
RAPID PROTOTYPING FOR HETEROGENEOUS MULTICOMPONENT SYSTEMS:
AN MPEG-4 STREAM OVER AN UMTS COMMUNICATION LINK

M. RAULET1,2, F. URBAN1, JF NEZAN1, C. MOY3, O. DEFORGES1, Y. SOREL4

(1) IETR/Image group Lab (2) Mitsubishi Electric ITE (3) IETR/Automatic & Communication Lab (4) INRIA Rocquencourt

UMR CNRS 6164/INSA Telecommunication Lab UMR CNRS 6164/Supelec-SCEE team AOSTE

20, av des Buttes de Coësmes, 1 Allée de Beaulieu, Avenue de la Boulaie - BP 81127 BP 105

35043 RENNES, France 35 000 RENNES, France 35511 Cesson-Sévigné, France 78153 Le Chesnay, France

{jnezan, odeforge,furban}@insa-rennes.fr raulet@tcl.ite.mee.com christophe.moy@rennes.supelec.fr yves.sorel@inria.fr

ABSTRACT

Future generations of mobile phones, including advanced
video and digital communication layers, represent a great
challenge in terms of real-time embedded systems. Pro-
grammable multicomponent architectures can provide suit-
able target solutions combining flexibility and computation
power. The aim of our work is to develop a fast and auto-
matic prototyping methodology dedicated to signal process-
ing application implementation on parallel heterogeneous
architectures, two major features required by future sys-
tems. This paper presents the whole methodology based on
the SynDEx CAD tool, that directly generates a distributed
implementation onto various platforms from a high level ap-
plication description, taking real-time aspects into account.
It illustrates the methodology in the context of real-time dis-
tributed executives for multi-layer applications based on an
MPEG-4 video codec and a UMTS telecommunication link.

Key words: rapid prototyping - multicomponent - DSP -
FPGA - UMTS - MPEG-4

1. INTRODUCTION

New embedded multimedia systems, such as mobile
phones, require more and more computation power. They
are increasingly complex in design and have a shorter time
to market. Computation limits of critical parts of the system
(i.e. video processing, telecommunication physical layer)
are often overcome thanks to specific circuits [1]. Nev-
ertheless, this solution is not compatible with short time
designs or the system’s growing need for reprogramming
and future capacity improvements. An alternative can be
provided by programmable software (DSP: Digital Signal
Processor, RISC: Reduced Instruction Set Computer, CISC:
Complex Instruction Set Computer) or programmable hard-
ware (FPGA: Field Programmable Gate Arrays) compo-
nents since they are more flexible. Efficiency loss can
be counterbalanced by using multicomponent architectures

to satisfy hard real-time constraints. The parallel aspect
of multicomponent architectures (programmable software
and/or programmable hardware components interconnected
by communication media) and possibly its heterogeneity
(different component types) raise new problems in terms of
application distribution. Real-time executives developed for
single processor applications can hardly take advantage of
multicomponent architectures: handmade data transfers and
synchronizations quickly become very complex and result
in lost time and potential deadlocks. A suitable design pro-
cess solution consists of using a rapid prototyping method-
ology. The ultimate objective is then to go from a high-level
description of the application to its real-time implementa-
tion on a target architecture [2] as automatically as possible.
The aim is to avoid disruptions in the design process from a
validated system at simulation level (monoprocessor) to its
implementation on a heterogeneous multicomponent target.
Performances of the process can be evaluated by different
aspects:

• maximal independence with regards to the architec-
ture,

• possibility of handling heterogeneous multicomponent
architectures,

• maximal automation during the process (distribu-
tion/scheduling, code generation including data trans-
fers and synchronizations),

• efficiency of the implementation both in terms of exe-
cution time and resource requirements,

• reduced design time,
• enhanced quality and robustness of the final executive.

The methodologies generally rely on a description model,
which must match the application behavior. These applica-
tions are a mixture of transformation and reactive operators
[3]. A transformation operator is based on the data-driven
process: input data is transformed into output data. A reac-
tive operator is one, which is event-driven and has to con-
tinually react to stimuli. In practice, systems are a combi-



nation of both. Nevertheless an important distinction can be
made between systems with deterministic scheduling whose
operators are mainly transformation-oriented, and systems
with highly dynamic behavior whose operators are mostly
reactive-oriented. For the first class of system (including
signal, image and communication applications), DFG (Data
Flow Graphs) have proven to be an efficient representation
model. They enable automatic rapid prototyping and lead
to optimized scheduling [4].

This paper deals with a rapid prototyping methodol-
ogy based on the SynDEx tool, which is suitable for
transformation-oriented systems and heterogeneous multi-
component architectures. Major contributions concern two
points:

• method and tool, more specifically about automatic
distributed code generation from SynDEx,

• a complex multi-layers application including video and
digital communication layers, going from its high-level
description to its distributed and real-time implemen-
tations on heterogeneous platforms.

SynDEx automatically generates synchronized distributed
executives from both application and target architecture de-
scription models. These executives specify the inner com-
ponent scheduling and global application scheduling, and
are expressed in an intermediate generic language. These
executives have to be transformed to be compliant with the
type of component and communication media so that they
automatically become compilable codes. In this article, we
will focus on this mechanism based on the concept ofSyn-
DEx kernels, and detail new developed kernels enabling au-
tomatic code generation on various multicomponent plat-
forms.

The design and the distributed implementation of a multi-
layer application composed of a video (MPEG-4) and a dig-
ital communication layer (UMTS) illustrate the methodol-
ogy. An MPEG-4 coding application provides the UMTS
transceiver with a video coded bitstream whereas the as-
sociated MPEG-4 decoder is connected to the UMTS re-
ceiver in order to display the video. The result is a complete
demonstration application with automatic code generation
over several kinds of processors and communication media.

