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Abstract—A data chain is a sequence of periodic real-
time communicating tasks that are processing the data
from sensors up to actuators. It determines an order in
which the tasks propagate data but not in which they
are executed: inter-task communication and schedul-
ing are independent. In this paper, we focus on the
latency computation, considered as the time elapsed
from getting the data from an input and processing it
to an output of a data chain. We propose a method
for the worst-case latency calculation of periodic tasks’
data chains executed by a partitioned fixed-priority
preemptive scheduler upon a multiprocessor platform.
As far as we know, there is no such formal approach
based on closed-form expression for communicating
real-time tasks.

I. Introduction

An embedded real-time system must react to its sur-
roundings by sensing, computational processing and actu-
ating upon external events within strict timing constraints.
In large and complex industrial systems, different tasks
process in a specific order the data before the final results
can be delivered to the actuators. From a sensor to
an actuator, a specific chain of tasks is involved in the
computational processing.

Task chains. A task chain is a sequence of communi-
cating tasks in which every task receives the data from
its predecessors [1]. According to the activation rule, two
models are commonly distinguished: trigger and data
chains. Tasks in the trigger chains are activated by the
events issued from the preceding tasks. In the data chains,
the tasks are independent and are activated recurrently at
their individual rates.

Trigger chains are characterized by a more flexible timing
behavior. Tasks of the same chain execute only if necessary:
a task is scheduled only if it receives the request from its
predecessor. It results in a more efficient use of the processor
resources and a more reactive inter-task data passing. To
impose the precedence between subsequent tasks, trigger
chains require task synchronization (e.g., semaphores). The
use of the synchronization primitives can lead to priority-
inversion problems and possible deadlock formations [2], [3].
An additional effort is needed for the integration of these
primitives together with adequate control structures. On
top of that, as safety-critical software is subject to stringent

safety standards, adding these features to the system makes
the certification process more burdensome [4].

Data chains are not synchronized and follow a strict
activation pattern. Tasks are released at every period
even if there is no new data to consume. Certain delay
of time can elapse from the instant when the precedent
task produces the data and the instant when the current
task is released and can consume it. However, especially in
large industrial applications, data chains may be preferred
over trigger chains. Their unrestrained execution model
can permit to reduce time and cost overheads related
to the implementation and validation of synchronization
mechanisms needed for trigger chains.

Task chain latency. Real-time systems comprised of
task chains are subject to different timing requirements.
Wyss et al. [5] summarize them as follows. Reactivity
(or data reaction [1]) is a time interval during which a
data must be present at the sensor input in order to
be detected. Latency is a time interval elapsed between
arrival of data at the sensor input and actuator’s update
with value corresponding to that particular data (i.e., time
needed for data to be propagated from sensor to actuator).
Freshness (or data age [6]) is a time interval during which
the actuator’s value corresponding to the same sensor data
instance is in use.

Contribution. In this work, we focus on the computa-
tion of the worst-case latency for data chains. Given a data
chain of periodic independent tasks with implicit deadlines
scheduled by a fixed-priority preemptive partitioned algo-
rithm upon identical multiprocessor platforms, a priority
assignment of these tasks and the worst-case response times
of their jobs, we propose a method for the computation
of the data chain worst-case latency. We sketch simple
algorithms for an easy and efficient implementation of the
proposed method on top of any response time analysis tool.

Paper structure. The paper is organized as follows. In
the next section we review related work. The data chain
model is defined and hypotheses are made in Section III.
A method for the calculation of the worst-case latency
of data chains is presented in Section IV. In Section V
we evaluate our method using the generic task sets based
on a real-world automotive system and in Section VI we
conclude the paper.



II. Related work

Davare et al. [7] propose period and priority assignment
technique for the periodic tasks running on different nodes
without consistent view of time (no clock synchronization).

