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Abstract

We consider the problem of fixed priority scheduling of
non-preemptive strict periodic tasks in conjunction with
sporadic preemptive tasks. There are few studies about the
scheduling problem combining these two kinds of tasks.
Moreover, only few results are available on scheduling
non-preemptive strict periodic tasks since their perfor-
mance analysis gives low success ratios, except in the case
of harmonic tasks. Also, strict periodic tasks are of great
importance since they are in charge for example of sen-
sors/actuators or feedback control functions which are all
critical in feedback control systems. Such tasks must have
the highest priorities in order to guarantee a correct be-
havior of the control system. Preemptive sporadic tasks
can be used for non critical functions and have lower pri-
orities.

We first investigate the scheduling problem of non-
preemptive strict periodic tasks by recalling an existing
schedulability condition. This results in defining the first
release times of strict periodic tasks that preserves the
strict periodicity constraints. We show that the sched-
ule of strict periodic tasks can have transient and perma-
nent phases. Then, assuming that some non-preemptive
strict periodic tasks have been scheduled, we character-
ize the release times of the sporadic tasks that maximize
their worst case response times. We prove that these re-
lease times can be restricted to the permanent phase. For
preemptive sporadic tasks, we extend the classical worst
case response time computation to take into account non-
preemptive strict periodic tasks. Finally, we consider the
particular case where some of the sporadic tasks are al-
ternate tasks to primary strict periodic tasks for fault-
tolerance.

1 Introduction

We consider the problem of scheduling non-
preemptive strict periodic tasks combined with pre-
emptive sporadic tasks.

Strict periodic tasks are typically in charge of sen-
sor/actuator or feedback control functions. The freshness
of the information they use and/or the reactivity of the sys-
tem are constrained. Indeed, for such tasks it is important
to control their jitters (the difference between the worst
case and the minimum response times) to ensure the sys-
tem’s stability [17, 14, 3, 1].

We consider the Fixed Priority (FP) scheduling. We as-
sume that all non-preemptive strict periodic tasks have the
same highest fixed priority, whereas preemptive sporadic
tasks have lower (distinct) fixed priority than strict peri-
odic tasks. Afterwards, for the sake of clarity, we shall
use the term ”strict periodic tasks” for ”non-preemptive
strict periodic tasks”, and ”sporadic tasks” for ”preemp-
tive sporadic tasks”.

In section 2, we first recall related work for strict peri-
odic and sporadic tasks scheduling, and for fault-tolerant
scheduling, then, we give the non-preemptive strict pe-
riodic task model. In section 3, we recall a necessary
and sufficient schedulability condition for non-preemptive
strict periodic tasks, and investigate the transient and per-
manent phases for such tasks. In section 4 we show how
to determine the worst case scenario for a sporadic task
where its Worst Case Response Time (WCRT) can be ob-
tained, in the presence of strict periodic tasks. We prove
that these release times belong only to the permanent
phase of strict periodic tasks, and thus that the schedu-
lability analysis for sporadic tasks can be restricted to the
permanent phase. For preemptive sporadic tasks, we ex-
tend the classical necessary and sufficient schedulability
condition based on the worst case response time com-
putation [11] to take into account non-preemptive strict
periodic tasks. Finally, in section 5, we consider fault-
tolerance in the particular case where each primary strict
periodic task has an alternate sporadic task which is re-
leased when its primary task fails.



2 System models and Related work

2.1 Related work
Preemptive scheduling has received considerable atten-

tion in the real-time community. However, we can notice
that non-preemptive scheduling has received less attention
from the real-time community.

Yet, non-preemptive scheduling problems should not
be ignored since their resolutions may have great advan-
tages in terms of schedulability. On the other hand, these
problems are NP-Hard in the strong sense as Jeffay, Stanat
and Martel [10] showed.

Baruah and Chakraborty [2] analyzed the schedula-
bility of the non-preemptive recurring task model and
showed that there exists polynomial time approxima-
tion algorithms for both preemptive and non-preemptive
scheduling. Buttazzo and Cervin [5] used the non-
preemptive task model to reduce the jitter of the tasks. A
comprehensive schedulability analysis of non-preemptive
systems was performed by George, Rivierre, and Spuri in
[7]. The main difference between these works and the
works proposed in this paper lies in the type of periods
we consider for strict periodic tasks, i.e. strict periods. In
the classical periodic model, the difference between the
start times of two tasks jobs may vary whereas it must be
a constant for strict periodic tasks.

