
A methodology to design and prototype optimized embedded robotic systems

Rémy KOCIK, Yves SOREL
INRIA Rocquencourt - Domaine de Voluceau BP105

78153 Le Chesnay CEDEX - France
Tel: 33-(1) 39 63 51 75 - Fax: 33-(1) 39 63 57 86
email: remy.kocik@inria.fr, yves.sorel@inria.fr

ABSTRACT

We have designed a new electric robotic vehicle controlled by a distributed embedded computer system
based on the CAN bus, providing features such as, secured manual driving or autonomous driving, and
route planning. These functionalities involve control, image and signal processing algorithms executed un-
der real-time constraints. In order to provide a safe software design and to reduce the development cycle
time of such complex systems, we use a methodology called A3 (Algorithm Architecture Adequation). It is
based on graphs and partial order, to modelize the algorithm, the distributed architecture (microprocessors,
specific integrated circuits, connected by a network) as well as the implementation of the algorithm on the
architecture. The Adequation, based on heuristics, consists in finding the best implementation which satis-
fies the real-time constraints and minimizes the hardware resources. This allows to automatically generate
dedicated executives with dead-lock free communication support.

CONTEXT

The microprocessor power increase as well as the elec-
tronic components miniaturization, allow computer based
systems to be more and more powerful. Hugely using
these techniques, robotics take naturally advantages of
this evolution. Thus, the designers are encouraged to
build more elaborate systems able to perform new com-
plex tasks. The integration of these functionalities leads
to increase software and hardware level of complexity.

Indeed, the first way to build high-performancesystems
is to better take into account the robot environment. It
turns out that the systems involve sophisticated devices
like camera, sonar, magnetic or ultrasonic sensors. In ad-
dition to these exteroceptive sensors, the robots must in-
clude proprioceptive ones in order to know their internal
state and to ensure feedback in the actuator control loop.
They can be as different as incremental optical encoders,
accelerometers or strain gauges. To drive efficiently this
different devices, the computer must also perform lot of
low level processing to extract significant informations
from the sensors and to carry out low level control on the
actuators. These features involve a lot of computing (for
example the processing of images from the camera) and/or
a high input rate (incremental encoder position derivation
or motor low control. . .).

On the other hand, to ensure a secure and autonomous
behaviour to the robot, high level processing is necessary
to implement control laws, states machine, data fusion,
decision making, planning, neuronal networks, expert sys-
tems and data base. Finally the robot must communicate
with the user through a graphical user interface.

These embedded robotic systems are reactive systems
[5][12]. They must also cope with severe real-time con-

straints: the robot must react to external stimuli by trig-
gering computations in order to generate output reactions
within bounded duration (response time).

As well to satisfy these real-time constraints (small re-
sponse time and high input rate), as to take into account
the distributed nature of the resources (sensor/actuator,
computation, memory) inherent to these robotic sys-
tems, high performance heterogeneous distributed com-
puter based systems are needed. Specific components like
ASICs, Digital Signal Processors and micro-controllers
are used to perform efficiently signal and image process-
ing and devices control, while CISC and RISC micro-
processors perform high level tasks. Implementing the
distributed application on a heterogeneous network while
verifying all these constraints is difficult, and generally
generate complex programs hard to test and debug. This
explains the success of new dedicated robotics high level
programming research software tools [10] [4].

They generally provide a graphical interface to help
the user to specify and verify the application and are
also able to simulate the beaviour of the robot. After-
wards, code can be generated automatically. An impor-
tant effort has been done on these tools to make easier
the specification and to guarantee that the generated code
is conform. This generated code usually relies on tra-
ditionnal real-time multi-thread executives such as VX-
WORKS,OS9. . . running on VME centralized architec-
tures. Thus, the user can quickly design safe complex ap-
plications but these tools don’t allow to take into account
distributed architectures and severe cost constraints met in
some embedded applications.

To solve these problems we present here a new method-
ology and the associated tools. It allows high level verifi-
cation, safe programming, automatic distribution and gen-

eration of optimized code while minimizing architecture
resources with minimal development cycle.