Gerber et al. [8], [9] consider a task chain with har-
monicity constraint and enforce by the offset and priority
selection that the producer task executes always before
the consumer task. Di Natale et al. [10] and Davare et
al. [7] specify the general case when the producer and
consumer have harmonic periods without being necessarily
monotonic in their lengths over the entire chain. They
assume additionally that the relative offsets are selected to
enforce the execution of the producer before the consumer.

Feiertag et al. [6] and Mubeen et al. [1] developed frame-
works for the computation of different latencies under the
same model as in the present work upon a single processor.
The framework presented in [1] is a part of Rubus-ICE tool
suite used for the development of automotive systems and
handles also other message passing abstractions typical
for this kind of systems (e.g., CAN messages). Both
frameworks compute all the reachable paths while in our
work we propose a closed-form expression (Lemma 1) that
identifies directly the one that gives a maximum latency.
Rajeev et al. [11] and Anwikar and Badhuri [12] use
model-checking based techniques to analyze latencies in
the distributed systems in which chains are composed of
preemptive tasks and non-preemptive messages. Khatib et
al. [13] use Synchronous Data-flow Graph to model the
communications between multi-periodic tasks that start
exactly at their releases.

Wyss et al. [5], [14] present an analysis of the end-to-end
latencies for a formal language with synchronous semantics
Prelude [15]. The data propagation in functional chain is
expressed by a data dependency word [16].

Becker et al. [17]–[19] analyze the end-to-end latency for
periodic tasks in abstraction from a concrete scheduling
policy, for the static off-line schedules [19], [20] and also
using the knowledge of the worst-case response times of the
tasks [20]. The framework presented in [20] is versatile and
can be applied for the most timing analysis in automotive
and avionic systems on single processor like tasks with
offsets and Logical Execution Time model; it also automat-
ically generates the job-level dependencies to meet latency
constraints. The method is based on the tree of all possible
data propagation paths. For two communicating tasks, their
communication time instant leading to maximum latency
can be identified once all their previous communication
time instants are generated. The approach proposed in our
work uses the scheduling information (priority, response
time, processor assignment) to identify directly with a
closed-form expression (Equation (4)) the communication
time instant leading to the maximum latency. The focus
of our work is on multiprocessor platforms and considers
that response time of a particular job is also a function
of its release time. We formally validate our method

by analyzing different schedules resulting from the non-
constant execution times of the tasks.

The holistic analysis [21] applies to the tasks whose
execution can be triggered by the arrival of a message or by
the completion of a preceding task. Schlatow and Ernst [3]
proposed an upper bound on the end-to-end latency of
task chains implementing synchronous and asynchronous
communicating threads. The multiframe model [22] can be
used to express the sequential execution of communicating
jobs. It generates cyclically a fixed sequence of different
jobs according to a predefined time pattern.

III. System model
We introduce a data chain as a sequence of independent

periodic tasks with implicit deadlines scheduled by a
partitioned fixed-priority preemptive policy upon a multi-
processor platform.

A. Periodic task model
A system consists of a finite set of periodic tasks. Each

task τi is characterized by its worst-case execution time
Ci and its period Ti (both positive integers). An instance
(job) of task τi is released every period Ti and must meet
its execution requirement upper bounded by Ci by the
arrival of its next instance (implicit deadline Di = Ti).
The first instance of τi is released at the time instant 0.
The infinite set of all the release time instants of task τi is
referred to as A(τi) = {0, Ti, 2Ti, . . .}. An instance of the
task τi released at ri.j ∈ A(τi) is denoted by Ji(ri.j). In
the rest of the paper, to facilitate the reading, an arrival
ri.j of a task τi will be sometimes simply denoted by ri
when there is no possible ambiguity with different arrivals
of τi. The instances of task τi are executed upon the
processor P (τi) (partitioned scheduling). We suppose that
the task-to-processor assignment is already given. All the
processors are identical and have the consistent view of
time (perfectly synchronized clocks). The hyperperiod H
is the least common multiple of all the tasks periods.