The digital communication layer under investigation
is a UMTS FDD (Frequency Division Duplex) uplink
transceiver [5]. UMTS is the European and Japanese se-
lected standard for 3G. It has already spread to many areas
of the world, but is not yet predominant. 3G should enable
us to benefit from new wireless services requiring quite a
high data rate up to 2Mbps. Typical targeted applications
go from wireless internet to video streaming, and also in-
clude high-speed picture exchanging and of course voice.

MPEG-4 is the latest multimedia compression standard to
be adopted by the Moving Picture Experts Group (MPEG)
[6]. The prototyping of MPEG-4 video codecs over multi-
component platforms and their optimizations are studied in

the IETR Image Group Laboratory. A part of the project has
already been presented in [7]. We will therefore focus on
the coupling between the UMTS and MPEG-4 sub-systems
rather than describe the video codec in detail.

The paper is organized as follows: section 2 introduces
the SynDEx tool and the AAA methodology. Our contribu-
tion in terms of prototyping platforms and executive kernels
is described in section 3. The UMTS description accord-
ing to the AAA methodology and its implementations are
explained in section 4. The methodology is illustrated and
validated by the application (MPEG-4 + UMTS) described
in section 5 what allows to reach a new stage in the rele-
vance of the method. Finally conclusions and open issues
encountered during the application development are given
in section 6.

2. SYNDEX OVERVIEW

SynDEx1 is a free academic system level CAD (Computer
Aided Design) tool developed in INRIA Rocquencourt,
France. It supports the AAA methodology (Adequation Al-
gorithm Architecture [8, 9]) for distributed real-time pro-
cessing.

2.1. Adequation Algorithm Architecture (AAA)

A SynDEx application (Fig.1) comprises an algorithm
graph (operations that the application has to execute), which
specifies the potential parallelism, and an architecture graph
(multicomponent [10] target, i.e. a set of interconnected
processors and specific integrated circuits), which speci-
fies the available parallelism. “Adequation” means efficient
mapping, and consists of manually or automatically explor-
ing the implementation solutions with optimization heuris-
tics [9]. These heuristics aim to minimize the total execu-
tion time of the algorithm running on the multicomponent
architecture, taking the execution time of operations and of
data transfers between operations into account. These exe-
cution times are determined during the characterization pro-
cess, which associates a list of characteristics, such as exe-
cution times, necessary memory, etc with each (operation,
processor)/(data transfer, communication medium) pair re-
spectively.

An implementation consists of both performing a distri-
bution (allocating parts of the algorithm on components)
and scheduling (giving a total order for the operations dis-
tributed onto a component) the algorithm on the architec-
ture. Formal verifications during the adequation avoid dead-
locks in the communication scheme thanks to semaphores
inserted automatically during the real-time code generation.
Moreover, since theSynchronizedDistributedEXecutives
(SynDEx) are automatically generated and safe, part of the

1www.syndex.org



tests and low-level hand-coding are eliminated, decreasing
the development lifecycle.

User

Architecture graph Algorithm graphConstraints

ADEQUATION
distribution/scheduling

heuristic

Timing graph
(predictions)

DEDICATED executives for specific targets
(specific Compilers / Loaders)

SynDEx

M4Comm_M 
Kernel

Target_1 
Kernel

Target_N 
Kernel

…

GENERIC
Synchronized Distributed Executives

User

Architecture graph Algorithm graphConstraints

ADEQUATION
distribution/scheduling

heuristic

Timing graph
(predictions)

DEDICATED executives for specific targets
(specific Compilers / Loaders)

SynDEx

M4Comm_M 
Kernel

Target_1 
Kernel

Target_N 
Kernel

…
M4Comm_M 

Kernel
Target_1 
Kernel

Target_N 
Kernel

… Comm_M 
Kernel

Target_1 
Kernel

Target_N 
Kernel

…

GENERIC
Synchronized Distributed Executives

Fig. 1. SynDEx utilization global view

SynDEx provides a timing graph, which includes simu-
lation results of the distributed application and thus enables
SynDEx to be used as a virtual prototyping tool.

In the AAA methodology, an algorithm is specified as
an infinitely repeated DFG. Each edge represents a data de-
pendence relation between vertices, which are operations;
operation stands for a sequence of instructions, which starts
when all its input data is available and which produces out-
put data at the end of the sequence. In SynDEx, there is an
additional notion of reference. Each reference corresponds
to the definition of an algorithm. The same definition may
correspond to several references to this definition. An algo-
rithm definition is a repeated DFG similar to those in AAA,
except that vertices are references or ports so that hierarchi-
cal definitions of an algorithm are possible.

2.2. Automatic Executive Generation

The aim of SynDEx is to directly achieve an optimized im-
plementation from a description of an algorithm and of an
architecture. SynDEx automatically generates ageneric ex-
ecutive, which is independent of the processor target, into
several source files (fig.1), one for each processor [11].
These generic executives are static and are composed of a
list of macro-calls. The M4 macro processor transforms
this list of macro-calls into compilable code for a specific
processor target. It replaces macro-calls by their definition
given in the correspondingexecutive kernel, which is depen-
dent on a processor target and/or a communication medium.
In this way, SynDEx can be seen as an off-line static oper-
ating system that is suitable for setting data-driven schedul-
ing, such as signal processing applications [12, 13].

SynDEx kernels are available for several processors, such
as the TI2 TMS320C6x (C62x, C64x) and the Virtex FPGA
families, and for several communication media such as links

2Texas Instrument

SDBs (Sundance Digital Buses - Sundance High Speed FI-
FOs), CPs (Comports - SUNDANCE FIFOs), BIFOs (BI-
FIFOs - Pentek FIFOs), PCI Bus, TCP bus presented in the
following section.

2.3. Design Process

Our previous prototyping process integrated AVS3 (Ad-
vanced Visual Systems) as a front-end [14] for functional
checking. AVS is a software designed for DFG descrip-
tion and simulation. The application was constructed by
inserting existing modules or user modules into the AVS
workspace, and by linking their inputs and outputs. The val-
idated DFG was next converted into a new DFG by a trans-
lator to be compliant with SynDEx algorithm input. The
main advantage was the automatic visualization of interme-
diate and resulting images at the input and output of each
module. This characteristic enables the image processing
designer to check and validate the functionality of the ap-
plication with AVS before the step of the implementation.

