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Abstract

Classical off-line approaches based on preemption
such as RM (Rate Monotonic), DM (Deadline Monotonic),
EDF (Earliest Deadline First), LLF (Least Laxity First),
etc, give schedulability conditions but most of the time as-
suming on the one hand that all the tasks are independent,
and on the other hand, that the first instances of all tasks
are released at the same time. We are interested in hard
real-time systems subject to precedence and strict period-
icity constraints, i.e. such that for all instances of each
task, the release time and start time are equal. For such
systems, it is mandatory to satisfy these constraints. In
this paper we give non-schedulability conditions in order
to restrict the study field of all systems of tasks to only
potentially schedulable systems.

1. Introduction

We address here hard real-time applications found
in the domain of automobile, avionic, mobile robotic,
telecommunication, etc, where it is mandatory to sat-
isfy the real-time constraints otherwise dramatic conse-
quences occur [1]. Such applications, based on auto-
matic control and/or signal processing algorithms, are
usually specified with block-diagrams. They are com-
posed of functions producing and consuming data, and
each function has a strict period. Consequently, in this
paper we study the problem of scheduling tasks, onto a
single computing resource, i.e. a monoprocessor, each of
them corresponding to a function, while satisfying a suc-
cessor/predecessor relation in addition to their strict pe-
riods. Furthermore, since we aim hard real-time, off-line
scheduling approaches are better suited because they guar-
antee a deterministic behavior for the applications.

Classical off-line approaches based on preemption,
such as RM (Rate Monotonic) [2], DM (Deadline Mono-
tonic) [3], EDF (Earliest Deadline First) [4], LLF (Least
Laxity First) [5], etc, use the Liu & Layland model [6].
This model allows to give schedulability conditions but

assuming on the one hand that all the tasks are indepen-
dent in that the requests for a certain task do not depend on
the initiation or the completion of requests of other tasks,
and on the other hand, that the first instances of all tasks
are released at the same time. With this model, the release
time and the start time of any instance may not be equal for
each task during its execution. Actually, because we are in
the monoprocessor case, and because we are interested in
systems subject to precedence and strict periodicity con-
straints, two tasks cannot use the processor at the same
time. Indeed, strict periodicity constraint imposes for all
instances of each task the release time and the start time
to be equal. Clearly, this is not the case for the classical
model. Furthermore, the start time of any instance of any
task should not occurs while the processor is occupied by
an already scheduled task.

In this paper, we give non-schedulability conditions in
order to restrict the study field of all systems of tasks to
only potentially schedulable systems. To achieve this goal
we use the extention, with preemption, of our previous
model [7] that is well suited to the applications we are
interested in.

Afterwards, to clearly distinguish the specification
level and its associated model we are interested in, we
will use the term operation instead of the commonly used
“task” [8] which is too closely related to the implementa-
tion level.

The paper is structured as follows: Section 2 describes
the model and gives notations used throughout this paper.
Section 3 gives non-schedulability conditions to restrict
the study field of all systems of tasks to only potentially
schedulable systems when seeking a valid schedule thanks
on the one hand to properties on the strict periods, and on
the other hand to properties on the worst case execution
time (WCET) of the tasks. We conclude and propose fu-
ture works in section 4.

2. Model

The model depicted in figure 1 is an extension, with
preemption, of our previous model [7] for systems with



precedence and strict periodicity constraints executed on
a single processor.

Figure 1. Model

Here are the notations used in this model assuming all
temporal values are multiple of the period of the processor
clock:
τi: An operation
Ci: WCET of operation τi , Ci ≤ Ti

Ti: Period of operation τi

s0
i : Start time of the first instance of operation τi

sk
i = s0

i +(k−1)Ti: Start time of the kth instance of oper-
ation τi

Rk
i : Response time of the kth instance of operation τi

Ri: Worst-case response time of operation τi

Ti ∧Tj: The greatest common divisor of Ti and Tj,
when Ti ∧Tj = 1, Ti and Tj are co-prime
τi ≺ τ j: τi −→ τ j, τi is a predecessor of τ j

We assume a single processor, and denote V the set of
systems of operations. Each system consists in a given
number of operations, subject to precedence and strict pe-
riodicity constraints. Each operation τi of a system in
V consists in a pair (Ci,Ti): Ci its WCET and Ti its pe-
riod. The precedence constraints are given by a partial
order on the execution of the operations: τi ≺ τ j means
τ j cannot start before τi is completed. The strict period-
icity constraint means that two successive instances of an
operation are exactly separated by its period: sk+1

i − sk
i =

Ti ∀k ∈ N ∀i ∈ {1, · · · ,n}. In this model the start time
is always equal to the release time, contrary to the Liu &
Layland’s classical model, and for each operation, each
instance should be completed before the next one starts.