A3 METHODOLOGY

A3 means Algorithm Architecture Adequation. The
goal of the methodology is to find out an optimized im-
plementation of an application algorithm on an architec-
ture, while satisfying constraints [11]. ”Adequation” is
a French word meaning an efficient matching. Note that
it is different from the English word ”adequacy” which
involves a sufficient matching. A3 is based on graphs
models to exhibit both the potential parallelism of the al-
gorithm and the available parallelism of the multicompo-
nent. The implementation is formalized in terms of graphs
transformations.

Algorithm Specification And Verification
The classical notion of algorithm, given for example by

Turing [13], defining a finite total order on the execution
of a finite multi-set of operations, is here extended to par-
tial order. However, this partial order is different from the
one obtained by Hoare’s Communicating Sequential Pro-
cesses approach [6]. The algorithm is modelized here by a
conditioned data-flow graph, that is, a folded dependency
graph presenting a pattern indefinitely repeated. This
dependency graph describes data-dependency relations
(edges) between operations (vertices). A data-dependency
is actually a data transfer from a producer operation to a
consumer operation. This involves a partial order on the
execution of the operations, called potential parallelism.
Potential means that this parallelism will be exploited only
if parallel hardware resources are available. The execu-
tion of each graph pattern of the dependency graph is trig-
gered when an input event, coming from the environment,
is received by operations without predecessor. The output
events are sent to the environment by operations without
successor. Moreover, a dependency graph may be condi-
tioned, that is, a part of this graph may not be executed.
Specific conditioning vertices, with two input and one out-
put, do not produce data when their conditioning input,
which must be of boolean type, carries a false value. In
this case, by transitivity all the dependent vertices will not
be executed. Otherwise, when both input are present, but
the conditioning one is true, the output takes the value of
the other input. At this point, it is assumed that the result
produced by an operation is simultaneous with the input
which triggers it. This allows to make verifications on
this specification in terms of input output events ordering.
Note carefully here, that operations and data transfers du-
rations are not taken into account. It turns out a logical
time, which instants correspond to the input output events
interleaving. This algorithm model has the semantics of
the synchronous languages and more specifically, of the
synchronous data-flow language SIGNAL [8].

Multicomponent Specifications
The implementation consists in distributing and

scheduling the algorithm data-flow graph on the multi-
component taking into account real-time constraints. The

operations and the data transfers durations are now consid-
ered, and therefore exploited to optimize the implementa-
tion, that is, to satisfy real-time constraints and to mini-
mize the resources. In order to improve the usual approach
based on a coarse model of the architecture like PRAM or
DRAM [2], the multicomponent architecture is modelized
more accurately. It is an hyper-graph which vertices are
components, and which hyper-edges are communication
media. A component may be in turn described in terms of
an hyper-graph, leading to a hierarchical decomposition
of the hardware architecture.

The smallest atomic component is a finite state ma-
chine. Two types of components are distinguished. An
operator sequences operations on data, read from/written
to communication media. Each operation of the algorithm
graph is an indivisible sequence of computations. A trans-
formator sequences data transfers between communica-
tion media (DMA, serial/parallel . . .). Each transfer is
an indivisible sequence of reads on one communication
medium, interleaved with writes on another communica-
tion medium, in a ratio depending on the relative widths
(number of parallel data wires) of the two communica-
tion media. A medium hyper-edge encompasses the wires
used to support the communication, the finite state ma-
chine which arbitrates and synchronizes accesses to the
wires, and some memory. Random access memory allows
asynchronous communication, whereas sequential access
memory (FIFO) implies synchronous communication. It
is worthy to notice here, that it is very important during
the optimization, to take into account carefully commu-
nications which support data transfers, especially if they
are routed. Moreover, arbitrations must not be neglected
because they introduce also delays.

The architecture hyper-graph is labeled by character-
istics related to hardware considerations. Because, after-
wards in this paper, only the reaction duration will be con-
sidered for the optimization, we focus here on the dura-
tions. However, other characteristics could be taken into
account, such as, amount of necessary memory, power
consumption Then, toeach operator is associated
the list of couples (operation, duration) it is able to per-
form. Similarly, to each transformator is associated the
list of couples (data transfer, duration) it is able to per-
form. Furthermore, when several components share a re-
source (sequencer, memory . . .) arbitration is necessary.
Consequently, the durations associated to the operations
assigned to the involved operators must be modified ac-
cording to an interference matrix which modelizes a slow-
ing down.