Although SynDEx is basically a CAD tool for distribu-
tion/scheduling and code generation, here we demonstrate
that SynDEx can also be directly used as the front-end of
the process for functional checking (as it is possibly done
with AVS). This is made possible thanks to our kernels pre-
sented in section 3. The design process is now based on a
single tool and is therefore simpler and more efficient. Syn-
DEx therefore enables full rapid prototyping from the appli-
cation description (DFG) to final multiprocessor implemen-
tation (Fig.2) in three steps:

Step 1: the user creates the application DFG using Syn-
DEx. Automatic code generation provides a standard C
code for a single host computer (PC) implementation (Syn-
DEx PC kernel). In this way, the user can design and check
each C function associated with each vertex of its DFG,
and can check the functionalities of the complete applica-
tion with any standard compilation tools. With automatic
code generation, visualization primitives or binary error rate
computation can be used for easy functional checking of al-
gorithms. The user can easily check his or her own DFG
on a cluster of PCs interconnected by TCP Buses. With this
cluster, the user can emulate his or her embedded platform
thanks to SynDEx distributed scheduling.

Step 2: the developed DFG is then used for automatic
prototyping on monoprocessor targets so that to chronomet-
ric reports are automatically inserted by the SynDEx code
generator. Each duration associated with each function (i.e.
vertex) executed on each processor of the architecture graph
is automatically estimated using dedicated temporal primi-
tives.

Step 3: the user can easily use these durations to char-
acterize the algorithm graph by entering these values in

3www.avs.com



SynDEx

Sequential executive (PC) target
Visual C++ application

Distributed executive 
(PC + DSPs)

Sequential executive (PC)
With chrono. primitives
Visual C++ application

Sequential executive (DSP)
With chrono. primitives

Code composer application

Step 1

Step 2

Step 3

Functional
checking

Parallel
application

Nodes
Timing

Estimation

Fig. 2. SynDEx utilization global view

SynDEx. Then SynDEx tool executes an adequation (op-
timized distribution/scheduling) and generates a real-time
distributed and optimized executive according to the target
platform. Several platform configurations can be simulated
(processor type, their number, and also different media con-
nections).

The main advantage of this prototyping process is its sim-
plicity because most of the tasks performed by the user con-
cern the description of an application and a compiling envi-
ronment. Only a limited knowledge of SynDEx and compil-
ers is required. All complex tasks (adequation, synchroniza-
tion, data transfers and chronometric reports) are executed
automatically, thus reducing the “time to market”. The user
can rapidly explore several design alternatives by modifying
the architecture graph or adding constraints.

3. SYNDEX EXECUTIVE KERNELS

As described above, the SynDEx generic executive will be
translated into a compilable language. The translation of
SynDEx macros into the target language is contained in li-
brary files (also called kernels). The final executive for a
processor is static and composed of one computation se-
quence and one communication sequence for each medium
connected to this processor. Multicomponent platform man-
ufacturers must insert additional digital resources between
processors to make communication possible. Thus, Syn-
DEx kernels depend on specific platforms.

3.1. Development Platforms

Different hardware providers (Sundance, Pentek) were cho-
sen to validate automatic executive generation. Many com-
ponent and inter-component communication links are used
in their platforms, ensuring accuracy and the generic aspect
of the approach. The use of several hardware architectures
guarantees generic kernel developments.

Sundance4 platform: a typical Sundance device is made

4http://sundance.com/

up of a host PC with one or more motherboards, each
supporting one or more TIMs (Texas Instrument Module).
A TIM is a basic building block from which you build
your system. It contains one processing element, which
is not necessarily a DSP but an Input/Output device, or an
FPGA. A TIM also provides mechanisms to transfer data
from module to module. These mechanisms, such as SDBs
(200MB/s), CPs (20MB/s), or a global bus (to access a PCI
bus up to 40MB/s), are implemented on the TIMs using FP-
GAs.

FPGA1 (Virtex)

SDBa
SDBb
CP0
CP1
CP2
CP3

PALtoYUV (BT829)

VID_IN

DSP2 (TMS320C6416)
SDBa
SDBb
CP0
CP1
PCI

YUVtoPAL (BT864a)

VID_OUT

DSP3 (TMS320C6414)

SDBa
SDBb
VID_IN
VID_OUT

PC (Pentium)

PCI

PCI (BUS_PCI)

Bus_6 (CP)

Bus_3 (SDB)

IN (VID_IN)

OUT (VID_OUT)

Bus_1 (SDB)

Embedded Motherboard: SMT320

SMT361

SMT319

SMT358

Personal Computer

Fig. 3. Example of Sundance architecture topology

The SMT320 motherboard (Fig.3) is modular, flexible
and scalable. Up to four different modules can be plugged
into the SMT320 and connected using CP or SDB ca-
bles. The SMT361 TIM with a TMS320C6416 (400Mhz)
is very suitable for imaging processing solutions as the
TMS320C64xx has special functions for handling graph-
ics. The SMT319 TIM is a framegrabber, which in-
cludes a TMS320C6414 and two non programmable de-
vices: a BT829 PAL to YUV encoder and a BT864 YUV
to PAL decoder. These two devices are connected to
the TMS320C6414 DSP thanks to two FIFOs, which are
equivalent to SDBs with the same data rate. An SMT358
is composed of a programmable Virtex FPGA (XCV600)
which integrates specific communication links and specific
IP blocks (computation).

Pentek5 platform: The Pentek p4292 platform (Fig.4) is
made up of four TMS320C6203 DSPs. Each DSP has three
communication links: two bi-directional (300Mhz) inter-
DSP links and one for the Input/Output interface. The four
DSPs are already connected to each other in a ring structure.
Some daughter boards may be added to the p4292 thanks to
the VIM (Velocity Interface Mezzanine) bus, such as analog
to digital converters (ADC p6216), digital to analog con-

5http://www.pentek.com/



verters (DAC p6229), or FPGAs (XC2V3000, XC2Vx Vir-
tex2 family).

