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ABSTRACT 
 
There are two gaps in the typical design V-process used for 
real-time embedded control systems. The first one is due to 
the manual translation of control laws into a software 
specification; the second one is due to the manual 
implementation of this specification onto distributed 
architecture while satisfying real-time constraints. Indeed, the 
correctness and efficiency of these two translations mainly 
rely on the skill of engineers who are subject to errors, the 
latter requiring many design process iterations to be 
corrected. We propose to fill the first gap between the 
modeling and the specification phases, firstly by linking the 
terminologies used by the two communities involved, and 
secondly by interfacing Scicos a hybrid simulation tool with 
SynDEx a specification and optimized implementation tool. 
The second gap is actually filled by SynDEx itself which 
assists the designer in implementing the control laws onto 
distributed architecture with the help of optimization 
heuristics and automatic code generation. We illustrate the 
proposed approach through a didactic example of inverse 
pendulum control system. 
 
CONTROL EMBEDDED SYSTEMS DESIGN 
LIFECYCLE 
 
Designing control embedded systems requires to solve many 
hardware and software problems: complex application 
algorithms must be implemented onto heterogeneous 
distributed architectures composed of processors (DSP, 
RISC) and specific integrated circuits (ASIC, FPGA) all 
together interconnected. In order to deal with this 
complexity, methods are often based on hierarchical design 
allowing to describe the system as a set of simplest, and 
easiest to design sub-systems. These methods are applied in 
the typical development lifecycle called ``V-process''. It 
allows to build a system starting from an abstract description 
to an actual product which is validated by a step by step top-
down and then bottom-up design flow (Calvez 1993). 
 
The top-down design is decomposed in three main phases: 
modeling, specification and implementation. The bottom-up 
design is decomposed in three validation phases: unit test, 
integration test and validation test of the system (see Figure 
1).  This V-process can be used both for hardware and 

software designs. In this paper, we focus on the software 
design. 
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Figure 1: V-Process for Embedded Control System Design 
 
Modeling corresponds to the mathematical description of the 
behaviour the system must conform to. Software 
specification consists in a high level description of the 
algorithms which implement the mathematical equations 
resulting from the modeling phase, and a description of the 
implementation constraints, i.e. real-time and hardware 
constraints. The software is actually written in the 
implementation phase in order to ensure that the algorithms 
will be computed on the architecture meeting the 
implementation constraints. 
 
The first validation phase in the development process is the 
unit test which is often long and tedious. It consists in 
verifying that each software function implementing the 
algorithms are correctly written and perform right. When all 
the functions are debugged and separately validated, the 
integration phase verifies that the set of all the functions 
behave as defined by the model. If not, specification has to 
be modified. The last phase, validation, consists in verifying 
that the application behaviour is consistent with the 
requirements (customer's specification). If not, the model has 
to be modified, and usually refined. In this case the V-
process is iterated as long as necessary. 
 
GAP IN THE V-PROCESS 
 
In the development process of a control system, control 
engineers define the system model and computer science 
engineers are in charge of the specification and 
implementation part. Both have to collaborate in the 
specification phase. This is an important phase where the 
mathematical model is transformed in a computing model. 
Problems involved by these two models are different and 



 

 

errors due to misunderstanding between control engineers 
and computer science engineers may appear in this 
transformation. These errors may have impacts up to the 
implementation phase and then be only detected during the 
validation phase. Thus, development lifecycle time may be 
strongly increased due to these numerous backtrackings. 
 
In this paper, we first describe, using control engineer 
terminology the modeling phase based on control 
terminology. Then, we explain using real-time computing 
terminology the implementation phase of the control models. 
Finally the links between both terminologies are made in 
order to reduce the gap between these two communities. 
 