Tasks are scheduled upon every processor by a fixed-
priority preemptive scheduler. Each task τi is assumed
to have a unique priority π(τi). We consider that τi has
a higher priority than τk if π(τi) > π(τk). Additionally,
we denote a set of tasks with priorities higher than π(τi)
that execute on P (τi) as: hp(τi) = {τk : π(τk) > π(τi)} and
with priorities higher than or equal to π(τi) as: hep(τi) =
hp(τi)∪{τi}. The tasks are assumed to be independent and
their executions cannot be blocked by another task other
than due to contention on processor. Once a task starts to
execute it will not voluntarily suspend its execution. Tasks
can begin processing, complete or be preempted at any
time with respect to their parameters.

B. Task response time
The worst-case job response time Ri(ri.j) of task τi

released at ri.j ∈ A(τi) is given by the longest time from
ri.j until it completes its execution. The time instant



when it completes its execution is denoted by fi(ri.j) =
ri.j +Ri(ri.j).

The worst-case task response time of τi, denoted as Ri,
is given by the maximum worst-case job response time
over all its jobs: Ri = maxri.j∈A(τi) Ri(ri.j). A system is
deemed schedulable when ∀τi : Ri ≤ Ti.

C. Data chain model
A data chain Fn is a sequence of n ≥ 1 tasks (τ1, . . . , τn)

describing a flow of communication between the tasks
realized via shared registers. Let head(Fn) = τ1 be its first
task, last(Fn) = τn its last task and tail(Fn) = (τ2, . . . , τn)
the chain obtained by removing τ1. If n = 1, then τ1 after
its start reads the data from its sensor, computes its outputs
and writes them to the appropriate actuator. Otherwise, if
n ≥ 2, the data chain Fn processes the data as follows:

� when τ1 starts, it reads the data from a sensor,
computes the results and, at the end of its execution,
writes these results into the register of τ2;

� when τi (for i : 1 < i < n) starts, it reads the data
from the register of τi−1, computes the results and
writes them, at the end of τi, into the register of τi+1;

� when τn starts, it reads the data from τn−1, computes
the outputs and, at the end of its execution, writes
these outputs to the corresponding actuator.

The start of the tasks does not depend on the commu-
nication, tasks are scheduled according to the assigned
priorities only. The same mechanism is also implemented
in Cyclical Asynchronous Buffers [23]. Figure 1 illustrates
a data chain F3 of three tasks (τ1, τ2 and τ3) together with
their registers.

Sensor τ1 Reg2 τ2 Reg3 τ3 Actuator

Figure 1: Register-based communication in a data chain of
three tasks τ1, τ2 and τ3.

The communication described above assumes the read-
execute-write task semantics (implicit communication [19],
[24] in AUTOSAR): the input data can be read only at
the beginning of the execution and the results can be
written only at its end. The operations on the registers
(read and write) are atomic and are assumed to take a
negligible amount of time. The computation process can
be preempted at any time and resumed later from the same
context. Each task has its individual register which stores
only the most recent data. The registers are asynchronous
in the sense that they can be accessed anytime.

D. Data propagation path
Based on the concept of timed path introduced in [6]

and in [17], we define, for a data chain Fn released at
time instant r1 ∈ A(τ1) such that τ1 ∈ head(Fn), a set of
data propagation paths Ω(Fn, r1). A data propagation path
p ∈ Ω(Fn, r1) is a n-tuple (r1, . . . , rn) where ri ∈ p is the
release time of the task τi instance that propagates the

data. A task τi propagates a data when it writes this data
for the first time into a task register of the next task τi+1.
It is supposed that at time instant r1 all the task registers
are empty and the data is from that moment continuously
present at the chain’s input.