This stand-alone Pentek platform is connected to an Eth-
ernet network. This allows TCP/IP (1.5MB/s) communi-
cations between DSPs and any computer in the network in
order to check a binary error rate, or to visualize a decoded
image. However this Bus’s throughputs will not authorize
the transfer of uncompressed data.

Bus_1 (BIFO)

DSP_D (TMS320C6203)
XX
YY
IO
TCP

DSP_C (TMS320C6203)
XX
YY
IO
TCP

DSP_B (TMS320C6203)
XX
YY
IO
TCP

XX
YY
IO
TCP

ADC_1 (DAC)

VIM

PC (PENTIUM)

TCP

TCP (TCP)

Bus_4 (BIFO) Bus_2 (BIFO)

Bus_3 (BIFO)

Personal Computer

P4292 Mother Board

DSP_A (TMS320C6203)

VIM_1 (BIFO)

ADC 
Daughter Board

Embedded Boards

Fig. 4. Pentek 4292 mother board and its daughter board

3.2. Software component kernels

Most of the kernels are developed in C languageso that
they can be reused for any C software programmable de-
vice. These kernels are similar for the host computer (PC)
and the embedded processors (DSPs). The generated exec-
utive is composed of a sequential list of function calls (one
for each DFG operation). This kind of executive and the
fact that the adapted C compiler for DSPs has really im-
proved in terms of resource use mean that the gap between
an executive written in C and an executive written in assem-
bly language is narrow. The user can design each function
associated with each vertex of its DFG in C or assembly
language for better results [15].

SynDEx creates a macrocode made of several interleaved
schedulers: one for computation and the others for commu-
nications allowing parallelism of those actions. We have
chosen to use multi-channel enhanced DMA (Direct Mem-
ory Access) transfers, thus maximizing parallelism and tim-
ing performance. Data transfers are executed in paral-
lel with computation minimizing communication duration.
DMA and CPU have their own bus to access the internal
memory, therefore bus conflicts only appear when CPU and
DMA access an external memory. As all data buffers are
in internal memory, memory bus conflicts are null between
CPU and DMA accesses. Communication overhead is only

due to DMA setup which is negligible to take transfers into
account (a few assembly instructions)[16].

The development of an application on TI processors can
be hand-coded with TI RTOS (Real-Time Operating Sys-
tem) called DSP/BIOS [17]. DSP/BIOS is well-suited for
multithread monoprocessor applications. Several proces-
sors must be connected to improve computational perfor-
mances and reach real-time performances. In this case, the
multithread multiprocessor 3L diamond6 RTOS is more ap-
propriate for this situation than DSP/BIOS. Applications are
built as a collection of inter-communicating tasks. The map-
ping and scheduling of each task are chosen manually. Then
data transfers and synchronizations are implemented by the
RTOS using precompiled libraries. 3L enables multipro-
cessor application development easier, faster and suited to
dynamic communications between tasks. Data transfers are
realized using DMA, but without any computation paral-
lelism which is nearly equivalent topolling technique.

Data transfers in a signal processing application are gen-
erally statically defined both in terms of data type and num-
ber so that their description with a DFG is suitable. The
execution of DFG operations is also well-defined so that
data transfers can be implemented with static processes. As
static processes are faster than dynamic ones,SynDEx ker-
nels are developed without any RTOS. That is to say that the
SynDEx generic executive is not transformed into dynamic
RTOS functions but into specific static optimized functions.

3.3. Communication media kernels

With AAA methodology, two different models are possi-
ble for communication media between processors: the SAM
(Single Access Memory) and RAM (Random Access Mem-
ory, shared memory) models.

The SAM modelcorresponds to FIFOs in which data are
pushed by the producer if it is not full, and then pulled by
the receiver if the FIFO is not empty. Synchronizations be-
tween the two processors are hardware signals (empty and
full flags) and are not handled by SynDEx semaphores. The
data must be received in the same order as it is sent. Most
of our kernels are designed according to this model. SDBs,
CPs and BIFO_DMAs enable parallelism between calcula-
tion and communications, whereas TCP and BIFO do not
enable it (data polling mechanism).

The RAM model corresponds to an indexed shared
memory. A memory space is allocated and an interprocessor
synchronization semaphore is created for each item of data
that has to be transferred. This mechanism allows the des-
tination processor to read data in a different order to which
it has been written by the source processor. Interprocessor
synchronizations are handled by SynDEx. The first imple-

6http://www.shen.myby.co.uk/threel/



mentation of the RAM model, through the PCI bus, is de-
scribed in the following section.

A PCI transfer kernel, for communications between a
DSP on Sundance platforms and the host computer, is first
developed with the SAM model. First the host and DSP
must be synchronized. Each data transfer therefore encloses
two synchronizations because the PCI bus does not have
hardware signals like a usual FIFO (full or empty flag).
The receiver must first wait for the sender to write new
data in the PCI memory. Then, the receiver can read data
from the PCI memory and send an acknowledgement back
to the sender. This “rendez-vous as soon as possible mecha-
nism” induces idle or wait states but is mandatory to ensure
the medium is ready for the next transfer and to guarantee
transfer order. PCI communications using the SAM model
reach a maximum transfer rate of 16MB/s. This mechanism
drastically slows down PCI transfers. In addition, a shared
buffer is actually allocated to the PC’s RAM by the PCI
bus driver. Therefore, a new PCI kernel implementing the
RAM model has been developed and the transfer rate has
been improved (up to 40MB/s). Each item of data that has
to be transferred has its own address allocation in the PCI
memory and corresponding semaphores, which allows sev-
eral buffers to be written before the first one is read. This
results in less wait states and more time for computation.
The PCI scheduler is controlled by interrupt when using
this model. Consequently, communications and computa-
tions can be concurrent on the DSP, thus reducing overall
execution time.