Korst et al. proved in [13] a necessary and sufficient
schedulability condition for two tasks which can be gen-
eralized for more than two tasks. In [6] Eisenbrand et al.
proposed scheduling algorithms in the case of harmonic
and non-harmonic strict periodic tasks. We proposed in
[15, 16] a schedulability analysis for such tasks.

Software fault-tolerance has been considered through
the primary/alternate task models. When a primary task
cannot meet its deadline, an alternate task is run. The al-
ternate task can be the same task (the task is re-executed).
In [4], Burns et al. give a feasibility condition for spo-
radic tasks in the case of fixed priority scheduling. Faults
are assumed to be detected at the completion time of the
tasks. A task can only affect one task at a time. An alter-
nate task is run to re-execute the faulty task. In [8], Ghosh
et al. consider a recovery mechanism to re-execute faulty
tasks. They propose to use the available slack time to re-
execute a faulty task in the case of RM scheduling. In [9],
Han et al. consider software faults for primary tasks in the
case of periodic tasks scheduled with RM. Primary tasks
are more complex functions whose correctness is deemed
more difficult to check.

2.2 Systems models
A non-preemptive strict periodic task τi is denoted

τi(S
0
i , Ci, Di, Ti), where:

• S0
i is the first release time of τi

• Ci the WCET (Worst Case Execution Time) of τi

• Di is the relative deadline of τi

• Ti is the strict period of τi.

The start time of the kth job of a strict periodic task τi
is given by Ski = S0

i + k · Ti. Figure 1 shows an example
of a strict periodic task.
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Figure 1. Model for non-preemptive strict
periodic task τi(S0

i , Ci, Di, Ti)

A preemptive sporadic task is non-concrete, i.e. its first
release time can be chosen arbitrarily. A preemptive spo-
radic task τi is therefore denoted (w.r.t. the strict peri-
odic task model) τi(Ci, Di, Ti). Ti is the minimum inter-
arrival time between two successive jobs of τi. We con-
sider the case Di ≤ Ti for sporadic tasks.

The scheduling used in this paper is Fixed Priority (FP)
scheduling. Tasks in ΓS have the same highest priority
while all tasks in ΓNS have distinct lower priority tasks.
Furthermore, we assume that task parameters are integers
multiple of the tick time.

3 Scheduling strict periodic tasks

3.1 Necessary and sufficient schedulability condition
For the sake of clarity, we use this notification gi,j for

the gcd (Greatest Common Divisor) of two periods Ti, Tj :
gi,j = gcd(Ti, Tj).

Korst et al. gave in [12] a necessary and sufficient
schedulability condition for a task set. It consists of ap-
plying a necessary and sufficient condition valid for only
two tasks to all possible pairs of tasks.

Theorem 1 A task set ΓS = {τi(S0
i , Ci, Di, Ti), i =

1, n} is schedulable if and only if for all pairs of tasks
(τi, τj) satisfy the condition

Ci ≤ (S0
j − S0

i )mod gi,j ≤ gi,j − Cj (1)

Now we characterize the transient and the permanent
phases of the schedule considering only strict periodic
tasks.

3.2 Transient and permanent phases
The transient phase Φ = [0, φ[ ends at a time φ ≥

0, which is the smallest time such that the release times
obtained in any time interval [φ+ kL, φ+ (k+ 1)L[, k ∈
N∗, relatively to φ+kL, are the same as those obtained in
the time interval [φ, φ+ L[, relatively to φ. By definition,
L is the length of the permanent phase.



The following theorem gives the time interval corre-
sponding to transient phase obtained for the schedule of
strict periodic tasks.

Theorem 2 We consider a schedule of strict periodic
tasks. The transient phase Φ of this schedule is the time
interval given by: Φ = [0, φ[, where

φ = Max(0, Max
i=1..n

{
S0
i + Ci − Ti

}
) (2)

Proof
φ is the smallest integer such as the first permanent phase
[φ, φ + L] contains ( LTi

) jobs of each task τi. Thus the

( LTi
− 1)th job of τ

( L
Ti
−1)

i must end its execution before
(φ+ L), thus

S0
i + (

L

Ti
− 1)Ti + Ci ≤ φ+ L

thus
φ ≥ S0

i + Ci − Ti. (3)

Furthermore, for any task τi, its relative start time ac-
cording to φmust be equal to its relative start time accord-
ing to φ+ L.