Figure 2 illustrates two different scenarios of execution
of a data chain F3. The chain is composed of three tasks:
τ1, τ2 and τ3 such that π(τ2) > π(τ3) > π(τ1). In this
figure, two data propagation paths can be distinguished
for Ω(F3, r1,1). The first one, marked with the dotted line,
when τ1 terminates at f ′

1,1 : (r1,1, r2,2, r3,2). The second
one, marked with the solid line, when τ1 terminates later
at f1,1 : (r1,1, r2,3, r3,3) with f1,1 > f ′

1,1.

f ′
1,1 f1,1r1,1 r1,2

r3,1 r3,2 r3,3

r2,1 r2,2 r2,3 r2,4

τ3

τ2

τ1

L(F3, r1,1)

L(F2, r2,3)

Figure 2: Two execution scenarios of a data chain of three
tasks: τ1, τ2 and τ3.

E. Data chain latency
Latency of a data chain is a delay between the arrival

of its input and the first output corresponding to it [11].

Definition 1 (Latency). Let Fn be a data chain whose
registers are initially empty. Its data latency is a time
interval elapsed between

- the time instant at which the data arrives at the input
sensor connected to head(Fn) given that the data is
available sufficiently long to be detected, and

- the time instant at which the actuator connected to
last(Fn) is updated with the data corresponding to
the computation performed by all the tasks of Fn.

Given that the data arrives at r1, the maximum latency
L(Fn, r1) of a data chain Fn corresponds to the data
propagation path in which the last task completes at the
latest time.

Definition 2 (Maximum data chain latency at r1). Let
Fn be a data chain of n ≥ 1 tasks and r1 ∈ A(τ1) the
release time of its first task τ1 = head(Fn), and the input
of τ1 arrives in its register at r1. The maximum latency of
data chain Fn released at r1 is not greater than:

L(Fn, r1) = max
p∈Ω(Fn,r1)

fn(rn)− r1 (1)

where rn ∈ p and τn = last(Fn).



IV. Latency Analysis
We propose a method for computing the maximum

latency of the data chain if the input from the sensor
arrives at the release of its first task and then we generalize
this method for the arbitrary input arrival times to obtain
the worst-case latency. First, for a task that writes the data
and the next task in the chain that subsequently reads
this data, we characterize the time distances between their
releases. Given a data arrival time, we construct a sequence
of releases of the tasks propagating this data from the first
to the last task in the chain (data propagation path). Then,
to obtain the worst-case latency, we expand the proposed
method over all data arrival time instants.

A. The latest data propagation time
We characterize the largest delay in data passing for a

pair of directly communicating tasks. Given a release time
of the task propagating data (producer), we find the latest
possible release time instant of the task that reads this
particular data for the first time (consumer).

In the example shown on Figure 2, there are two instances
of task τ2 that can propagate the data. The solid line
represents the inter-task data passing when τ1 finishes at
f1,1 (suppose that f1(r1,1) = f1,1) and the data is consumed
by τ2 released at r2,3. The dashed line corresponds to the
case when τ1 finishes at f ′

1,1 (f ′
1,1 < f1,1) and the data

is consumed by τ2 released at r2,2 (r2,2 < r2,3). Task τ2
instance that consumes the data propagates it further to
τ3. In this example, the data from τ1 can be propagated
to τ3 by the instances of τ2 released at r2,2 or at r2,3. The
time instant r2,3 is the latest possible release of τ2 that
can propagate the data.

Let F2 be a data chain of two communicating tasks:
producer τp and consumer τc having respectively periods
Tp and Tc. The producer, at the end of its execution,
fills the input register of the consumer with the result
of its computation. Let rc be the latest release time of the
consumer job that has for the first time in its register the
data written by the producer released at rp.

First, suppose that the consumer has higher priority
than producer: π(τc) > π(τp) and is mapped to the
same processor: P (τc) = P (τp). Figure 3 illustrates a
sample execution of such two tasks. Due to the priority
order, whenever consumer τc is released it can preempt

rc

rp fp(rp)

τc

τp

L(F2, rp)

Figure 3: Communicating tasks: consumer τc has higher
priority.

producer τp. Consumer checks for the data at each release
but the data cannot be written into the register before
the end of the producer execution. Therefore, the data is
read for the first time by the consumer instance released
immediately after the end of the producer. At worst, the
producer finishes at fp(rp) and the data is read by the
earliest consumer instance released after fp(rp):

rc =

⌈
fp(rp)