3.4. Hardware component kernel

Moreover an FPGA kernel for programmable hardware
components has been developed in HDL (Hardware De-
scription Langage) and could be considered as a coproces-
sor in order to speed up a specific function of the algo-
rithm. This kernel handles automatic integration of inter-
component communication syntheses and instantiates a spe-
cific IP (Intellectual Properties) block.

Programming of a communication link depends on its
type but also on the processor. Previous works have al-
ready validated these libraries [18] however they need to
evolve with processors or communication links (depending
on provider’s additional logic).

3.5. Kernel organization

The libraries are classified to make developments easier
and to limit modifications when necessary. As shown in
Figure 5, these files are organized in a hierarchical way.
An application-dependent library contains macros for the
application, such as the calls of the algorithm’s different
functions. A generic library contains macros used regard-

less of the architecture target (basic macros). The oth-
ers are architecture-dependent: processor or communica-
tion type dependent. Processor-dependent libraries con-
tain macros related to the real-time kernel, such as mem-
ory allocations, interrupt handling or the calculation se-
quence. Communication type-dependent libraries contain
macros related to communications: send, receive and syn-
chronization macros, communication sequences. As differ-
ent processor types (with different programming of the link)
can be connected by the same communication type, one part
per processor type can be found in one library. The right
part of the file is used during the macro-processing.

Fig. 5. SynDEx kernel organization

Kernels have been developed for every component of
the platforms described in section 3.1. When SynDEx is
used for a new application, only the application-dependent
library needs to be modified by the user. Architecture-
dependent libraries are added or modified when a new ar-
chitecture is used (a processor or a medium that does not
have its kernel).

4. UMTS APPLICATION

UMTS is much more challenging than previous 2G systems,
such as GSM. In particular, UMTS signals have a 3.84MHz
bandwidth compared with 270kHz for GSM. Both applica-
tion and signal processing layers are very demanding. This
partially explains the delay in the effective arrival of UMTS
on the market. It presents a very interesting case study for
high efficiency multi-processing heterogeneous implemen-
tations. This becomes even more relevant in a Software Ra-
dio [19] context, which aims to implement as much radio
processing as possible in the digital domain, and especially
onto processors and reconfigurable hardware. The advan-
tages firstly consist of easing the system design while priv-
ileging fast software instead of heavy low level hardware
development. Secondly the system supports new services
and features thanks to software adaptation capability during
system operation [20].



PSHSCR

SPRctrl

SUM

CST_SCR_code

SPRdata

DPCCH

INT2

slot/slot

frame/frame

INT1EQUCODSEGCRCSRC

transport block

Fig. 6. UMTS FDD transmitter (Tx)

MFLRAKEDSCR

CST_SCR_code

DSPRdataDINT2

slot/slot

frame/frame

DINT1DEQUDCODDSEGDCRCBER

transport block

Fig. 7. UMTS FDD receiver (Rx)

4.1. General description

UMTS FDD physical layer algorithms explained in [5] are
implemented for baseband from cyclic redundancy check
(CRC) to pulse-shaping (PSH) (Table 1) for the transmit-
ter as shown in the DFG in Figure 6. This does not rep-
resent a total real UMTS since synchronization is artificial
and no propagation channel is used (the link is completely
digital). Data may be generated by an arbitrary source (SRC
Fig.6: not in the standard) for bit error rate verifications or
extracted from a real application, such as a video stream, to
make demonstrations.

SRC Source (Pseudo random generator)
CRC Add of

cyclic redundancy check bits
SEG Segmentation
COD Channel coding
EQU Equalization
INT1 First interleaving
INT2 Second interleaving

SPRdata Spreading of information bits
SPRctrl Spreading of control bits

SUM Creation of a complex signal
CST_SCR_code Generation of the scrambling code

SCR Scrambling
DPCCH Generation of control bits

PSH Pulse-shaping

Table 1. Legenda of UMTS FDD transmitter

Link characteristics in the measured version are as fol-
lows:

• 1 transport channel,
• 1 physical channel,
• no channel coding,
• spreading factor of 4,
• data rate of 950kbps.

The receiver [5] extracts the information necessary for the
application using the scheme represented in Figure 7 (Table
2).

MFL Matched filter
RAKE Simplified Rake

(One perfectly synchronized finger)
CST_SCR_code Generation of the scrambling code

DSCR Descrambling
DSPRdata Despreading of information bits

DINT2 Deinterleaving 2
DINT1 Deinterleaving 1
DEQU Equalization inverse operation
DCOD Channel decoding
DSEG transport block extraction
DCRC Analysis of

cyclic redundancy check bits
BER Bit error rate

Table 2. Legenda of UMTS FDD receiver

The number of operations effectively in use is much
greater than the figures shown as most of them are du-
plicated several times. The generation of a 10ms frame



(composed of 15 slots) requires the instantiation of approxi-
mately 140 operations for Tx and 240 for Rx in this version,
which is a minimum. The granularity of the operations has
the same level of complexity as a FFT, FIR or a memory
reorganization.

4.2. FIR implementation

The filter operation is of particular interest because its im-
plementation complexity makes it very resource consuming.
This is a FIR (Finite Impulse Response) with a raised-root
cosine impulse response specified by the UMTS standard
at both transmitter baseband output and receiver baseband
input. Here, the impulse response is symmetric around its
center; this characteristic can be exploited to minimize the
number of memory accesses, the required memory for stor-
ing the filter coefficients and the number of multiplication
operations. In order to obtain a convenient rejection of con-
tiguous bands, the filter impulse response is spread over 16
chips and consequently has 33 taps with an oversampling of
2. The same coefficients are used for Tx and Rx.