The relative start time according to φ is given by

S0
i +

⌈
φ− si
Ti

⌉
Ti − φ.

The relative start time according to φ+ L is given by

S0
i +

⌈
(L+ φ)− si

Ti

⌉
Ti − (L+ φ)

= S0
i +

⌈
φ− si
Ti

⌉
Ti + L− L− φ

= S0
i +

⌈
φ− si
Ti

⌉
Ti − φ.

These two relative start times are thus equal.
As φ is the smallest integer which satisfies condition

(3) then
φ = Max

i=1,...,n
(0, si + Ci − Ti).

�

4 Combining strict periodic and sporadic
tasks

In this section, we study the schedulability of a com-
bination of strict periodic and sporadic tasks. We assume
that a set of non-preemptive strict periodic tasks have al-
ready been scheduled with the highest priority, and a set
of preemptive sporadic tasks is to be scheduled with lower
(but different) priorities.

We use the following notations:

• ΓS (resp. ΓNS) denotes the task set corresponding to
strict periodic (respectively sporadic) tasks.

• hpNS(i) denotes the set of tasks in ΓNS having
higher priority than a task τi in ΓNS .

4.1 Schedulability analysis for sporadic tasks
In order to study the schedulability of sporadic tasks

when tasks with strict periods have been scheduled, we
have to determine the critical instants for a sporadic tasks
where the WCRT can be reached.

It has been proved in [11] that a critical instant occurs
when the release time of a sporadic task is equal to the
release time of all higher priority tasks. As strict periodic
tasks have all higher priority than all the sporadic tasks,
we define the set of critical instants Ψ which contains all
the start times of the strict periodic jobs in the transient
and the permanent phases: [0, φ+ L[.

To consider tasks with strict periods, we have to study
all cases of release times in Ψ and compute the WCRT of
a sporadic task τi when its first release time corresponds
to the release time of a strict periodic task. For a sporadic
task τi, this results in first releasing, at the release time of
a strict periodic task in Ψ all higher priority sporadic tasks
than τi at the same time. However, rather than testing
all the release times of strict periodic tasks in Ψ, some
release times are useless and will be thus removed from Ψ
according to lemma 1.

Lemma 1 Consider a sequence of consecutive executions
of strict periodic tasks with no slack between the execu-
tions. Then only the release time of the first strict periodic
task in the sequence should be considered for the compu-
tation of worst case response time of a sporadic task.

Proof
Consider a sequence seq of consecutive executions of
strict periodic tasks corresponding to a subset of tasks in
ΓS . Let 0 be the time origin corresponding to the release
time of the first strict periodic tasks in the sequence
seq. As sporadic tasks have smaller priority than strict
periodic tasks, a sporadic task released at time ti ≥ 0
can start its execution only when all strict periodic tasks
in seq are completed and will terminate at the same time
for any release time ti belonging to [0, duration(seq)],
where duration(seq) is the sum of the execution times
of all strict periodic tasks in seq. The response time of a
sporadic task is therefore maximum when a sporadic task
is released at time 0. Hence the lemma. �

Thus, if ∃Ski , Slj ∈ Ψ such as Ski − Slj = Cj , then Ski
is removed from Ψ.

Finally, we limit the release times in Ψ only to the re-
lease times of strict periodic tasks in the permanent phase
according to lemma 2.

Lemma 2 In the set Ψ, only the release times which be-
long to the permanent phase of strict periodic tasks should
be considered to study the WCRT of sporadic tasks.

Proof
For strict periodic tasks, the time interval [L, φ + L[ in
the permanent phase contains the release time pattern cor-
responding to all the release times of the transient phase



[0, φ[. The transient phase may contain less jobs than in
the permanent phase. Thus, jobs of the permanent phase
are more critical than those of the transient phase for spo-
radic tasks. �

The following theorem gives the computational re-
quirements at time t for a sporadic task τi released at time
S ∈ Ψ.