Adequation
The implementation is formalized in terms of transfor-

mations applied on the previously defined graphs. The
distribution is a spatial allocation (assignation of several
operations resp. data transfers, to an operator resp. trans-
formator). It induce inter-operator communications, pos-
sibly routed when operators are not directly connected.
The scheduling is a temporal allocation (ordering through
the operator resp transformator sequencer, of the assigned
operations resp. data transfers). Given an algorithm graph

and a characterized architecture graph, the optimization
consists in selecting among all the possible transforma-
tions, on the one hand the one which maintains the input
output event ordering verified during the algorithm spec-
ification, and on the other hand the one which minimizes
the reaction duration and the number of components. This
problem cannot be solved optimally (NP complete), the
selection is carried out by fast resources allocation heuris-
tics based on list scheduling greedy algorithms [7] which
give as better results as they rely on an accurate architec-
ture model.

From a selected graphs transformation, it is possible to
generate automatically an optimized distributed executive
for the programmed part of the architecture. It is built
from a library of architecture-dependent executive primi-
tives composing the executive kernel. There is one execu-
tive kernel for each supported processor.

AN APPLICATION EXAMPLE: THE CyCab

Now we present how the A3 methodology may help to
the design and the realization of a new Semi-Autonomous
Electrical Vehicle (CyCab) prototype. This system is a
result of the Praxit`ele project [9] based on a new pub-
lic transport system concept: electrical vehicles in self-
service. The aim of this project is to allow the user to
borrow one of these individual vehicles, in specific sta-
tions designed to that effect. He is able to drive freely, but
must give back the vehicle in one of these stations.

The CyCab has been designed to transport up to two
persons in downtown areas, pedestrian malls, large indus-
trial or amusement parks and airports, at a maximum of
30km/h speed.(Fig. 1)

Figure 1: Semi Autonomous Electrical Vehicle: The
CyCab

It offers two new functionalities, aided driving and au-
tonomous driving. Aided driving rely on the use of a joy-

stick and a finger touch screen. This joystick is connected
to the computer, which controls the vehicle and then pro-
vides secure and easy driving: speed may be limited in
curves and special areas. Everybody is able to drive this
vehicle because it does not require specific skills from the
driver. The finger touch screen allows the user to com-
municate with the system in order to get informations
such as localization, vehicle autonomy, or for example the
town museum list. To solve the problem of the vehicle
fleet repartition through the stations, in order to satisfy
customer demand, it is possible to form a ”car train” of
empty vehicles with only one driver (in the front vehicle)
[3]. Other autonomous driving modes, like radio-control
or light markers guidance may be implemented.

This vehicle has been designed with mass production
and public use constraints: low cost, low dimensions, ro-
bustness, easy maintenance. The whole design has been
oriented in this way, from the mechanical to the computer
based system.

Hardware Architecture
The mechanical is borrowed from a small electrical golf

car frame, already produced in small series. The use of
four identical wheel motor blocks, allows to reduce costs
(by re-using identical parts) and volume (four small en-
gines with small power controllers are easier to build and
integrate than a big one with a high power controller).
Consequently, the architecture is modular and the vehi-
cle is easier to drive (the four wheels are propulsive and
directive). The steering is made through an electrical jack
mechanically linked to all the wheels.

Figure 2: Node Architecture

Each wheel motor block has it’s own power amplifier,
driven by a micro-controller(Fig 2). This intelligent node
is constituted of three linked layers. The lowest one pro-
vides power to two motors. The second one allows the
sensor acquisitions and the communications with the other
nodes. The last one, made with a MC68332 drives the
two others. The MC68332 is a micro-controller commer-
cialized by Motorola. It is well suited for motor control.
To generate PWM signals or to perform quadrature sig-
nals decoding, it integrates a programmable Time Process

Unit.
Each wheel node controls the drive engine and a brake

motor, with all their associated sensors (optical encoder, y
and brake torque measurement, temperature . . .). A fifth
node is attached to the steering jack and the joystick.

The communications between the nodes are made
through a CAN serial bus [1]. It has been designed spe-
cially for automotive applications and allows safe com-
munications in disturbed environment, with a rate of
1Mbits/s. It carries messages up to 8 bytes length with
50 per cent control and arbitration bits overload.

Figure 3: Network Architecture

The network consists in 5 nodes and a PC board which
drives the screen and the hard disk. (Fig. 3)

Implementation With SynDEx
We show here, on the “manual driving” mode im-

plemented on the CyCab, the benefits of using the
SynDEx[14] tool which support the A3 methodology.