Equation 1 gives us the representation of a FIR filter with
an odd number of coefficient whereh is the real coefficient
vector of the filter impulse response (filter taps),K is num-
ber of coefficients (or taps),x[n] and y[n], the nth input
and output complex data samples respectively.

y [n] = h
h

K−1
2

i
· x
h
n − K−1

2

i
+

(K−1)/2−1P
k=0

h [k] · (x [n − k] + x [n − K + 1 + k])
(1)

A real filter (i.e. filter whose coefficients are real) ap-
plied to complex data is very frequent inbaseband(BB)
processing and consists of applying the same filter indepen-
dently to the real and imaginary parts of the data samples.
In our case we are interested in fixed point implementations
so care must be taken to avoid overflow while preserving
signal quality (in terms of SNR). The filter at Tx is called
pulse shaping(PSH) and at Rxmatched filtering(MFL). At
Tx PSH and oversample (which consists of inserting zero
between binary digits) operation can be combined in order
to minimize computation. In this case we obtain:
if n is even

y [n] =

(K−1)/4X
k=0

h [2k] · (x [n − k] + x [n − (K − 1)/2 + k])

if n is odd

y [n] = h
h

K−1
2

i
· x
h
n − K−1

2

i
+

(K−1)/4−1P
k=1

h [2k] · (x [n − k] + x [n − (K − 1)/2 + k])

The nature of a FIR operation is particularly suited to
FPGA implementations but can also be implemented on
DSP processors. A specific characteristic of the DSP is

that it has a MAC (Multiply ACcumulate) or a VLIW
structure to support filtering computing in one clock cy-
cle. The TMS320C6x family, based on VLIW architecture,
has six adders and two multipliers, which operate in par-
allel and complete execution in one clock cycle. A fixed-
point multiply-accumulate takes two instructions: multiply
on one cycle and accumulate on the next. Thanks to pipelin-
ing, it is possible to effectively compute two multiply-
accumulates per cycle.

The performance then directly depends on filter length
and processor clock frequency as each tap is processed se-
quentially. In an FPGA, it is possible to parallelize part or
all of these operations, depending on the available gate sur-
face. FIR implemented in the FPGA is a distributed arith-
metic (DA) filter[21]. Features of this FIR are not multipli-
ers, but only ROM (Read Only Memory) and accumulators.
The complexity of this filter only depends on the number of
bits per sample, not on the number of taps.

In the particular case of C6x, it is possible to use a data
buffer organization of the FIR as shown in Figure 8. FIR
is a typical case where functional units in the microproces-
sor datapath can speed up processing. Data is processed in
blocks. The interface consists of an input data buffer, the
coefficient buffer and an output data buffer.

y(0, ..., N-1)FIR
(K taps)

h(0, ..., K)

x(-K+1, ..., -1, 0, ..., N-1)

state update

state new data

Fig. 8. Data management for DSP implementation of a FIR

The algorithm for each input sample performs the func-
tion of y[n] in a for-loop. At the end of each block process-
ing operation, the filter state is updated by copying the last
K input data into a state buffer (Fig. 8). For the sake of pro-
cessing efficiency, it is assumed that the input data buffer is
stored in a memory after the state data buffer so that nega-
tive indices of the input data buffer point to the state buffer
data.

C62x C64x XC2Vx
300Mhz 400Mhz 100Mhz

Time/slot (µs) 576 320 338

Table 3. Timing of PSH (input: 2560 samples)



C62x C64x XC2Vx
300Mhz 400Mhz 100Mhz

Time/slot (µs) 1130 640 338

Table 4. Timing of MFL (input: 5120 samples)

In Tables 3 and 4, the differences in timing between C62x
and C64x (without taking clock rates into account) is due to
the fact that compilers are not the same for each processor
and that those DSPs have different internal architectures. In
an FPGA (XC2Vx), this FIR operation could be more par-
allelized giving better acceleration to the detriment of the
gate surface. However, these time values are sufficient to
get a Tx or Rx real-time application, that is why we use the
same FIR implementation for PSH and MFL. An elemen-
tary oversampling function just has to be added before PSH.
On the contrary to FPGAs, we take advantage of the FIR
features (cf. 4.2) on DSPs to optimize and divide by 2 the
computation complexity of PSH at Tx, so that 576µs versus
1130µs are obtained on C62x and 320µs versus 640µs on
C64x.

4.3. Tx and Rx implementations

Four different implementations (Table 5) of a UMTS trans-
mitter have been automatically tested using SynDEx: three
are implemented on Pentek platform and one on Sundance
platform. A transmitter application must last under 10ms to
be real-time.

Principally due to PSH (Table 8, timing PSH ratio com-
pared to a Tx implementation), the first transmitter imple-
mentation onto the Pentek platform did not reach real-time
with one C62x DSP however it is possible to parallelize
PSH in order to process half of the samples on two pro-
cessors. Before filtering, two buffers of 1296 samples (as
described in Figure 8) must be created. Each block pro-
cessing operation overlaps 16 transient samples. The length
of this PSH is reduced by 1.5 when transfers are taken into
account.

Furthermore code generation and kernels can be used to
quickly shift to another platform. UMTS prototyping on the
Sundance platform required indeed few hours to reach to
a real-time transmitter application, thanks to our previous
works (UMTS algorithm description, SynDEx code genera-
tion and kernels) on Pentek platform. This is a tremendous
proof of the portability capabilities offered by the method-
ology.

UMTS Rx has been implemented according to three dif-
ferent configurations (Table 6). A real-time application has
been achieved on the Pentek platform with one DSP and one
FPGA. MFL parallelization is also possible on several DSPs
on Pentek platform, however more than two DSPs are added

Sundance Pentek

Configuration 1*C64x 1*C62x 2*C62x 1*XC2Vx
1*C62x

Time/frame 9. 5ms 11.8ms 8.5ms 9.6ms
PSH ratio 50% 73% 53% 52%

Table 5. Tx timings and PSH ratio

compared with one FPGA in the previous configuration. A
configuration with 4 DSPs requires many transfers in the
Pentek ring structure, thus not reducing MFL computation
length by too much.

