
application φ : V −→ [1 . . . n] defined by φ(v) = k iff v is the node chosen at the
k-th step, is a pseudo-topological order on V . This fact proves Lemma 1.

Theorem 1. The set of executions associated to any scheduling G = (V, E, λ)
is nonempty.

Proof. First, we use our Algorithm 1 to construct a pseudo-topological ordering
φ : V −→ [1 . . . n] of the scheduling G. Then, we construct an execution (αφ, βφ)
inductively as follows:

We start with the pair of totally undefined partial functions αφ
0 , βφ

0 : V � →

[1 . . . n]. That is, both αφ
0 (v) and βφ

0 (v) are undefined for any node v ∈ V .
Suppose then, by induction, that we have built the pair of partial functions

(αφ
k−1

, βφ
k−1

), such that αφ
k−1

: V � → [1 . . . n] (resp. βφ
k−1

) associates to each

10



vertex v ∈ V with φ(v) ≤ k − 1 the starting execution time (resp. the ending

execution time). We then extend these partial functions to a new pair (αφ
k , βφ

k )

with αφ
k , βφ

k : V � → [1 . . . n], by defining αφ
k (vk) and βφ

k (vk) (where vk is the
k-th node of the pseudo-topological order, i.e., φ(vk) = k) as follows:

1. First, we compute the two following numbers:

x1(vk) = max
{

βφ
k−1

(v′) | (v′, vk) ∈ E and (λ(v′), λ(vk)) 6∈ EA, φ(v′) < φ(vk)
}

x2(vk) =























max
{

min
{

βφ
k−1

(v′) | (v′, vk) ∈ E, λ(v′) = b
}

|

b ∈ DA, (b, λ(vk)) ∈ EA, φ(v′) < φ(vk)
}

if λ(vk) ∈ OA,

min
{

βφ
k−1

(v′) | (v′, vk) ∈ E, φ(v′) < φ(vk)

and either λ(v′) = λ(vk) or (λ(v′), λ(vk)) ∈ EA

}

if λ(vk) ∈ DA

Note that, by the assumption that φ is a pseudo-topological ordering, all the
sets involved in the above computations are nonempty.

2. We then take αφ
k (vk)=max

(

x1(vk), x2(vk)
)

and βφ
k (vk)=αk(vk)+d(vk).

It is then routine to check that αn and βn are indeed executions. ut

Corollary 1. There exists a minimal execution associated to any scheduling
G = (V, E, λ).

Proof. The minimal execution is defined as follows: for each v ∈ V ,

αmin(v) = min
{

αφ
n(v) | φ pseudo-topological ordering of G

}

βmin(v) = αmin(v) + d(v). ut

The figure here on the right gives the
minimal execution for the scheduling in
Figure 4 (in the absence of failures).
The duration constraints are given by
the vertical dimension of each rectan-
gle, while the arrows without any target
indicate lost arbitration between repli-
cas.

B→D

2

4

6

8

0

10

P1

A

B

C1

A→B

C→D

A→C

C

B

P2

D

P3

C→D

B→D

A→B

C2

A

C

P4

4 Schedulings with replication and failures

The fault detection mechanism described in Section 3 uses timeouts on the sched-
uled task and data communications. This section is concerned with the formal-
isation of this mechanism. Again, we will make use of the notion of pseudo-
topological ordering: it will help us in computing the timeouts. Note that com-
puting the timeout of a scheduled operation as the max of the ending times of
all the operations that precede it in the scheduling might not work, because of
the possible existence of circular dependencies: this is the same problem em-
phasised in Section 2, and which required the introduction of the notion of
pseudo-topological ordering.

11



A failure pattern in a scheduling G = (V, E, λ) is just a subset F ⊆ V
of nodes. In general, we will consider a set of failure patterns F ⊆ P(V ). The
result of removing a set F of nodes from a scheduling G = (V, E, λ) is simply
a labelled graph GF = (VF , EF , λF ) with EF = E ∩ (VF × VF ) and λF = λ

VF

.

GF might not be a scheduling – some nodes may fail to satisfy the requirements
S1 or S2 of Definition 3. This models the situation in which some operation
does not receive one or more data that it needs. We will then say that GF is a
scheduling reduced by the failure pattern F .

If this graph contains a scheduling, i.e., there exists a scheduling GF =
(V F , EF , λF ) with V F ⊆ VF and λF = λF

V F

, then we say that G tolerates

the failure pattern F . Note that if G tolerates a failure pattern F , then it
tolerates any failure pattern F ′ ⊆ F . On the other hand, if G tolerates two
failure patterns F1 and F2, then in general it does not tolerate F1 ∪ F2. Hence,
what we give as failure patterns are maximal combination of faulty components.