It is fundamental to note that, because of the strict pe-
riodicity constraint and the fact that we are in the mono-
processor case, any two instances of two operations of the
system cannot start their executions at the same time.

3 Study field restriction

Firstly, we eliminate all the systems such that start
times of any two instances of any two operations are iden-
tical. This will be achieved thanks only to properties on
the strict periods of the operations, using the Bezout the-
orem. This is formally expressed through both theorems
given in section 3.1. Secondly, we eliminate all the sys-
tems such that the start time of any instance of an op-
eration occurs while the processor is occupied by an al-
ready scheduled operation thanks to properties on WCET

of the operations. This is formally expressed through the
theorem given in section 3.2. These theorems give non-
schedulability conditions in order to restrict the study field
of all systems of tasks to only potentially schedulable sys-
tems.

3.1 Strict periodicity restriction
Theorem 1

Given a system of n operations in V , if there are two
operations τi = (Ci,Ti) and τ j = (Cj,Tj) with (τi ≺ τ j)
starting their executions respectively at the dates s0

i and s0
j

such that

Ti ∧Tj = 1 (1)

then the system is not schedulable. Moreover, any addi-
tional assumption (for example preemption and idle times)
on the system intending to satisfy all the constraints does
not have any interest in this case.

Proof
Let τi = (Ci,Ti) and τ j = (Cj,Tj) be two operations of

a system in V starting their executions respectively at the
dates s0

i and s0
j such that: Ti ∧Tj = 1.

Notice that s0
j ≥ s0

i because τi ≺ τ j.
Let:

γ = s0
j − s0

i (2)

If γ = 0, the result is immediate because the first start times
of the two operations are then identical. This is not possi-
ble because several operations cannot use the processor at
the same time.

Let us suppose from now that γ 	= 0, then:

∃(α,β) ∈ Z2 such that αTi = βTj + γ (3)

Indeed, Ti ∧Tj = 1 implies:

∃(m,n) ∈ Z2 such that mTi −nTj = 1(Cf. Bezout)

i.e.,

∃(m,n) ∈ Z2 such that (mγ) ·Ti − (nγ) ·Tj = γ (4)

Let: {
α0 = (mγ)
β0 = (nγ)

It is clear that (α0,β0) is a particular solution of (3).
The expressions (3) and (4) give:{

(α−α0) ·Ti − (β−β0) ·Tj = 0 (∗)
α0Ti −β0Tj = γ (∗∗)

(∗) can be rewritten as : (α−α0) ·Ti = (β−β0) ·Tj

Thus we have: {
Ti | (β−β0) ·Tj

Ti ∧Tj = 1

Hence Ti | (β−β0) i.e.,

∃k ∈ Nsuch thatβ−β0 = kTi (5)

Now, replacing β−β0 by its value in (∗), we obtain:



α−α0 = kTj.

Then:

(α,β) = (α0 + kTj,β0 + kTi) (6)

is the general form of all the solutions of (3).
Given any k ∈ N, at all the following dates tk

i, j the start
times of instances of operations τi and τ j are identical:

tk
i, j = s0

i +(α0 + kTj) ·Ti

= s0
i +(m(s0

j − s0
i )+ kTj) ·Ti

= s0
j +(β0 + kTi) ·Tj

= s0
j +(n(s0

j − s0
i )+ kTi) ·Tj

and, thus the strict periodicity constraint is violated. Con-
sequently the system is not schedulable.
Since it is not possible to prevent this situation, any other
additional assumption on the system intending to satisfy
all the constraints is useless.

�

N.B.

In the expression (3), the choice of the integers α and β
can be made in N to meet the fact that time is positive.

In fact, if (3) is satisfied and α or β is negative, we just
have to consider h0 ∈ N large enough such that:

{
α1 = α+h0Tj ∈ N
β1 = β+h0Ti ∈ N

and thus:

(3) ⇐⇒ α1Ti −β1Tj = γ

In the remainder of this paper, we will no longer care
about this detail because it is easy to be solved.

Example 1
Let A and B be two operations of a system in V with

the characteristics defined in table 1 below:

Table 1. Characteristics of example 1
Ci Ti s0

i
A 1 4 0
B 1 7 2

We notice that 4∧ 7 = 1 and conclude thanks to theo-
rem 1 that this system is not schedulable. Indeed, at the
date t = 16 in figure 2 the two operations A and B start
their executions simultaneously. Consequently we cannot
schedule them without violating the strict periodicity con-
straint of one of the two operations.