Tc

⌉
Tc (2)

Now, suppose that producer has higher priority than
consumer: π(τp) > π(τc) and is still mapped to the same
processor: P (τc) = P (τp). Suppose also that there is a
third task τh mapped to the same processor which is not
included in the chain. Task τh has the highest priority,
π(τh) > π(τp) > π(τc), and its period is equal to the
period of consumer, Th = Tc. A sample run of such three
tasks is shown in Figure 4. Consumer has lower priority

rp,a rp,b

rc,a rc,b

τh

τp

τc

L(F2, rp,a) L(F2, rp,b)

Figure 4: Communicating tasks: producer τp has higher
priority.

and cannot preempt producer. Suppose that producer and
consumer are:

a) released at the same time (see time instant rp,a in
Figure 4): Due to the priority order, consumer cannot
start until producer completes its execution. When it
completes, it writes the data into register. Consumer
can read the data at the beginning of its execution.

b) not released at the same time (see time instant rp,b in
Figure 4): The consumer instance released immediately
before the release of producer may be blocked by
the higher priority jobs until the release of producer.
In that case, it starts after the end of producer
execution and reads the data. Nonetheless, the higher
priority jobs may complete earlier than their worst-
case execution times (like the second τh instance in
Figure 4 where this scenario is illustrated by the
hatched part) or their worst-case execution times may
be too short to block consumer until the release of
producer. The consumer instance that starts before
the release of producer cannot get the data from this
particular instance of producer. It is the first consumer
instance released after the release of producer that
reads the data.



At worst, the data is read for the first time by the
first consumer instance released at or after the release
of producer:

rc =

⌈
rp
Tc

⌉
Tc (3)

We generalize the results obtained above for a chain
of tasks allocated to different processors. We consider
that the producer τp and the consumer τc execute on
two different processors with perfectly synchronized clocks:
P (τc) 6= P (τp). Since the tasks cannot block each other,
we can assume that every consumer instance starts always
as soon as possible and its buffer is empty if the producer
is still running on the other processor. At worst, the
data is read for the first time by the consumer instance
released immediately after the end of the producer (see
Equation (2)).

Lemma 1. In a schedulable task set with two communi-
cating tasks τp and τc such that τp writes the results of its
computation to the register of τc, the latest possible release
rc of the instance of τc reading for the first time the data
propagated by the instance of τp released at rp ∈ A(τp) is
given by:

rc =


⌈
fp(rp)

Tc

⌉
Tc if π(τp) < π(τc) or P (τp) 6= P (τc)⌈

rp
Tc

⌉
Tc if π(τp) > π(τc) and P (τp) = P (τc)

(4)
where Tp and Tc are periods of τp and τc respectively.

B. The longest data propagation path
We characterize the data propagation path that gives a

maximum latency value. In such data propagation path:
i) the tasks propagating the data are released as late as
possible (according to their periodic behaviour), and ii)
their instances can attain their worst-case job response
times.

For instance, in Figure 2, the data path marked with
a solid line satisfies the above mentioned conditions and
the value of its latency is maximal. Propagating the data
earlier, as for the data path with a dotted line, cannot
increase the latency value.

If there exists a data propagation path in which the data
propagation occurs for each task as late as possible and
its tasks terminate as late as possible, then it leads to the
maximum latency. If such path cannot be constructed in the
schedule, then the latency value associated with this path
cannot be lower than the actual value of the latency given
by some realizable path. The following lemma establishes
this basic property. Its results are used later in Theorem 1.

Lemma 2. For any data chain of n ≥ 1 schedulable tasks,
the data propagation path p in which each task instance
that propagates the data is released as late as possible and
each task instance can terminate at its worst-case finishing
time, gives the maximum latency.