The V-process has shown a good efficiency in the design of 
many applications. But their growing complexity leads to an 
important development cost rise which became an important 
part of the final product cost. Thus, time spent by engineers 
in writing and debugging software code, is the most 
important part in the design process. In order to ensure 
competitiveness of products, it is necessary to minimize the 
software development lifecycle by reducing the duration of 
each phase, and by minimizing the number of iterations in 
the global V-process. 
 
Tools based on formal languages (Halbwachs 1993) are 
intended to improve the global process. Indeed, these 
languages rely on rigorous specification based on 
mathematical rules. This makes possible specification, 
verifications, and automatic code generation such that the 
number of iterations in the V-process is reduced because 
verifications allow to detect more early specification errors. 
The automatic generation of a code consistent with the 
verified specification allows also to reduce tests and debug. 
 
In this context, the AAA methodology (Algorithm 
Architecture Adequation) based on a graph formalism as 
been developed to optimize the implementation of 
application algorithms onto distributed architectures while 
satisfying real-time constraints (Sorel 1994). The system 
level CAD tool SynDEx (www.syndex.org) (Grandpierre 
and al. 1999) which relies on this methodology  allows to 
quickly develop complex applications such that, for example, 
an automatic driving application for the CyCab an electrical 
vehicle based on a distributed architecture involving several 
MPC555 microcontrollers interconnected through a CAN 
bus (Kocik and Sorel 1998). This experience has shown the  
benefits that this methodology can bring for the design of 
complex real-time applications. 
 
Nevertheless, this methodology takes into account only the 
specification and implementation part of the V-process, and 
there is a gap between the modeling and specification phases 
which may introduce errors very early in the development 
process. In industry this translation from modeling to 
specification and implementation usually relies on the skill of 
only few peoples. It is necessary to be vigilant because errors 
introduced at this level may have consequences along the 
development process, and are often only detected during the 
validation phase. Thus, correcting the error imposes a 
complete iteration of the development process.   

Most errors usually occur during the controller model design, 
these errors being introduced by the translation of this model 
into its software specification.  In order to reduce errors, to 
enhance ``traceability'', and to minimize the number of 
development process iterations we propose to automatically 
translate models into software specifications. In the last part 
of this paper, we show how interfacing Scicos 
(www.scicos.org), a hybrid dynamic systems modeler 
and simulator, with SynDEx allows to achieve this goal. 
 
CONTROL SYSTEM MODELING 
 
The job of control engineers is to build a physical system 
able to keep under control the evolution of an other physical 
system called plant. The latter may possibly be composed of 
mechanical and/or electrical and/or chemical components. 
First the control engineer has to describe with mathematical 
equations the interactions between these components. 
According to this mathematical model of plant, he can 
predict its evolution when it is submitted to external control 
actions. Then, he can give a mathematical model, called 
control law, of control actions to be applied to the plant. A 
controller which purpose is to physically perform the control 
laws, has to be build and to be connected to the plant in order 
to control it. The plant (system whose we want to control the 
evolution) and the controller (system which has to act on the 
plant) linked together, make a system that is called control 
system (Figure 2).  
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Figure 2: Control System Design 
 
A complex controller can be designed from the composition 
of several basic control laws such as single-input-single-
output controller. Its input is called the reference that the 
plant as to reach. Its output is called control  which is applied 
to the plant in order to ensure that the plant evolves towards 
the reference. 
 
Control systems are usually loopback systems. Thanks to a 
permanent observation of the plant evolution through a 
feedback  issued from the output of the plant, the control 
system is able to remove external disturbance (Ogata 1970). 
 
DIGITAL CONTROLLER 
 
Sampled Control Law 

When the plant is complex, it can be necessary to use a 
computer to perform in real-time the control laws producing 
actions applied to it. This solution may reduce the costs, and 



 

 

moreover increase the performances of the system (Ogata 
1987). 
 