Graphs like GF cannot be “executed” using the principles given in Section 3
since some nodes may not receive all their data – we call such nodes as starving.
Starving operations and data dependencies are not executed and, in order to
prevent the system from being blocked, the component should try executing
the next operation in its own scheduling. This is precisely how our obtained
schedules mask the failures. Hence, components detect only a limited part of the
“failure scenario”, namely the subgraph which leads to the starving node.

We will formally say that even starving nodes are executed, but imposing
that their duration of execution be zero. We will also require that, when an
operation receives all its data (i.e., is not starving), it must be started before its
timeout expires – just to avoid going into “philosophical” problems about the
feasibility of several “instantaneous actions” in zero time:

Definition 6. An execution of a scheduling reduced by a failure pattern GF =
(VF , EF , λF ), with duration constraints d : VF −→

�
and timeout mapping

θ : VF −→
�

is a tuple of functions f = (α, β, ε), with α, β : VF −→
�

(the
starting, resp. ending times) and ε : VF −→ {0, 1} (the execution bit), having
the following properties:

1. For each v ∈ VF , if we denote

UF
v = {β(v′) | v′ ∈ VF , (v′, v) ∈ EF , and (λ(v′), λ(v)) 6∈ EA, λ(v′) 6= λ(v)}

then α(v) ≥ maxUF
v .

2. For each v ∈ VF such that λ(v) ∈ OA and for each a ∈ DA such that
(a, λ(v)) ∈ EA, if we denote:

T F
v,a = {β(v′) | v′ ∈ VF , λ(v′) = a, (v′, v) ∈ EF , and ε(v′) = 1}

then α(v) ≥ min
(

θ(v), maxa∈DA(min T F
v,a)

)

.
3. For each v ∈ VF such that λ(v) ∈ DA, if we denote

T F
v = {β(v′) | v′ ∈ VF , ε(v′) = 1 and either (λ(v′), λ(v)) ∈ EA or λ(v′) = λ(v)}

then α(v) ≥ min
(

θ(v), min T F
v

)

.

4. For each v ∈ VF , β(v) = α(v)+d(v) ·ε(v) where ε(v) =

{

1 if α(v) < θ(v)

0 otherwise

12



Using the notion of pseudo-topological ordering (with slight modifications),
we may prove that, for each timeout mapping θ, the set of executions of GF

is nonempty. Moreover, we may prove that the minimal execution of GF ,
denoted (αF , βF , εF ) exists and can be computed as the least fix point of the
following system of equations (here, minimality refers only to the tuple (αF , βF )):

1. For each v ∈ VF such that λ(v) ∈ OA and for each a ∈ DA such that

(a, λ(v)) ∈ EA, αF (v) = max
(

min
(

θ(v), maxa∈DA(min T F
v,a)

)

, maxUF
v

)

2. For each v∈V ′ with λ(v)∈DA, αF (v) = max
(

min
(

θ(v), min T F
v

)

, maxUF
v

)

.

3. And for each v ∈ V , βF (v) = αF (v) + d(v) · εF (v), where εF (v) = 1 if
αF (v) < θ(v), εF (v) = 0 otherwise.

Here T F
v,a, T F

v , and UF
v are the notations from Definition 6.

However, a bad choice of a timeout mapping may induce that some operations
that may receive all their data be not executed, because the wait for the reception
of the respective data is greater than the timeout. We will therefore call an
execution correct if this situation does not occur, that is:

Definition 7. An execution (α, β, ε) of GF is correct provided that it satisfies
the following property: for each v ∈ VF , if max

a∈DA

(min T F
v,a) 6= ∞ then ε(v) = 1.

Then, the minimal timeout ensures that the minimal execution of the
scheduling G = (V, E, λ) reduced by any of the failure patterns from F is correct.
We will construct this minimal timeout by repeatedly computing the minimal
execution of each GF in which non-starving nodes have an infinite timeout,
whereas starving nodes share the same timeout for different failure patterns F .

Our algorithm starts with a zero timeout for all nodes, θ0(v) = 0. At each

step i and for each failure pattern F , we utilize the timeout mapping θ
F

i defined

by θ
F

i (v) = θi−1(v) if v is starving, and θ
F

i (v) = ∞ otherwise. We compute the
minimal execution (αF , βF , εF ) induced by this timeout mapping, and then we
compute θi(v) as the maximum of the starting times for v in each reduced graph
GF in which v is non-starving. In the following we denote GF = (V F , EF , λF ) the
maximal scheduling included in the graph GF , assumed to exist for all F ∈ F .