Theorem 3 Consider a strict periodic task set ΓS and a
sporadic task set hpNS(i) already scheduled. Let τi be a
sporadic task released at time S ∈ Ψ. The sum of the com-
putational requirements at time t (w.r.t time S) are given by

Wi(t) = Ci +
∑

τj∈hpNS(i)

⌈
t

Tj

⌉
Cj +

∑
τj∈ΓS

⌈
t− sj
Tj

⌉
Cj

(4)
where sj is the relative start time Skj according to a

release time S given by

sj = S0
j +

⌈
S − S0

j

Tj

⌉
Tj − S (5)

Proof
Consider that a sporadic task τi is first released at time
S ∈ Ψ. The sum of the computational requirements at
time t (w.r.t time S) Wi(t) is the sum of the following
computational requirements:

1. one execution of τi starting at time S: Ci;

2. all strict periodic tasks (all with higher priority than
τi): ∑

τj∈ΓS

⌈
t− sj
Tj

⌉
Cj ;

3. all sporadic tasks with higher priority than τi:∑
τj∈hpNS(i)

⌈
t

Tj

⌉
Cj .

�

The following theorem gives a schedulability neces-
sary and sufficient condition for set of sporadic task.

Theorem 4 Consider a strict periodic task set ΓS already
scheduled. A sporadic task set ΓNS is schedulable if and
only if

∀τi ∈ ΓNS : Ri ≤ Di (6)

where Ri is the WCRT of τi ∈ ΓNS , which is the solution
of Ri = W (Ri) computed by iteration.

Proof
The proof is identical to the one given in [11] which states
that the Worst Case Response Time of any task should be
less than or equal to its deadline. �

Example
We use the Rate-Monotonic algorithm to schedule the

following tasks. Consider the strict periodic task set
ΓS = {τ1(0, 1, 4, 4), τ2(1, 1, 6, 6), τ3(2, 1, 12, 12)}, and
the sporadic task set ΓNS = {τ4(2, 6, 8), τ5(2, 12, 12)} to
be scheduled.

For (τ1, τ2), g1,2 = 2 and condition (1) is satisfied:

1 ≤ (1− 0)mod2 ≤ 2− 1 =⇒ 1 ≤ 1 ≤ 1.

For (τ1, τ3), g1,3 = 4 and condition (1) is satisfied:

1 ≤ (2− 0)mod4 ≤ 4− 1 =⇒ 1 ≤ 2 ≤ 3.

For (τ2, τ3), g2,3 = 6 and condition (1) is satisfied:

1 ≤ (2− 1)mod6 ≤ 6− 1 =⇒ 1 ≤ 1 ≤ 5.

Thus, ΓS is schedulable.
According to theorem 2, the schedule of ΓS has no

transient phase. The permanent phase starts at time 0
and has a length L = lcm(T1, T2, T3) = 12, thus
Ψ = {0, 1, 2, 4, 7, 8} corresponding to the release times
of tasks ΓS in the time interval [0, L[. After pruning the
release times of strict periodic tasks according to lemma 1
we have: Ψ = {0, 4, 7}.

From theorem 3 we have:

W4(t) = 2 +

⌈
t− s1

4

⌉
+

⌈
t− s2

6

⌉
+

⌈
t− s3

12

⌉
,

and

W5(t) = 2+

⌈
t

8

⌉
2+

⌈
t− s1

4

⌉
+

⌈
t− s2

6

⌉
+

⌈
t− s3

12

⌉
.

According to theorem 4, the response times of τ4 and
τ5 for the release times in S ∈ Ψ are given by:

S s1 s2 s3 R4 R5

0 0 1 2 6 12
4 0 3 4 3 7
7 1 0 7 4 9

As R4 ≤ D4 and R5 ≤ D5, τ4 and τ5 are schedulable
as shown in figure 2.
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Figure 2. Scheduling diagram of strict peri-
odic and sporadic tasks



5 Extension to fault-tolerance

We consider a task set of non-preemptive strict periodic
tasks (control tasks, sensors/actuators tasks, etc.) and pre-
emptive sporadic tasks (asynchronous events outside the
embedded computer, etc.). For reliable systems, we pro-
posed to use an alternate sporadic tasks for the primary
strict periodic tasks, in such a way that when a primary
non-preemptive strict periodic task fails, an alternate pre-
emptive sporadic task is released. We suppose that faults
occurs during the execution of primary tasks, and alternate
tasks must meet the absolute deadlines of their primary
task.

In this section we consider that sporadic tasks are com-
posed of alternate tasks and independent sporadic tasks.