The implementation of a control law by a computer system 
requires to discretize input and output of the plant (Landau 
1988).  Thus, interactions between the computer and the 
plant are made using transductors. A feedback signal is 
produced by a sensor, which measures the amplitude of 
physical phenomenon and translates it into an electrical 
signal sampled by an analog to digital converter (ADC).  The 
computed output is a digital signal which is converted to an 
electrical analog signal by a digital to analog converter 
(DAC) before being applied to an actuator. Its role consist in 
converting the electrical signal into an other physical 
phenomenon able to control the plant evolution (Figure 3) 
(Astrom and Wittenmark 1984). 
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Figure 3: Computer Loopback System 

 
The control law supplying that output signal from feedback 
and reference inputs is described by an algorithm 
implemented in a program executed on a computer. The 
computer seen, by the control engineer, as a simple element 
of the controller, is the center of interest of computer science 
engineers. From his point of view, the computer science 
engineer has to design an application made with a computer 
system and a physical environment both interacting. This 
system is composed of a computer and a set of programs, 
called software, that it will execute. The environment is 
defined as the set of all the physical elements which are 
external to the computer system. The frontier between the 
environment and the computer system is often difficult to 
establish. This is the reason why we choose here that all the 
physical components which can be programmed (processors, 
network, memory, input/output devices, ...) are parts of the 
computer system, whereas all the physical components which 
cannot be programmed are parts of the environment. The 
latter components, except the ADC and DAC ones, are seen 
by control engineers as the plant. 
 
The computer system has to ensure that the plant behaves 
according to the control laws defined by the control engineer 
in the modeling phase. It has to interact permanently with its 
environment: the feedback and reference sampled input 
values are input events on which computations are performed 
producing output events which are discrete values.  That is 
the reason why this kind of computer system is also called 
reactive system (Harel and Pnueli 1985). 
 
The correctness of an actuation usually depends on the time 
elapsed between the generation of an output event and the 
input event which has triggered it.  In this kind of systems, 
this time interval have to be bounded. Such applications are 

called real-time applications, the time requirements are 
called real-time constraints. In some applications, it is 
possible to accept sometimes that some real-time constraints 
are not always met, but usually these requirements are critical 
and have to be imperatively met. The main difficulty is to 
design a predictable  real-time system guaranteeing that all 
the critical real-time constraints are always satisfied and the 
overtaking of non-critical real-time constraints will remain 
bounded, and casual (Le Lann 1990; Stankovic and 
Ramamritham 1993). 
 
Specification 

Specification corresponds to a high level software and 
hardware description (Calvez 1993). In the case of real-time 
systems these two aspects are strongly linked. In order to 
design the software, it is needed to specify the algorithms to 
be computed, the hardware architecture which will execute 
the algorithms, and the real-time constraints that must be 
satisfied (Mathai 1996). 
 
Real-time Constraints 
The discretization and digital implementation of control laws 
have some consequences on modeling. The control engineer 
has to choose sampling frequencies for each input and each 
output of the system ( control, s and reference in Figure 3). 
As a general rule, in order to simplify complex computations 
induced by control laws discretization, the control engineer 
assumes that all the signals are periodically sampled. For the 
same reason, he assumes that input and output signals are 
sampled at the same time instant (Ogata 1987). Control 
theory books shows that this choice is empirical and relies on 
the skill of control engineers. The sampling frequency choice 
is translated during the implementation by a constraint 
imposed to the input events rate that the real-time system 
may accept. This constraint is called input rate. A latency 
constraint is also imposed to the real-time system. It is a 
boundary on the time interval between an input event arrival 
and the production of the corresponding output event. The 
goal of this constraint is to guarantee the response time of the 
system, an important quality criteria from the control 
engineer point of view. It has been shown, under simplifying 
hypothesis, that this response time is proportional to the 
computation latency added with a delay Te\2 due to sampling 
performed at 1\Te frequency (Phillips and Troy 1984). 
 