Figure 2. System with 2 operations such
that: Ti ∧Tj = 1

Theorem 2
Given a system of n operations in V , if there are two

operations τi = (Ci,Ti) and τ j = (Cj,Tj) with (τi ≺ τ j)
starting their executions respectively at the dates s0

i and
s0

j such that

Ti ∧Tj | (s0
j − s0

i ) (7)

then the system is not schedulable. Moreover any addi-
tional assumption on the system intending to satisfy all
the constraints does not have any interest in this case.

Proof
Let τi = (Ci,Ti) and τ j = (Cj,Tj) be two operations of

a system in V starting their executions respectively at the
dates s0

i and s0
j such that: Ti ∧Tj | (s0

j − s0
i ).

Notice once more that s0
j ≥ s0

i because τi ≺ τ j.
Let:

γ = s0
j − s0

i

We assume γ 	= 0 : Cf. proof of Theo.1 , then:

∃(α,β) ∈ Z2 such that αTi = βTj + γ (8)

Indeed,
let us assume Ti∧Tj = λ (λ∈N∗), then it exists T 1

i ,T 2
j ∈

N∗ such that: ⎧⎨
⎩

Ti = λT 1
i

Tj = λT 2
j

T 1
i ∧T 2

j = 1

T 1
i ∧T 2

j = 1 implies:

∃(m,n) ∈ Z2 such that mT 1
i −nT 2

j = 1(Cf. Bezout). (9)

By multiplying each side of (9) by λ, we obtain:

m · (λT 1
i )−n · (λT 1

j ) = λ
i.e., mTi −nTj = λ (10)

Thus, (8) and (10) give:

(α−m)Ti − (β−n)Tj = γ−λ (11)

However, we assumed λ | γ, i.e.,

∃p ∈ N∗ such that γ = pλ



We then have:

(α−m)Ti − (β−n)Tj = (p−1)λ
i.e., (α−m)T 1

i − (β−n)T 2
j = p−1 (12)

By multiplying each side of (9) by (p−1), we obtain:

∃(m,n) ∈ Z2 such that m(p−1)T 1
i −n(p−1)T 2

j = p−1
(13)

The expressions (12) and (13) give:

∃(m,n) ∈ Z2 such that (α−mp)T 1
i = (β−np)T 2

j
(14)

In this last relation, we have:{
T 1

i | (β−np) ·T 2
j

T 1
i ∧T 2

j = 1

Thus T 1
i | (β−np) i.e.,

∃k ∈ N∗ such that β−np = kT 1
i (15)

By replacing this expression in the relation (13), we ob-
tain:

α−mp = kT 2
j (16)

Consequently, the general form of the solutions of (8) is
given by:

(α,β) =

(
m

s0
j − s0

i

Ti ∧Tj
+ k

Tj

Ti ∧Tj
, n

s0
j − s0

i

Ti ∧Tj
+ k

Ti

Ti ∧Tj

)
(17)

Thus, given any k ∈ N, at all the following dates tk
i, j the

start times of instances of operations τi and τ j are identi-
cal:

tk
i, j = si

0 +
[
m(s0

j − s0
i )+ kTj

] Ti

Ti ∧Tj
(18)

= s j
0 +

[
n(s0

j − s0
i )+ kTi

] Tj

Ti ∧Tj
(19)

and, thus the strict periodicity constraint is violated. Con-
sequently the system is not schedulable.

Since it is not possible to prevent this situation, any
other additional assumption on the system intending to
satisfy all the constraints is useless.

�

Example 2
Let A and B be two operations of a system in V with

the characteristics defined in table 2:

Table 2. Characteristics of example 2
Ci Ti s0

i
A 1 4 0
B 1 6 6

We notice that 4∧ 6 = 2 and 2 | 6. We can conclude
thanks to theorem 2 that this system is not schedulable.

Figure 3. System with 2 operations such
that: Ti ∧Tj | (s0

j − s0
i )

Indeed, at the dates t = 12, t = 24, · · · in figure 3 the two
operations A and B start their executions simultaneously.
Consequently we cannot schedule them without violating
the strict periodicity constraint of one of the two opera-
tions.

Theorems 1 and 2 give conditions of non schedula-
bility for systems subject to strict periodicity constraints
when both previous relations on the strict periods hold.
Moreover, any additional assumption on the system would
be useless because of the identical start times of two in-
stances of at least two operations.

We denote by Ωλ the sub-set of V excluding the cases
where the strict periods of the operations verify both
previous relations, see figure 4.

Ωλ = {{(Ci,Ti)}1≤i≤n ∈V /∀i, j ∈ {1, · · · ,n}
∃λ > 1, Ti ∧Tj = λ and λ � (s0

j − s0
i )}

Figure 4. Ωλ: Restriction of the study field

3.2 WCET restriction
Because of the precedence constraints, it has been

shown in [9] that given two operations τi = (Ci,Ti) and
τ j = (Cj,Tj):

τi ≺ τ j =⇒ Ti ≤ Tj

Thus, the operations must be scheduled in an increasing
order of their periods.