Using the graphical user interface of SynDEx, the first
step consists in specifying the algorithm as a data-flow
graph in order to exhibit the potential parallelism. Then
the user describes the hardware architecture as an hyper-
graph. He may now ask for an Adequation, which carries
out a distribution and a scheduling, displayed as a pre-
dicted diagram. At this time, the user may verify that his
application satisfies the real-time constraints.

If the constraints are satisfied the user tends to optimize
hardware resources by minimizing the components num-
ber, and by using cheaper components. On the contrary,
if the application does not meet the constraints, he must
redesign his algorithm, by choosing a smallest granularity
allowing a better distribution. If this is not sufficient, he
may add new components or use fastest ones. To help the
user, SynDEx proposes an initial number of components,
which is the ratio (maximum speedup) between the sum
of all the operation durations and the critical path dura-
tion. The upper bound of this number is a good estimation
of the minimum number of components to use. When the
user is satisfied, he may ask SynDEx to generate a dead
lock free executive for the real-time execution of the algo-
rithm application on the multi-component architecture. A
program, written in a macro-code independent of the mi-
croprocessor type, is generated for each component. The

macro-code is built from the executive kernel which sup-
ports all the primitives provided by SynDEx: memory al-
locations, communications, tests, loops . . .

Figure 4: Architecture Graph

The figure 4 shows a snapshot of the architecture graph
of our application implemented using SynDEx . This ac-
tual hardware architecture, is composed of five MC68332
(AvG332, AvD332, ArG332 , ArD332 , Dir332) and
one 486DXII66 (root) all linked through a CAN bus.

The figure 5 presents a snapshot of the data-flow graph
of the “manual driving” application algorithm. The ver-
tices are the operations to be executed on the data. The
edges are data dependencies between operations. This
graph is composed of 3 kinds of vertices: the input ones
only produce data, the processing ones produce and con-
sume data, and the output are the ones which only con-
sume data.

Figure 5: Algorithm Graph

Typically the input vertices are the sensors and the out-
put vertices are the actuators. That is why they must be
constrained to be assigned to the components attached to
the sensors and actuators. The graph is cyclicly executed
; data flow from left to right. The execution time of one
graph is the real-time loop period.

To figure out how to use SynDEx, we present the steer-
ing control part of our application. The figure 6 details
how the control loop has been implemented in the algo-
rithm graph.

The vertexJoyEtPotDir holds the wanted wheel an-
gle (joydir) given by the lateral joystick position, and the
steering jack position (potdir) given by a potentiometer.
The other values necessary to the control, are the vehicle
and the steering jack speed (resp.v andvitdir). The first
one is computed by the vertexVitLoc which processes
a mean of the 4 wheel speeds processed byVitAvG , Vi-
tAvD , VitArG , VitArD . The second one is given by
VitDir .

filter
Low-pass

+
-

Low level

interrupt subroutine

motor & sensors driving

filter
Low-pass

K=f(v)

ConsVitDir

K2 +
- K3

ConsCurDir

VitDir

v

ConsPosDir

VitLoc JoyEtPotDir

VEHICLE

errdir vitdircons

vitdirjoydir

PwmCurDir

curdirpotdir

Figure 6: lateral control loop

The function namedConsPosDir processes the posi-
tion errorerrdir. Thejoydir value is first saturated in or-
der to bound the steering jack displacement. The value is
then multiplied by a factor varying according to the vehi-
cle speed, in order to provide a lateral acceleration bound-
ary. Before to be subtracted, both the wanted and the ac-
tual position values are low-pass filtered to minimize the
acquisition errors influence and to smooth the driving.

ConsVitDir provides a wanted jack speed (vit-
dircons) from the position error. It is a proportional filter
saturated to the jack max speed displacement.

ConsCurDir processes the wanted current (currdir
for PwmCurDir which performs the steering jack con-
trol current loop. currdir is the speed error (vitdircons -
vitdir) multiplied by a constant.

Actually, PwmCurDir , VitDir , JoyEtPotDir ,
VitAvG , VitAvD , VitArG , VitArD , do not control di-
rectly the hardware. They send and receive data, to and
from, a low level interruption subroutine which provides
data acquisition, quadrature decoding, speed processing,
current control loop and low level safety. The benefit is

to allow low level processing to be executed at a fixed
rate (for wheel speed processing) higher than the real-time
loop one. In our application, the real-time period is 10ms
when the low level control period is 1ms.