Sundance Pentek

Configuration 1*C64x 1*C62x 1*XC2Vx
1*C62x

Time/frame 15.9ms 20.2ms 9.9ms
MFL ratio 60% 84% 32%

Table 6. Rx timings and MFL ratio

5. MPEG-4 OVER UMTS: A MULTI-LAYER
SYSTEM

MPEG-4 is the latest compression standard. An MPEG-4
codec can be divided into ten main parts (e.g. system, visual
and audio) with different timing requirements and execution
behaviors. Each part is divided into profiles and levels for
the use of the tools defined in the standard. Each profile
(at a given level) constitutes a subset of the standard so that
MPEG-4 can be seen as a toolbox where system manufac-
turers and content creators have to select one or more pro-
files and levels for a given application. The application han-
dled here is an MPEG-4 part 2 codec developed in our lab-
oratory, which is based on the Xvid7 Codec. This MPEG-4
codec has also been tested on several distributed platform
configurations [7] (Multi-DSP implementation). Here, our
aim is to interface UMTS with MPEG-4 to provide a bit-
stream to the UMTS application.

The methodology permits to merge the design of very dif-
ferent (heterogeneous) parts of the system in terms of hard-
ware processing support (PC, DSP, FPGA) as well as pro-
cessing nature. A conventional methodology would require
different environments, which is a cause of bugs and incom-
patibility at the integration step. This causes delays in the
best case, and could even completely question the design in
the worst case. Our approach permits to gather the different
parts of the design very early in the design flow and antici-
pate integration issues. Nevertheless MPEG-4 over UMTS

7www.xvid.org



UMTS
Demodulation

MPEG-4 
Coder

UMTS 
Modulation

MPEG-4
Decoder

PC
FPGAs

DSPs
+

FPGAs

DSPs
+

FIFO FIFO FIFO

TCP
PCI BUS

SDB

BIFO

TCP
PCI BUS Sundance

Pentek

Sundance
Pentek

PC

Fig. 9. MPEG-4 over UMTS

arises a new difficulty: the complete application is a multi-
layer system (two layers MPEG-4 and UMTS) with differ-
ent data periodicities between layers. A consequence is that
the whole application can not be represented by a single
DFG. The solution consists of breaking up the UMTS phys-
ical layer and the video codec layer into four algorithm sub-
graphs. Then these sub-graphs (coder, decoder, modulation,
demodulation) have been implemented onto several proces-
sors connected each other with media (FIFO) following the
topology of figure 9.

The MPEG-4 codec is not embedded here: firstly, TCP
throughputs on the Pentek platform do not enable uncoded
or uncompressed data to be transferred, and secondly too
few Sundance TIMs are available in our laboratory to em-
bed a complete application with UMTS + MPEG-4. Our
real-time MPEG-4 codec provides the maximum data rate
supported by our UMTS transceiver (950kbps). An MPEG-
4 bitstream, coded on a PC, is sent via a UMTS telecommu-
nication link to another PC to be decoded. Once the commu-
nication transceiver has been implemented on a platform, it
can be viewed as a communication medium equivalent to a
FIFO.

So the platform integrating the MPEG-4 codec could be
described as two PCs interconnected by a UMTS commu-
nication medium. A FIFO is used to connect asynchronous
applications (codec to UMTS communication link). Asyn-
chronous means different periodicities and different data
exchange formats. A codec cycle corresponds to one im-
age processing operation producing a variable compressed
bitstream in a variable time (about 40ms). A UMTS cycle
executes one fixed-size frame in 10ms. FIFO material sig-
nals (empty and full flags) ensure the self-regulation of the
global system (UMTS+MPEG-4). Two implementations of
this global system have been rapidly done onto two plat-
forms thanks to developed kernels as described in Figure
9. The global system runs in real-time on Pentek platform
and is not far from real-time on Sundance platform (Rx is in
16ms and must be 10ms). The first implementation of the

global application on Pentek platform take quite a long time
(two months) to find and solve the multi-layer issue, but
this implementation is instantaneously transposed on Sun-
dance platform, which exactly illustrates the efficiency and
the pertinence of the approach.

6. CONCLUSIONS AND OPEN ISSUES

The design process proposed in this paper covers every step,
from simulation to integration in digital signal application
development. Compared with a manual approach, the use
of our fast prototyping process ensures easy reuse, reduced
time to market, design security, flexibility, virtual prototyp-
ing, efficiency and portability.

On the one hand, we have shown how SynDEx is capable
of manually or automatically exploring several implemen-
tation solutions using optimization heuristics, and on the
other hand, how it automatically generates dedicated dis-
tributed real-time executives from kernels dependent on the
processors and the media. These executives are dedicated
to the application because they do not use any support of
RTOS, and are generated from the results of the adequation
taking operation and data transfer distribution and schedul-
ing into account while providing synchronizations between
operations and data transfers and between consecutive rep-
etitions of the DFG. The kernels enable recent multiproces-
sor platforms to be used and also enable the process to be
extended to heterogeneous platforms. It was tested on sev-
eral different architectures composed of TI TMS320C6201,
TMS320C6203, TMS320C6416 DSPs, Xilinx Virtex-E and
Virtex-II FPGAs, and PCs.

The calculations and data transfers are executed in par-
allel. RAM and SAM communication models have been
tested for PCI transfers. Higher transfer rates are reached
using the RAM model enabling real-time video transfers be-
tween a PC and a DSP platform.

Several complex tasks are performed automatically, such
as distribution/scheduling, code generation of data transfers



and synchronizations. So the development of a new ap-
plication is limited to the algorithm description and to the
adaptation of kernels for platforms or components. Further-
more, as the C language is used and there is a large number
of tested topologies, developed DSP kernels can easily be
adapted to any other DSP and communication media.

The current MPEG-4+UMTS application is still in
progress to achieve wireless communication. A new version
already integrates the channel coding (Turbo code) steps,
which only slightly increases the overall complexity.

This approach ensures fast prototyping of digital sig-
nal applications over heterogeneous parallel architectures
in many technological fields. Other applications have al-
ready taken advantage of it. A SynDEx description of a
MC-CDMA (probably planned as 4G) application has been
developed by the IETR SPR laboratory [22]. LAR codec
is a video codec studied in the IETR Image Group Labo-
ratory. A similar scheme (Figure 9) has already been tested
on different configurations: LAR over MC-CDMA, MPEG-
4 over MC-CDMA and LAR over UMTS.