Primary strict periodic tasks have higher priority than
alternate tasks that have higher priority than independent
sporadic tasks. Both sporadic task sets are scheduled us-
ing RM or DM algorithms.

Figure 3 shows a primary task with three faults occur-
ring: during the execution of the first job, during the exe-
cution of the third job and at the beginning of the execu-
tion of the forth job.

Primary

(strict) 

Alternate

(sporadic)

Dmin DmaxD

TminT

Failure occurrence

Figure 3. A primary strict periodic task with
its alternate sporadic tasks

The worst case which minimizes the relative deadline
of an alternate job is obtained when the fault of its pri-
mary job occurs at the end of its execution. As shown in
figure 3, the minimal relative deadline Dmin and minimal
inter-arrival time Tmin are obtained when a fault occurs at
the the end of execution of a job and the next fault occurs
at the release time of the next job. In that case we have:
Dmin = Di − Ci and Tmin = Ti − Ci. For this reason
we consider that for each primary task τi(S0

i , Ci, Di, Ti),
the alternate task, denoted τi,a has an execution time
Ci,a ≤ Di − Ci, a relative deadline Di,a = Di − Ci,
and a minimal inter-arrival time (Ti − Ci). It is given by
τi(S

0
i,a, Ci,a, (Di − Ci), (Ti − Ci)), with

S0
i ≤ S0

i,a ≤ S0
i + Ci.

5.1 Schedulability analysis for alternate tasks
In this section we study the schedulability of a combi-

nation of primary strict periodic tasks and their alternate
sporadic tasks.

We use the following notations:

• ΓS (resp. ΓNSa ) denotes the task set corresponding
to primary strict periodic (resp. alternate sporadic)
tasks.

• hpNSa (i) denotes the set of tasks in ΓNSa having
higher priority than a task τi,a in ΓNS .

In order to consider the worst case response time for an
alternate task, we consider that all its primary jobs fails at
the end of their executions, which mean that each primary
job is entirely executed before releasing the alternate job.
Thus, the critical instants for each alternate task τi,a are
obtained for t = Ski + Ci, where Ski belongs to the per-
manent phase. Thus, the critical instants of each alternate
task τi,a is given by Ψi = {Ski + Ci, φ ≤ Ski < φ+ L}.

In order to compute the worst case response time of
an alternate job τki,a, we introduce the following theorem
which gives the computational requirements at time t for
an alternate task τi,a released at time S ∈ Ψi.

Theorem 5 Let τi,a be an alternate task of a primary task
τi. τi,a is released at time S ∈ Ψi. Let ΓS be a set of pri-
mary strict periodic tasks already scheduled. Let hpNSa (i)
be a set of alternate tasks having higher priorities than
τi,a already scheduled. The sum of the computational re-
quirements at time t ≥ 0 (w.r.t time S) are given by

Wi,a(t) = Ci,a

+
∑
τj∈ΓS

⌈
t−sj
Tj

⌉
Cj +

∑
τj∈hpNS

a (i)

⌈
t−sj
Tj

⌉
Cj,a

+
∑
τj∈hpNS

a (i)max [0, (Ri,a(S + sj − Tj) + (sj − Tj))]
(7)

where sj is the relative start time Skj of τi according to a
release time S given by

sj = S0
j +

⌈
S − S0

j

Tj

⌉
Tj − S (8)

Proof
Consider the alternate task τi,a released at time S ∈ Ψi.
The sum of the computational requirements at time t ≥ 0
(w.r.t time S) Wi,a(t) is the sum of the following compu-
tational requirements:

1. one execution of τi,a released at time S: Ci;

2. strict periodic tasks (all with higher priority than
τi,a): ∑

τj∈ΓS

⌈
t− sj
Tj

⌉
Cj ;

3. alternate tasks with higher priorities than τi,a:

∑
τj∈hpNS

a (i)

⌈
t− sj
Tj

⌉
Cj,a



4. the sum of the additional computational requirements
of alternate jobs of hpNSa executed before time S and
which have not finished their executions yet before
time S. Let τkj,a be the last job of τj,a executed before
time S. The start time of this job is (S+Sj−Tj). Its
response time calculated according to theorem 4 at its
start time is Ri,a(S + Sj − Tj). Thus, the additional
computational requirements is given by:

Ri,a(S + Sj − Tj)− (S − (S + sj − Tj) =

Ri,a(S + Sj − Tj) + (sj − Tj).