Now, we assume any operation of the system may only
be preempted by those already scheduled [1], [2] rela-
tively to ≺.



We call Up the pth temporary load factor of the pro-
cessor (1 ≤ p ≤ n) for a system of n operations {τi =
(Ci,Ti)}1≤i≤n in Ωλ.

Up =
p

∑
i=1

Ci

Ti

That system will be said to be potentially schedulable
if and only if:

Un ≤ 1 (20)

From now we assume (20) is always satisfied. A po-
tential schedule S of a system is given by a list of the start
times of the first instance of all the operations:

S = {(s0
1,s

0
2, · · · ,s0

n)} (21)

The start times sk
i (k ≥ 1, 1 ≤ i ≤ n) of the other in-

stances of operation τi are directly deduced from the first
one. The response time Rk

i of the kth instance of opera-
tion τi = (Ci,Ti) is the time elapsed between its start time
sk−1
i and its end time. This latter takes into account the

preemption thus,

Rk
i ≥Ci ∀k.

We call Ri the worst response time of operation τi, de-
fined as the maximum of the response times of all its in-
stances.

These definitions enable us to say that, to satisfy the
strict periodicity, any operation τi = (Ci,Ti) of a poten-
tially schedulable system in Ωλ must satisfy:

Ri ≤ Ti ∀i ∈ {1, · · · ,n} (22)

We say that a system in Ωλ has one overlapping when
the start time of any instance of a given operation occurs
while the processor is occupied by an already scheduled
operation. Such systems are not schedulable, and we ex-
press that through the following theorem.

Theorem 3
Given a system of n operations in Ωλ, if there are two

operations τi = (Ci,Ti) and τ j = (Cj,Tj) with (τi ≺ τ j)
starting their executions respectively at the dates s0

i and
s0

j such that

∃ α,β ∈ N and 0 ≤ (s0
j +βTj)− (s0

i +αTi) < Rk
i , k ≥ 1

(23)
then the system is not schedulable. Moreover any addi-
tional assumption on the system intending to satisfy all
the constraints does not have any interest in this case.

Proof
The proof of this theorem derives directly from the

assumption that an operation may only be preempted by
those already scheduled. An example is given below (see
figure 5).

�

Figure 5. System with an overlapping

Now we can partition Ωλ in the three following sub-
sets: the sub-set Vc of systems with overlappings which
are not schedulable thanks to theorem 3, the sub-set Vd of
systems with regular operations, i.e. where the periods of
all operations constitute a geometric sequence 1, and the
sub-set Vi of systems with irregular operations which both
remain potentially schedulable (see figure 6).

Vc = {{(Ci,Ti)}1≤i≤n ∈ Ωλ /∀i ∈ {1, · · · ,n−1},
∃ j ∈ {i+1, · · · ,n} and

0 ≤ (s0
j +βTj)− (s0

i +αTi) < Rk
i , k ≥ 1}

Vd = {{(Ci,Ti)}1≤i≤n ∈ Ωλ /T1 | T2 | · · · | Tn}

Vi = Ωλ\(Vc ∪Vd)

Figure 6. Ωλ-partitionning

At this point, we have given non schedulability con-
ditions for systems subject to precedence and strict peri-
odicity constraints. Thus, thanks to the partition of V ob-
tained in figure 6, once the previous cases discussed above
are excluded, the remaining systems of operations corre-
sponding to Vd ∪Vi are potentially schedulable.

4 Conclusion and future works

We are interested in hard real-time systems subject to
precedence and strict periodicity constraints where it is
mandatory to satisfy these constraints. We are also inter-
ested in preemption which offers great advantages when
seeking valid schedules. Because the classical approaches
are not well suited for the applications we are interested in,
we propose a new approach consisting firstly in building

1A sequence (ai)1≤i≤n is geometric if and only if it exists q such that
ai+1 = qai ∀i ≥ 1.



a set V of all systems of operations, secondly in restrict-
ing V by providing non-schedulability conditions thanks
to properties on the strict periods and the WCET of all op-
erations. At the end, these non-schedulability conditions
lead to the subset Vd ∪Vi of systems with both regular and
irregular operations as presented in section 3.2 which con-
sists in potentially schedulable systems of operations. The
proposed approach restricts drastically the domain of the
possible schedules and will lead to a simpler scheduling
analysis.

Presently we are seeking schedulability conditions and
valid schedules for systems in Vd ∪Vi. Afterwards, we
plan to extend our study to the problem with several com-
puting resources.
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