Algorithm 2 Timeout mapping computation
1 begin

2 forall v ∈ V do θ0(v) := 0;
3 i := 0;
4 repeat

5 i := i + 1;
6 forall F ∈ F do

7 put θ
F

i (v) =

�
θi−1(v) if v 6∈ V F (i.e., v is starving)

∞ otherwise

8 (αF

i , βF

i , εF

i ) := the minimal execution induced by θ
F

i ;
9 end for

10 forall v ∈ V do θi(v) := max
F∈F

{αF

i (v) + 1 | v ∈ VF }.

11 until θi = θi−1

12 end

13



Proposition 1. For each i ∈ � , θi ≥ θi−1.

The proof runs by induction on i, using the fact that mins and maxs commute

with inequalities and that for each F ∈ F , θ
F

0 is the smallest timeout mapping
for which θ(v) = ∞ for non-starving nodes v.

Proposition 2. Algorithm 2 terminates, i.e., there exists i ∈ � with θi = θi−1.

Proof. Remind that a path in a graph is called simple if it has no loop. We call
the weight of a path p = (v1, . . . , vk) the sum w(p) =

∑

1≤i≤k d(vi). For each
v ∈ V , denote M(v) the max of the weights of all simple paths in G ending in v.

We may prove by induction on i that βF
i (v) ≤ M(v) for each v ∈ V , fact

which would end our proof since the mapping M would then provide an upper
bound for the increments on θi. To this end, denote p = (v1, . . . , vk) the path
that ends in some node v = vk and that is defined by the property that βF

i (vj) =
αF

i (vj−1). Hence, p consists of nodes on a “critical path” that ends in v.
Two cases may occur: either v1 has no predecessor in V or is a starving node,

hence is “executed” (actually, skipped) when its timeout expires. No other case
is possible since (αF

i , βF
i , εF

i ) is a minimal execution.
In the first case, the claim is trivially proved, since p is a path that does not

contain any circuit (again by definition of an execution).
In the second case, we will assume that v1 is the only starving node in p and,

moreover, that there does not exist another non-starving node v′ which leads us
to the first case. We have that

αF
i (v2) = βF

i (v1) = αF
i (v1) = θi−1(v1) = αF ′

i−1(v1) + 1

for some failure pattern F ′. Since we have considered that the duration of any
node is greater than 1 time unit, we then have that αF

i (v2) = βF
i (v1) ≤ βF ′

i−1(v1).

On the other hand, by the induction hypothesis, βF ′

i−1(v1) ≤ M(v1). Therefore,

βF
i (v) = βF

i (v) − αF
i (v2) + βF

i (v1) ≤ w(p) + M(v1)

Observe now that we must have (λ(v1), λ(v2)) 6∈ EA. This follows from the
assumption that v1 is starving, v2 is non-starving, and there exists no other
non-starving node v′ with βF

i (v′) = αF
i (v2). But then, the concatenation of any

simple path that ends in v1 with p cannot have circuits by requirement S5 in the
definition of schedulings with replication. This means that w(p)+M(v1) ≤ M(v),
fact which ends our proof. ut

Proposition 3. The timeout mapping θi which is computed by the algorithm
is correct for all failure patterns and is the minimal timeout mapping with this
property.

Proof. The correctness of the timeout mapping is ensured by the exit condition
of the loop – we may only exit the loop when, for each node, the computed
timeout θi(v) exceeds all the starting times in each failure pattern, and hence
only starving nodes may reach their timeout. The second property follows by
showing, by induction on i, that for each correct execution (α, β, ε) we have
(αF

i , βF
i ) ≤ (α, β). ut

14



As an example, for the scheduling with replication given in Figure 3, the
minimal timeout mapping is the following:

θ(A/P1) = θ(A/P4) = 1 θ(C/P4) = θ(A→B/C2) = 3

θ(B/P1) = θ(B/P2) = θ(A→C/C2) = 4 θ(A→B/C1) = 5

θ(C/P2) = θ(C→D/C2) = 6 θ(B→D/C1) = θ(B→D/C2) = 7

θ(C→D/C1) = θ(D/P3) = 9

5 Conclusions

We have presented some results on the fundamentals of a theory of static fault-
tolerant scheduling. The main problem we have investigated is the presence of
circuits in unions of plain schedulings. We have introduced a notion of schedul-
ing with replication, which models the loading of a system which is supposed
to tolerate a family of failure patterns. We have also introduced the notion of
execution of such a scheduling, which models some natural principles concerning
the arbitration between replicas. We have also provided the notions of pseudo-
topological ordering and of timeout mapping, which assure the existence and the
correctness of minimal executions of a scheduling with replication.