The complex MPEG-4+UMTS application stresses that
a multi-layer system presents some specific characteris-
tics in terms of data flow. In the future, this case study
may be capitalized on creating in SynDEx new hierarchi-
cal models of architecture graphs in such a way the physical
layer (telecommunication link) may appear as a particular
medium. Another issue is the memory allocation in Syn-
DEx. At each output of each vertex, SynDEx creates an
allocation. At this time, memory allocations are reordered
and reused manually to give an optimal solution. Current
works deal with an automatic solution, based on graph col-
oring techniques and life memory allocation.

7. REFERENCES

[1] A. M. Eltawil, E. Grayver, H. Zou, J. F. Frigon,
G. Poberezhskiy, and B. Daneshrad, “Dual Antenna
UMTS Mobile Station Transceiver ASIC for 2Mb/s
Data Rate,” IEEE International Solid-State Circuits
Conference, 2003.

[2] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli, “System Level Design:
Orthogonalization of Concerns and Platform-Based
Design,” IEEE Transactions on Computer-Aided De-
sign of Circuits and Systems, vol. 19, no. 12, Decem-
ber 2000.

[3] T. A. Henzinger, C. M. Kirsch, M. A. Sanvido, and
W. Pree, “From control models to real-time code using
Giotto,” IEEE Control Systems Magazine, vol. 23, no.
1, pp. 50–64, 2003.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,

“Software synthesis from dataflow graphs,”Kluwer,
1996.

[5] 3GPP - TS 25.213 v3.3.0: Spreading and Modulation
FDD, release 1999.

[6] F. Pereira and T. Ebrahimi, “The MPEG-4 Book,”
Prentice Hall, July 2002.

[7] N. Ventroux, J.-F. Nezan, M. Raulet, and O. Déforges,
“Rapid Prototyping for an Optimized Mpeg-4 Decoder
Implementation over a Parallel Heterogeneous Archi-
tecture,” in28th IEEE International Conference on
Acoustic, Speech and Signal Processing (ICASSP),
Hong-Kong, April 2003, Conference cancelled - In-
vited paper, ICME 2003.

[8] Y. Sorel, “Massively Parallel Systems with Real Time
Constraints, the Algorithm Architecture Adequation
Methodology,” inConf. on Massively Parallel Com-
puting Systems, Ischia, Italy, May 1994.

[9] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Op-
timized Rapid Prototyping for Real-Time Embed-
ded Heterogeneous Multiprocessors,” in7th Inter-
national workshop on Hardware/Software Co-Design
CODES’99, Rome, Italy, May 1999, pp. 74–78.

[10] Y. Sorel, “Real-Time Embedded Image Processing
Applications using the AAA Methodology,” inIEEE
International Conf. on Image Processing, Lausanne,
Switzerland, September 1996.

[11] T. Grandpierre and Y. Sorel, “From Algorithm and
Architecture Specification to Automatic Generation of
Distributed Real-Time Executives: a Seamless Flow
of Graphs Transformations,” inFirst ACM and IEEE
International Conference on Formal Methods and
Models for Codesign, MEMOCODE’03, Mont Saint-
Michel, France, June 2003.

[12] F. Balarin, L. Lavagno, P. Murthy, and
A. Sangiovanni-Vincentelli, “Scheduling for Embed-
ded Real-Time Systems,”IEEE Design and Test of
Computers, vol. 15, no. 1, pp. 71–82, January-March
1998.

[13] L. A. Hall, D. B. Shmoys, and J. Wein, “Scheduling
To Minimize Average Completion Time: Off-line and
On-line Algorithms,” 7th ACM-SIAM Symposium on
Discrete Algorithms, pp. 142–151, January 1996.

[14] V. Fresse, O. Déforges, and J.-F. Nezan, “AVSynDEx:
A Rapid Prototyping Process Dedicated to the Imple-
mentation of Digital Image Processing Applications
on multi-DSPs and FPGA Architectures,”EURASIP
journal on Applied Signal Processing, special issue on



Implementation of DSP and Communication Systems,
, no. 9, pp. 990–1002, September 2002.

[15] Texas Instruments, “TMS320C6000 Optimizing Com-
piler User’s Guide,”reference spru187l, March 2004.

[16] Y. Le Méner, M. Raulet, J.-F. Nezan, A. Kountouris,
and C. Moy, “SynDEx Executive Kernel Development
for DSP TI C6x Applied to Real-Time and Embed-
ded Multiprocessors Architectures,” inXI European
Signal Processing Conference (EUSIPCO), Toulouse,
France, September 2002.

[17] Texas Instruments, “TMS320 DSP/BIOS User’s
Guide,” reference spru423b, September 2002.

[18] F. Nouvel, S. Le Nours, and I. Herman, “AAA
methodology and SynDEx tool capabilities for design-
ing on heterogeneous architecture,”Conference on
Design of Circuits and Integrated Systems, November
2003.

[19] A. Kountouris, C. Moy, and L. Rambaud, “Re-
configurability: a Key Property in Software Radio
Systems,”First Karlsruhe Workshop on Software Ra-
dios, Karlsruhe, Germany, March 2000.

[20] C. Moy, A. Kountouris, and A. Bisiaux, “HW
and SW Architectures for Over-The-Air Dynamic Re-
configuration by Software Download,”Software De-
fined Radio workshop of RAWCON’03, August 2003.

[21] S. A . White, “Applications of Distributed Arithmetic
to Digital Signal Processing: Tutorial Review,”IEEE
ASSP Magazine, July 1989.

[22] S. Le Nours, F. Nouvel, and J.F. Helard, “Example of
a Co-Design approach for a MC-CDMA transmission
system implementation,”Journees Francophones Ad-
equation Algorithme Architecture (JFAAA), December
2002.