Proof. Suppose that p = (r1, . . . , rn) where r1, . . . , rn are
the release time instants of the consecutive instances of
tasks that propagate the data. Let p′ = (r′1, . . . , r

′
n) be

another path of the same chain such that r′1 = r1. First
we prove by induction that rn ≥ r′n. Base case (i = 1).
By definition r1 ≥ r′1. Induction step (1 < i < n). By
the induction hypothesis: ri ≥ r′i. Since the chain’s tasks
are schedulable and have their deadlines equal to their
periods every task instance must finish before the release
of its next instance. If τi is released before ri at r′i <
ri, then it executes within interval [r′i, r′i + Ti] and must
finish before ri. It fills the input register of τi+1 with the
results of its computation before ri. The instance of task
τi released at ri executes within interval [ri, ri + Ti] and
fills the register of τi+1 with the results of its computation
after ri. Consequently, no instance of τi released at r′i ≤ ri
can write into the register of τi+1 at a later time than τi
released at ri does. Hence, if task τi+1 released at ri+1 has
already data from τi released at ri then the earlier or the
same instance of τi+1 must have the data from τi released
at r′i: ri+1 ≥ r′i+1.

From the definition of maximum latency given by Equa-
tion (1), the lemma statement holds iff: fn(rn) ≥ fn(r

′
n).

The LHS of the previous expression gives a finishing time of
task τn released at rn and RHS a finishing time of the same
task released at r′n ≤ rn. If rn = r′n, then fn(rn) = fn(r

′
n)

and the statement is clearly true. Otherwise, if rn > r′n,
then by the same reasoning as in the induction part, every
task instance must finish before the release of its next
instance and it follows that fn(rn) > fn(r

′
n).

C. Recursive method for latency computation
The problem of finding the maximum latency value for

a data chain of n tasks released at rp can be divided into
two sub-problems:

• finding the latest time instant rc of data propagation
from the first to the second task of the chain,

• finding the maximum latency value of a chain released
at rc that is made up of the remaining n− 1 tasks.

Consider again the data chain from Figure 2 with τ1 that
is released at r1,1 and completes its execution at f1,1.
The maximum latency L(F3, r1,1) can be expressed as
L(F3, r1,1) = r2,3 + L(F2, r2,3) − r1,1 where F2 is a data
chain composed of τ2 and τ3.

Theorem 1. Let Fn be a data chain of n ≥ 2 tasks and a
data chain Fn−1 of n− 1 tasks such that Fn−1 is obtained
from Fn by removing its first task τp: Fn−1 = tail(Fn).
The maximum latency L(Fn, rp) of Fn whose first task τp
is released at the time instant rp ∈ A(τp) is:

L(Fn, rp) ≥ (rc − rp) + L(Fn−1, rc) (5)

where L(Fn−1, rc) is the maximum latency of Fn−1 whose
first task τc is released at the time instant rc given by
Formula (4).



Proof. Let (r1, . . . , rn) be a data propagation path ob-
tained by the iterative application of Theorem 1. For
1 < i ≤ n, Equation (4) gives ri that is the latest possible
release of τi instance that propagates the data. By Lemma 2,
a latency value of a data propagation path with the latest
possible release time instants cannot be smaller than a
latency value of any other data propagation path.

Algorithm 1 uses the results of Theorem 1 to compute
the maximum latency of a data chain Fn whose first task
is released at the time instant rp. The algorithm has a
linear time complexity O(n) (worst-case response times are
assumed to be known).

Algorithm 1 Data chain maximum latency at rp.
Require: Fn is a data chain, n ≥ 1, rp ∈ A(head(Fn))

1: function L(Fn, rp)
2: τp ← head(Fn)
3: if n = 1 then
4: return Rp(rp)
5: end if
6: Fn−1 ← tail(Fn), τc ← head(Fn−1), Q← 0
7: if π(τp) < π(τc) or P (τp) = P (τc) then
8: Q← Rp(rp)
9: end if

10: rc ←
⌈
rp +Q

Tc

⌉
Tc

11: return rc − rp + L(Fn−1, rc)
12: end function

D. The worst-case latency
We derive the worst-case latency by applying the above

presented analysis for all the release time instants of the
first task in the chain and by taking into account the delay
of the first task sensor data detection.