Algorithm Specification 
Taking into account the infinite iteration due to the 
interactions between the real-time system and its 
environment (the number of iterations cannot be bounded, 
considered as infinite) the typical definition of an algorithm 
extended such as an infinite sequence of operations 
computed in a finite time on a finite hardware. In this way, an 
algorithm is seen as a finite sequence of operations computed 
in a finite time on a finite hardware, but infinitely repeated. 
The execution of every sequence of operations is triggered 
by input events which may be periodic or aperiodic. 
Complex real-time systems involve two kinds of algorithms: 
data processing and state machine. Data processing 
algorithms describe control actions applied to the plant. They 
represent the computations the control laws perform on data 
(PID corrector, filter,...) considered as periodic events 



 

 

because they are sampled at the input rate. State machine 
algorithms define in which order data processing algorithms 
must be executed according to the current state and aperiodic 
input events. 
 
Hardware Specification 
Embedded applications are subject to strong cost constraints 
(financial cost, dimensions, electrical consumption). To meet 
these constraints, new hardware architectures have been 
proposed. For example, in automotive industry where 
competitivity is particularly hard these new technologies 
have contributed to reduce the amount of wiring thanks to the 
integration of sensors and actuators near to the processor, 
and to data multiplexing on serial bus. This lead to 
heterogenous distributed architectures with low cost 
components of the shelf. Computers are build with 
microcontrollers to perform evolving functions, and with 
ASICS, and/or FPGA to perform some specific functions 
with only few evolutions in the product life. Communications 
between processors are supported by low cost serial buses 
(like VAN, CAN, TTP, FlexRay,…) well suited for disturbed 
environment. 
 
DESIGN LIFECYCLE REDUCING 
 
In order to meet the implementation constraints and to avoid 
gaps between all the V-process phases and thus reduce 
design costs we propose a methodology based on the 
cooperation of two tools: Scicos for modeling and hybrid 
simulation, and SynDEx for specification and distributed 
implementation. 
  
Specification 

In computer control systems sampling and quantifying 
operations, needed for the discretization of analog signals, 
may introduce some errors which tend to degrade system 
performances. For the same performance level, if we want to 
take into account these errors, it is more complex to define 
the control law for a computer system than for an analog one. 
The modeling of a discretized system is more complex than 
the modeling of a continuous system for which control theory 
brings numerous mathematical tools. 
 
In order to simplify the design, the control engineer usually 
studies a continuous model of the controller rather than a 
discrete one (Astrom and Wittenmark 1984).  Then, this 
continuous model is discretized in order to allow its 
implementation on a computer. Thus, an hybrid simulation, 
i.e. the simulation of a continuous system (the plant) linked 
with a discrete real-time system is mandatory to validate the 
model used to design the real-time system. This simulation 
allows to tune the control laws in order to take into account 
approximations done in the continuous model.  
Scicos (Nikoukha and Steer 1999) has been designed for this 
purpose, it allows an hybrid simulation taking into account 
the sampling frequencies of analog signals. 
 
Specification and Optimized Algorithms Implementation 

Discretized control laws and continuous plant models are 
described in Scicos with graphs similar to block diagram well 

known by control engineers. Such a graph representing a 
discretized control laws is extracted from Scicos and 
translated into a SynDEx graph (Djenidi and al. 1999). In 
this way, the algorithm specification conforms to the model, 
it is still not necessary to spent any time for the control laws 
specification, and only hardware architecture description is 
now required. SynDEx allows to perform this hardware 
specification, and when both algorithm (control laws) and 
architecture are specified it allows to execute the adequation, 
that is to say to execute heuristics which optimize the 
implementation of the algorithm onto the architecture and 
automatically generates the corresponding code that will be 
executed in real-time. Actually, interfacing Scicos with 
SynDEx allows to cover the complete design process. 
  

Hybrid Simulation with Delays 

Hybrid simulation, to be close to reality, needs to take into 
account delays introduced in the control laws by computation 
and communication durations (latency). These delays may 
impact on system stability(Torngren 1990). They depend on 
the implementation, that is to say on the allocation 
(distribution) and the scheduling of functions, associated to 
each block of the graph describing the control laws, onto 
processors. 
 