Our work is only on the theoretical side, and the complexity of the algorithms
in our paper is rather important for a practical use. In fact, all the problems
treated here are NP-complete problems [8]. But we think that this theoretical
layout may help developing heuristics for special architectures and/or special
types of task dags, as it has been done in [18], and eventually compare the static
scheduling performances with other techniques of fault-tolerant scheduling which
take into account both processor and channel failures. Another possible approach
for the fault-tolerant scheduling problem, that can tolerate both processor and
channel failures, can be the combination of the redundancy techniques for proces-
sor failures with the fault-tolerant routing techniques. However, this combination
seems not to have been given attention up to now.

References

1. M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, S. Pezzini, and A. Sangiovanni-
Vincentelli. Fault-tolerant platforms for automotive safety-critical applications. In
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES’03, San Jose, USA, November 2003. ACM.

2. J. Bannister and K. Trivedi. Task allocation in fault-tolerant distributed systems.
Acta Informatica, 20:261–281, 1983.

3. B. Bollobas. Modern Graph Theory. Graduate Texts in Mathematics. Springer
Verlag, 1998.

4. A. Chowdhury, O. Frieder, E. Burger, D.A. Grossman, and K. Makki. Dynamic
Routing System (DRS): Fault tolerance in network routing. Computer Networks,
31:89–99, 1999.

5. C. Dima, A. Girault, C. Lavarenne, and Y. Sorel. Off-line real-time fault-tolerant
scheduling. In Proceedings of 9th Euromicro Workshop PDP’2001, pages 410–417.
IEEE Computer Society Press, 2001.

15



6. G. Fohler and K. Ramamritham. Static scheduling of pipelined periodic tasks
in distributed real-time systems. In Euromicro Workshop on Real-Time Systems,
EWRTS’97, Toledo, Spain, June 1997. IEEE Computer Society Press.

7. M.R. Garey and D.S. Johnson. Complexity bounds for multiprocessor scheduling
with resource constraints. SIAM J. Computing, 4(3):187–200, 1975.

8. M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W. H. Freeman Company, San Francisco, 1979.

9. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors. Journal of Parallel and Distributed
Computing, 16(4):276–291, December 1992.

10. S. Ghosh. Guaranteeing Fault-Tolerance through Scheduling in Real-Time Systems.
Phd thesis, University of Pittsburgh, 1996.

11. S. Ghosh, R. Melhem, D. Mossé, and J. Sansarma. Fault-tolerant, rate-monotonic
scheduling. Real-Time Systems Journal, 15(2), 1998.

12. A. Girault, C. Lavarenne, M. Sighireanu, and Y. Sorel. An algorithm for automat-
ically obtaining distributed and fault-tolerant static schedules. In International
Conference on Dependable Systems and Networks, DSN’03, San-Francisco, USA,
June 2003. IEEE.

13. T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping for real-
time embedded heterogeneous multiprocessors. In Proceedings of 7th International
Workshop on Hardware/Software Co-Design, CODES’99, Rome, Italy, May 1999.

14. H. Kopetz. TTP/A - the fireworks protocol. Research Report 23, Institut für
Technische Informatik, Technische Universität Wien, Wien, Austria, 1994.

15. H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft, and
R. Zainlinger. Distributed fault-tolerant real-time systems: The MARS Approach.
MICRO, 9:25–40, 1989.

16. Y. Oh and S.H. Son. Enhancing fault-tolerance in rate-monotonic scheduling.
Real-Time Systems, 7:315–330, 1993.

17. Y. Oh and S.H. Son. Scheduling hard real-time tasks with tolerance of multiple
processor failures. Technical Report CS–93–28, Unversity of Virginia, May 1993.

18. C. Pinello, L. Carloni, and A. Sangiovanni-Vincentelli. Fault-tolerant deployment
of embedded software for cost-sensitive real-time feedback-control applications. In
Design, Automation and Test in Europe, DATE’04, Paris, February 2004. IEEE.

19. K. Ramamritham. Allocation and scheduling of precedence-related periodic tasks.
IEEE Trans. on Parallel and Distributed Systems, 6:412–420, 1995.

20. F.B. Schneider. Byzantine generals in action: Implementing fail-stop processors.
ACM Transactions on Computer Systems, 2:145–154, 1984.

21. J.D. Ullman. Polynomial complete scheduling problems. In Fourth ACM Sympo-
sium on Operating System Principles, pages 96–101, New-York, USA, 1973.

22. L. Zakrevsky and M.G. Karpovsky. Fault tolerant message routing for multipro-
cessors. In J. Rolim, editor, Parallel and Distributed Processing, pages 714–731.
Springer Verlag, 1998.

16