Since the processor may be idle at any time, a task can
start to execute at the earliest at its release time. Suppose
that τ1, the first task in the chain, starts at r1 ∈ A(τ1) and
the data arrives at the sensor immediately after its start.
In that case, the data is handled by the next task instance
released at r1 + T1. The delay experienced by the data in
the sensor register is at most one task period (a similar
remark is made in [7], [24]). Then, the data travels along
the data propagation path as explained above. There are
many paths and their trajectories depend on the release
time of the first task. To find the worst-case latency value
all the paths must be verified. Given a data chain Fn of
n ≥ 1 tasks, the value of its worst-case latency is:

L(Fn) < T1 + max
r1∈A(τ1)

L(Fn, r1) (6)

where τ1 ∈ head(Fn) and T1 is its period.
To compute the worst-case latency, Formula (6) must be

evaluated for all chain instances released at 0, T1, 2T1, . . ..

To make it computationally tractable the set of considered
releases must be limited. The schedule repeats cyclically
every hyperperiod H (least common multiple) of all the
tasks in the task set [25]. Moreover, the execution of the
task is not impacted by the tasks of the lower priority and
the tasks that run on different processors. It is sufficient
to examine only the releases of the first chain task within
interval [0,H) where H = lcm {Tj | τj ∈ hep(τi), τj ∈ Fn }.
Depending on system properties this limit can be further
reduced. If the worst-case response times of each task
instance are equal, ∀k ∈ N, τi : Ri(t) = Ri(t + kTi), then
it is sufficient to apply Algorithm 1 on hyperperiod of all
the tasks in the data chain H = lcm {Ti | τi ∈ Fn }. For
instance, in the analysis of task sets with harmonic periods
scheduled under Rate Monotonic (RM ) all the jobs of the
same task have their worst-case response times equal [26],
[27]. Such hypothesis can also be made when schedulability
analysis only provides a single upper bound for all task
jobs.

Algorithm 2 finds a maximum latency by calling the
function L(Fn, r1) defined in Algorithm 1 for all the
possible releases r1 of the first task in the chain Fn within
the hyperperiod H. Then, finding the worst-case latency
has a O(n · HT1

) time complexity. As the hyperperiod grows
exponentially as function of the largest task period in the
set and with the number of tasks, the problem of finding
the worst-case latency may be intractable in some cases.

Algorithm 2 Data chain worst-case latency.
Require: Fn is a data chain of n tasks, n ≥ 1

1: H ← hyperperiod of all tasks in the set, τ1 ← head(Fn)
2: for all r1 ∈ {0, T1, 2T1, . . . , H − T1} do
3: compute L(Fn, r1) using Algorithm 1
4: end for
5: L(Fn)← T1 + max

r1
L(Fn, r1)

Function L(Fn, r1) (Algorithm 1) when called in Algo-
rithm 2 can be improved by saving the values of its calls
in a lookup table. It may avoid recomputing the same
values for the paths that merge together. In particular, if
rc is the value of Equation (4) for rp, then the equation
gives the same value for all r′p such that: r′p ∈ [rp, rc] if
π(τp) > π(τc) and r′p + Rp(r

′
p) ∈ [rp, rc] if π(τp) < π(τc).

The tasks instances released at r′p write the data into the
register of the same consumer instance and their data paths
join together. All of them can follow from that point the
same trajectory. The data path traversing rp is released
at the earliest time and only it can lead to the worst-case
latency. All other paths going through r′p can be omitted.

Consider Figure 5. The instances of producer task τp
released at the time instants r1, r2 and r3, such that
r1 < r2 < r3, communicate with the same instance of
consumer task τc. The respective latencies are: L(F2, r1) >
L(F2, r2) > L(F2, r3). The latency has its greatest value for
r1 and all the subsequent releases, r2 and r3, as they cannot
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rc + Tc rc

τp

τc

L(F2, r1)

L(F2, r2)

L(F2, r3)

Figure 5: Non critical data propagation paths in the worst-
case latency calculation.

increase this value, can be omitted in the computation of
the worst-case latency.