Usually, in the specification phase each block is translated 
into a task, function with real-time execution constraints and 
properties (execution periods, priority, deadlines,…). Then, 
the schedule of this set of task is made at execution time (on-
line scheduling) by an RTOS (real-time operating system) 
according to the properties of the tasks (Timmerman 1999).  
In this approach it is difficult to predict computing latency, 
and consequently it is not possible to easily take into account 
delays in the hybrid simulation. This problem can be solved 
by interfacing Scicos and SynDEx. Indeed, SynDEx is able 
to compute an adequation which is an optimized distribution 
(spatial allocation of CPU resources) and scheduling of the 
blocks (called in this context operations) of the algorithm 
onto the hardware architecture. Thanks to a good knowledge 
of the architecture (number of programmable and non 
programmable components, number of communication 
media) and to the knowledge of the maximum execution 
duration of each operation depending on the component able 
to execute it, SynDEx can compute and visualize a prediction 
of the optimized distribution and scheduling. This  accurate 
prediction allows to verify whether real-time constraints are 
met or not, and also allows to provide back, in the hybrid 
simulation, the delays due to computations and 
communications. Thus, it is possible to simulate the hybrid 
system with Scicos in order to verify that response time, 
stability and others requirements are met in spite of these 
delays. 
 
Example 

In order to show the benefits of this approach we illustrate it 
with a didactic example of an inverse pendulum control 
system. The inverse pendulum is a system composed of a cart 
(mass M ) on which a bar (mass m, length l) is linked. The 
bar can rotate around its extremity. The cart stays on a 



 

 

inclined plane. The goal is to stabilize the cart  at the origin 
position O (Figure 4). 
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Figure 4: Inverse Pendulum Stabilization 
 

We suppose that some sensors provide the angular position θ 
and the linear position z of the cart on the plane. The control 
action is a translation force u(t) produced by an electrical 
motor.  
 
Modeling and Simulation 
The first phase corresponds to the modeling and the 
simulation of the system in order to verify that the goal is 
met. Figure 5 shows how the modeling was performed with 
Scicos. The block named cart is a mathematical continuous 
model of the cart. This block is a function written in C or 
Fortran code and/or with Scicos library blocks. This model 
estimates z and θ from the angle φ (0.001 radians here) and 
from the control action u(t) applied to it. The sensor block 
models two sensors acquiring z and θ. The block named 
actuator is the electrical motor model. The control 
block is the discretized model of the controller. It describes 
the algorithms which will be executed in real-time. 
 

 
 

Figure 5: Scicos Graph 
 
The sampling period of its inputs is 10ms, it is specified by a 
clock signal connected to its activation input port. The 
control engineer has used here a hierarchical description, the 
control block is a Scicos super-block which groups many 
C or Scicos blocks. Finally, a specific block (icon showing a 
2D graph) allows to display a simulation graph of the z 
position and of the θ angle evolution. 
 
Control Algorithms Extraction 
When hybrid simulation shows that the control system is 
properly designed, the engineer may extract from Scicos the 

controller algorithms by selecting with the mouse the 
involved region (Figure 6). 
 

 
 

Figure 6: Controller Extraction 
 
We can see that the control engineer chose here to design the 
control law as a matrix computation given by a state space 
representation. This Scicos graph region of the discretized 
control law can then be automatically translated into a 
SynDEx algorithm graph. 
 
Real-time System Specification 
The algorithm graph extracted from Scicos is translated in 
the SynDEx algorithm syntax. Now, the user must specify the 
architecture graph describing the hardware architecture of the 
real-time system and he must provide to SynDEx the worst 
execution duration of each operation of the algorithm graph. 
These durations can be, in a first step, estimated by engineers 
or they can be measured by SynDEx after a first execution of 
the automatically generated code.  
 