If this job finishes its execution before time S then
the additional computational requirements is equal to
zero. Thus for each task τj,a ∈ hpNSa (i), the addi-
tional computational requirements is equal to:

max [0, (Ri,a(S + sj − Tj) + sj − Tj)] .

The sum of all the additional computational require-
ments is equal to:∑
τj∈hpNS

a (i)

max [0, (Ri,a(S + sj − Tj) + sj − Tj)] .

�

5.2 Schedulability analysis for alternate and spo-
radic tasks

After scheduling primary and alternates tasks, we focus
now on scheduling sporadic tasks which have the lowest
priorities. The following theorem gives the computational
requirements at time t for a sporadic task τi released at
time S ∈ Ψ.

Theorem 6 Let τi be a sporadic task released at time
S ∈ Ψ. Let ΓS (resp. ΓNSa ) be the task set corresponding
to primary strict periodic (resp. alternate sporadic) tasks
already scheduled. The sum of the computational require-
ments at time t ≥ 0 (w.r.t time S) are given by

Wi(t) = Ci +
∑
τj∈ΓS

⌈
t− sj
Tj

⌉
Cj

+
∑

τj∈ΓNS
a

⌈
t− sj
Tj

⌉
Cj,a +

∑
τj∈hpNS(i)

⌈
t

Tj

⌉
Cj

+
∑

τj∈ΓNS
a

max [0, (Ri(S + sj − Tj) + sj − Tj)]

(9)

where sj is the relative start time Skj of τi according to
a release time S given by

sj = S0
j +

⌈
S − S0

j

Tj

⌉
Tj − S (10)

Proof
Let us consider the sporadic task τi(Ci, Di, Ti) released
at time S ∈ Ψi. The sum of the computational require-
ments at time t ≥ 0 (w.r.t time S) Wi(t) is the sum of the
following computational requirements:

1. one execution of τi,a released at time S: Ci;

2. primary tasks of ΓS :∑
τj∈ΓS

⌈
t− sj
Tj

⌉
Cj ;

3. alternate tasks of ΓNSa :∑
τj∈ΓNS

a

⌈
t− sj
Tj

⌉
Cj,a

4. the sum of the additional computational requirements
of all alternate jobs of ΓNSa executed before time S
and which have not finished their executions yet at
time S:∑
τj∈ΓNS

a

max [0, (Ri(S + sj − Tj) + sj − Tj)] ;

5. sporadic tasks with higher priorities than τi released
at time S: ∑

τj∈hpNS(i)

⌈
t

Tj

⌉
Cj .

�

Example
Consider the following task sets to be scheduled: pri-

mary task set ΓS = {τ1(0, 4, 9, 12), τ2(4, 2, 13, 18)}, al-
ternate task set ΓNSa = {τ1,a(4, 5, 12), τ2,a(2, 11, 18)}
and sporadic task set ΓNS = {τ3(4, 36, 36)}.

For (τ1, τ2), g1,2 = 6 and condition (1) is satisfied:

4 ≤ (4− 0)mod6 ≤ 6− 2 =⇒ 4 ≤ 5 ≤ 5.

Thus, ΓS is schedulable.
According to theorem 2, the schedule of ΓS has no

transient phase, thus the permanent phase stars at time 0
and has a length L = LCM(T1, T2) = 36.
The release times of τ1 in the permanent phase are
Ψ′1 = {0, 12, 24}, thus Ψ1 = {4, 16, 28}.
The release times of τ2 in the permanent phase are
Ψ′2 = {4, 22} thus Ψ2 = {6, 24}.
The critical instants of ΓS are: Ψ = Ψ′1 ∪ Ψ′2 =
{0, 4, 12, 22, 24}. After pruning the release times of
strict periodic tasks according to lemma 1 we have:
Ψ = {0, 12, 22}.

For τ1,a we have:

W1,a(t) = 4 +

⌈
t− s1

T1

⌉
C1 +

⌈
t− s2

T2

⌉
C2



= 4 +

⌈
t− s1

12

⌉
4 +

⌈
t− s2

18

⌉
2.

The response times R1,a of τ1,a are given by:

S s1 s2 R1,a(S)

4 8 0 6
16 8 6 4
28 8 12 4

As R1,a ≤ (D1,a = 6), τ1,a is schedulable.