Note that in order to help the programmers, several ver-
tices called ”VISU” allow to ”spy” the data, by displaying
or saving them on the PC. This facility is very useful dur-
ing the test and debug stage.

The figure 7 presents the predicted execution time given
by SynDEx after the Adequation was completed. It shows
only one execution of the graph. Each column represents
the sequence of operations assigned to each processor, the
Y-axis showing the time progress from top to bottom. The
edges represent processor communications. More pre-
cisely, the origin of an edge is the date when the data is
ready to be sent, and the ending of the edge is the date
when this data is available on the destination processor.

Figure 7: Schedule

On each processor the optimized macro-code gener-
ated by SynDEx is expanded by the M4 (Gnu) macro-
processor to produce an assembly code. A makefile is also
generated. It performs the compilation and the link, call-
ing Gnu GCC, and loads executables on the processors
through the CAN bus.

CONCLUSION

Like a lot of other research tools, theA3 methodol-
ogy provides designing facilities for robotic applications.
Thus, the programmer may properly specify and verify
the application. But contrary to these other tools, the user
may here choose and size the hardware architecture, and

optimize the application thanks to the SynDEx capabili-
ties to predict the behaviour of an algorithm implemented
on a specific architecture. Moreover, he may generate au-
tomatically dead lock free optimized distributed real-time
executives. Then, the user is discharged of the low level
communication tasks programming and debugging, and
may focus on the algorithm specification and optimiza-
tion. The automatically generated executives do not rely
on expensive commercial executives and induce a minimal
overhead. Thus, SynDEx can be used to handle minimal
distributed heterogenous hardware architecture. This ap-
proach allows rapid optimized prototyping of robotic sys-
tems under industrial constraints.

References

[1] Michael Babb. New sensors have intelligence, will
communicate.Control Engineering, pages 84–85,
February 1994.

[2] M. Cosnard and A. Ferreira. On the real power of
loosely coupled parallel architectures.Parallel Pro-
cessing Letters, 1(2):103–112, 1991.

[3] Pascal Daviet and Michel Parent. Platooning tech-
nique for empty vehicles distribution in the praxitele
project. InProceedings of the 4th IEEE Mediter-
ranean Symposium on New Directions in Control
and Automation, Maleme, Krete, GREECE, June
1996.

[4] D. Gajski, F. Vahid, S. Narayan, and J. Gong.Speci-
fication and Design of Embedded Systems. Prentice-
Hall, 1994.

[5] D. Harel and A. Pnueli. On the development of re-
active systems. In Springer-Verlag, editor,Logics
and Models of Concurrent Systems, volume 13 of
NATO ASI, pages 477–498. New York, k. r. apt edi-
tion, 1985.

[6] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

[7] C. Lavarenne and Y. Sorel. Performance opti-
mization of multiprocessor real-time applications by
graphs transformations. InProc. of the PARCO93
conference, France, 1993.

[8] P. Leguernic, M. Leborgne, T. Gautier, and
C. Lemaire. Programming real-time applications
with signal. Research report, INRIA, June 1991. Re-
search Report.

[9] M. Parent, E. Benejam-Fran¸cois, and N. Hafez.
Praxitèle: a new public transport with self-service
electric cars. InISATA Congress, Florence, Italy,
June 1996.

[10] Daniel Simon, Bernard Espiau, Eduardo Castillo,
and Konstantinos Kapellos. Computer-aided design
of a generic robot controller handling reactivity and
real-time control issues. Research Report 1801, IN-
RIA, November 1992.

[11] Yves Sorel. Massively parallel computing sys-
tems with real time constraints, the “algorithm ar-
chitecture adequation”. InMethodology Proc. of
Massively Parallel Computing Systems Conference,
Italy, 1994.

[12] John A. Stankovic and Krithi Ramamritham.Ad-
vances in Real-Time Systems, chapter Introduction,
pages 1–16.

[13] A.M. Turing. On computable numbers, with an ap-
plication to the entscheindungs problem. InProc.
London Math. Soc., 1936.

[14] SynDEx webpage at INRIA. http://www-
rocq.inria.fr/syndex/ .