 
 

Figure 7: SynDEx Software and Hardware Graphs 
 



 

 

The Figure 7 shows the SynDEx graphical interface where 
both algorithm and architecture graphs are displayed. On the 
algorithm graph (upper part), we can see the Scicos blocks 
AxplusBu and CxplusDu performing the matrix 
computation. The block called thetaEtz corresponds to 
the sampling of the inputs sensors while the block called  
motor drives the motor. The block mem specify the scicos 
block 1/Z. For demonstration purpose, we have supposed 
that the hardware architecture is made of two processors 
linked together by a communication media called 
direct_lnk (Figure 7 lower part). Sensors are physically 
linked to the processor called root, the motor is physically 
linked through a power amplifier on the processor called 
Opr2. 
 
Adequation and Temporal Simulation 
From this specification, SynDEx  can perform the adequation 
and display a temporal prediction of the algorithm execution 
onto the hardware architecture (Figure 8). Each column 
represents an execution sequence displaying one iteration of 
the operations distributed onto a processor, or of the data 
dependences distributed onto a communication media. In our 
case, there is one computing sequence on the root 
processor, another computing sequence on the processor  
opr2 and a communication sequence on direct_link. 
The vertical axis represents the time evolution.  It can be 
noticed that the complete execution of all the operations and 
all the communications needed is estimated to 3ms (3060). 
Thus, we can verify that the architecture can meet the 
temporal constraint of the input rate (10ms) given by the 
sampling period chosen for z and θ. 
 

 
 

Figure 8: SynDEx Timing Simulation 
 
Hybrid Simulation Taking into Account Delays 
The computation latency (3ms) given by the SynDEx timing 
simulation is the delay between the sampling of z and θ and 
the u(t) output. This delay can be introduced in the Scicos 
graph in order to perform a more accurate hybrid simulation.   
The Figure 9 shows the first simulation made without any 
delay. It exhibits that the control law discretized with a 10ms 
sampling period allows to stabilize the inverse-pendulum at 
O. Figure 11 and Figure 10 are the simulation results taking 
into account the 3ms delay. The first one (Figure 10) shows 

that with a 10ms sampling period, the system with the delay 
is no more stable. The second one (Figure 11) validates the 
control system stability with a control law discretized with a 
8ms sampling period despite of the delay. 
 

 
 

Figure 9: Simulation with 10ms Sampling Period, No 
Input/Output Delay 

 
 

 
 

Figure 10: 10ms Sampling Period with 3ms Delay 
 
 

 
 

Figure 11: 8ms Sampling Period  with 3ms Delay 



 

 

 
 
Automatic Code Generation 
When both hybrid (Scicos) and temporal (SynDEx) 
simulations show that the performances are satisfied, it is 
possible with SynDEx to generate the code that will actually 
be executed on each processors. SynDEx produces an 
executive involving inter processor communications which 
guarantees that the functions calls associated to each 
operation of the algorithm graph, and to each SEND and 
RECEIVE communication primitives, follows the computed 
schedule.  The software engineer just has to provide the input 
and output functions (thetaEtz and motor). It is possible 
to reuse the C blocks used in Scicos to describe the control 
system: thus, the code that have been used for simulation is 
the same that the one used at execution time in the real-time 
system. 
 
New Reduced Lifecycle 

Figure 12 shows the new reduced lifecycle obtained using 
this methodology. Each phase is validated by simulation or 
verification before going to next the phase. Manual 
translation of models into specifications are minimized in 
order to avoid errors. We hope by this way to lead to a 
lifecycle closed to an ideal waterfall process without rise: 
each phase is validated before going to the next one.  
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Figure 12: Reduced Design Lifecycle 

 
CONCLUSION AND WORK IN PROGRESS 
 
In this paper, we have described a methodology able to 
reduce the lifecycle of control embedded control systems. 
With a didactic example, we have shown that using Scicos 
for hybrid simulation taking into account the input-output 
delays predicted by SynDEx may reduce significantly the 
backtracking during the design V-process.  Actually, the 
automatic code generation for heterogenous distributed 
architectures performed by SynDEx also decrease the design 
lifecycle. Presently, delays must be determined and 
introduced manually in Scicos. We are now working on 
SynDEx and Scicos tools in order to do this automatically.  
Morever, this new approach is actually evaluated on the 
design of a complex industrial automotive application. 