For τ2,a we have:

W2,a(t) = 2+

⌈
t− s1

T1

⌉
C1+

⌈
t− s2

T2

⌉
C2+

⌈
t− s1,a

T1,a

⌉
C1,a

+max [0, (R1,a(S + s1,a − T1,a) + s1,a − T1,a)]

= 2 +

⌈
t− s1

12

⌉
4 +

⌈
t− s2

18

⌉
2 +

⌈
t− s1,a

12

⌉
4 + α

withα = max [0, (R1,a(S + s1,a − 12) + s1,a − 12)] .
After calculating R1,a for S = 6 and S = 24 we ob-

tained:

S (S + s1,a − 12) R1,a (s1,a − 12) α

6 4 6 -2 4
24 16 4 -8 0

The response times R2,a of τ2,a are given by:

S s1 s2 s1,a R2,a(S)

6 6 16 10 6
24 0 16 4 10

As R2,a ≤ (D2,a = 10), τ2,a is schedulable.

For τ3 we have:

W3(t) = 2 +

⌈
t− s1

T1

⌉
C1 +

⌈
t− s2

T2

⌉
C2

+

⌈
t− s1,a

T1,a

⌉
C1,a +

⌈
t− s2,a

T2,a

⌉
C2,a + α+ β

withα = max [0, (R1,a(S + s1,a − 12) + s1,a − 12)]
and β = max [0, (R2,a(S + s2,a − 18) + s2,a − 18)] .

After calculating R1,a and R2,a for S = 6 and S = 24
we obtained:

S (S + s1,a − 12) R1,a (s1,a − 12) α

0 -8 0 -8 0
12 4 6 -8 0
22 16 4 -6 0

and

S (S + s2,a − 18) R2,a (s2,a − 18) β

0 -12 0 -12 0
12 6 6 -6 0
24 6 6 -16 0

Thus, we have:

W3 = 2+

⌈
t− s1

12

⌉
4+

⌈
t− s2

18

⌉
2+

⌈
t− s1,a

12

⌉
4+

⌈
t− s2,a

18

⌉
2

The response times R3 of τ3 are given by:

S s1 s2 s1,a s2,a R3(S)

0 0 4 4 6 36
12 0 10 4 12 24
22 2 0 6 2 36

As R3 ≤ (D3 = 36), τ3 is schedulable.

Figure 4 shows the scheduling diagram of primary, al-
ternate and sporadic tasks within a permanent phase in the
worst case failures occurrences. The first job of τ1,a and
τ3 and the second job of τ2,a meet their respective dead-
lines.
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Failure occurrence

0                                                                                                   36        

Figure 4. Scheduling diagram within a per-
manent phase in the worst case faillures oc-
currences

Figure 5 shows the scheduling diagram of primary, al-
ternate and sporadic tasks within a permanent phase in the
case of arbitrary faillures occurrences. All tasks responses
times are less than their respective deadlines. For instance,
the first job of τ1,a starts its execution before its primary
job finishes its execution, and thus its response time is less
than its deadline.
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0                                                                                                   36        

Figure 5. Scheduling diagram within a per-
manent phase in the case of arbitrary fail-
ures occurrences



6 Conclusion

In this paper we have considered the problem of
scheduling, with fixed priorities, strict periodic tasks in
conjunction with sporadic tasks. Strict periodic tasks have
the highest priority. We first present a necessary and suf-
ficient schedulability condition valid for strict periodic
tasks. This results in defining the first release times of
strict periodic tasks preserving the strict periodicity con-
straints. Then, we show that the schedule of strict peri-
odic tasks can have a transient and a permanent phase. We
characterize the duration on both phases and show that we
only need to consider the permanent phase for the schedu-
lability of sporadic tasks. The release time of sporadic
tasks can be chosen arbitrarily. We show that a worst case
response time analysis can be used for sporadic tasks. The
worst case response time of a sporadic task is obtained
by releasing all sporadic tasks synchronously, at the re-
lease time of a strict periodic tasks in the permanent phase.
We also show how to prune the times to consider (corre-
sponding to the release times of strict periodic tasks) in
the permanent phase. We give the schedulability condi-
tion for sporadic tasks based on the worst case response
time computation of the tasks. Finally, we extend these
results to the case where some of the sporadic tasks are al-
ternate tasks to primary periodic tasks for fault-tolerance,
and we give the corresponding worst case response time
calculation.
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