V. Experiments
We evaluate the precision of the proposed method for the

worst-case latency computation on a generic automotive
benchmark [28] upon a single processor.

We compare it against a linear-time upper bound on
the worst-case latency proposed by Davare et al. [7]. The
method proposed by Davare et al. [7] applies in principle
for the sporadic tasks but its use may be also advantageous
for the periodic tasks due to its linear-time complexity. As
the tasks are not coordinated, the producer τp may write
the data into the register of consumer task τc immediately
after its start. It induces a maximum delay of Tc +Rc for
each pair of producer/consumer. The worst-case latency
for a chain of n tasks Fn is expressed as:

L(Fn) =

n∑
i=1

(Ti +Ri) (7)

A. Chain generation
Data chains lengths vary from 2 to 20 tasks picked from

a set of 50 tasks. Task parameters are generated based
on the automotive benchmark [28]. Periods are randomly
chosen from the set {1, 2, 5, 10, 20, 50, 100, 200, 1000} with
an associated probability of appearance (the same as
in [28]). The utilization of task τi is generated using the
UUnifast [29] algorithm and then multiplied by the chosen
period Ti giving Ci. We consider RM scheduling policy
and discard unschedulable task sets. To focus on chain
length only, we successively decrease the length from 20 to
a minimum of 2 in such way that the number of different
periods remains respected. The worst-case response times
are obtained from SimSo simulator [30].

The algorithms described in this work are available
on-line 1 through a Python implementation with which
experiments presented below are fully reproducible.

B. Analysis precision
In the experiment, we compare the results of the worst-

case latency by each method. The results of the experiment
are shown in Figure 6. Each point represents the average

1https://www.lias-lab.fr/~antoinebertout/software/latency.zip
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Figure 6: Impact of the different worst-case latency com-
putation methods.

worst-case latency value of the corresponding computation
method as a function of the chain length for a given utiliza-
tion factor of the task set. Both methods were tested on the
same set of randomly generated data chains. The results
obtained are averaged on a minimum of 10000 executions
for a given utilization factor u ∈ {0.25, 0.50, 0.75}. The
number of distinct periods in the chains varies from 1 to 5.
Contrary to the results given by our method, we observe
that the pessimism of the linear-time upper bound increases
noticeably with the length of the chain.

In this particular case, the worst-case latency calculated
with the worst-case job response times is equal to the worst-
case latency calculated with the worst-case task response
times with a tolerance of 10−3. Indeed, as task periods are
quasi harmonic, most of the task instances verify Ri(ri) =
Ri under RM scheduling (see also Section IV-D). Therefore,
both cases are not differentiated in the figure. The method
described in Algorithm 2 provides much more accurate
estimates of the worst-case latency and is less sensitive to
the increase of the utilization factor. The improvement is
achieved with a higher computational cost. Nonetheless,
the time needed to execute our method was between 2 and
6 milliseconds 2 (without a noticeable impact of the chain
length) which is admissible in the most of the cases.

VI. Conclusion and future works
In this paper we proposed a method for the computation

of the worst-case latency of data chains and its open-source
implementation. The method is easy to implement and
can be integrated independently on top of any tool that
provides response time analysis.

By investigating the problem of the latency at the level of
scheduling, we identify the relations between the execution

2Each experiment has been performed on a single Intel Xeon E5-
2630 v3 CPU (20M cache, 2.40GHz).



and the communication of the real-time task and provide a
solid base for the future research. In particular, Lemma 1
can be easily extended towards other models that permit
to reduce the worst-case latency (e.g., introducing the best-
case execution time or non-preemptive regions may, in
some cases, force the consumer task to execute always
after the producer). As the method has exponential time
complexity, we are currently working on finding an upper
bound with linear time complexity that may be derived
from the closed-form expression given in Lemma 1.
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