 
 
Astrom, K.J. and Wittenmark, B. 1984. Computer Controlled 

Systems: Theory and Design. Prentice-Hall Inter-national. 
Calvez, J. P. 1993. A Specification And Design Methodology. John 

Wiley Publisher. 
Djenidi, R.; Lavarenne, C.; Nikoukha, R.; Sorel, Y.; and Steer, S. 

1999. “From hybrid system simulation to real-time 
implementation”. In 11th European Simulation Symposium and 
Exhibition (Erlangen-Nuremberg, Oct.). 

Grandpierre, T. ; Lavarenne, C. ; and Sorel, Y. 1999. “Optimized 
rapid prototyping for real time embedded heterogeneous 
multiprocessors”. In CODES'99 7th International Workshop on 
Hardware/Software Co-Design (Rome). 

Halbwachs, N. 1993. Synchronous programming of reactive 
systems. Kluwer Academic Pub. 

Harel, D. and Pnueli, A. 1985. “On the development of reactive 
systems”. In Logics and Models of Concurrent Systems, 
Springer-Verlag, Ed., k. r. apt ed., vol. 13 of NATO ASI. New 
York, pp. 477-498. 

Kocik, R. and Sorel, Y. 1998.  “A methodology to design and 
prototype optimized embedded robotic systems”. In 2nd IMACS 
International Multiconference CESA'98 (Hammamet, Tunisia, 
April). 

Landau, I.D. 1988. Identification et commande des systèmes. 
Hermes, 1988. 

Le Lann, G. 1990. “Critical issues for the development of 
distributed real-time computing systems”. Research Report 
1274, INRIA, (August). 

Mathai, J. 1996. Real-time Systems: Specification, Verification and 
Analysis. Prentice Hall. 

Nikoukha, R. and Steer, S. 1999. “Scicos : A hybrid system 
formalism”. In I1 th European Simulation Symposium 
(Erlangen, Germany, october). 

Ogata, K. 1970. Modern Control Engineering. Prentice-Hall 
International Editions. 

Ogata, K. 1987. Discrete-Time Control Systems. Prentice-Hall 
International Editions. 

Phillips, C.L. and Troy, N.H. 1984. Digital Control System : 
Analysis and Design. Prentice-Hall International Editions. 

Sorel, Y. 1994. “Massively parallel computing systems with real 
time constraints, the algorithm architecture adequation". In 
Methodology Proc. of Massively Parallel Computing Systems 
Conference (Italy). 

Stankovic, J. A. and Ramamritham, K. 1993. Advances in Real-
Time Systems. IEEE computer Society Press. 

Timmerman, M. 1999. “Rtos market survey preliminary results”. 
Real Time magazine (march). 

Torngren, M. 1990. “Fundamentals of implementing real-time 
control applications in distributed computer systems”. In Real-
Tune Systems. Kluwer Academic, pp. 219-250. 

 
 
 


	KEYWORDS
	ABSTRACT
	CONTROL EMBEDDED SYSTEMS DESIGN LIFECYCLE
	GAP IN THE V-PROCESS
	CONTROL SYSTEM MODELING
	DIGITAL CONTROLLER
	Sampled Control Law
	Specification
	Hardware Specification


	DESIGN LIFECYCLE REDUCING
	Specification
	Specification and Optimized Algorithms Implementation
	Hybrid Simulation with Delays
	Example
	Modeling and Simulation

	New Reduced Lifecycle

	CONCLUSION AND WORK IN PROGRESS

