
PROMPT: A Mapping Environment for Telecom
Applications on "System-On-a-Chip"

Michel Barreteau,
Juliette Mattioli

Thomson-CSF LCR - A&TS Lab.
Domaine de Corbeville
91404 Orsay (France)

firstname.lastname@lcr.thomson-csf.com

Thierry Grandpierre,
Christophe Lavarenne,

Yves Sorel
INRIA Rocquencourt - BP 105
78153 Le Chesnay (France)

firstname.lastname@inria.fr

Philippe Bonnot,
Philippe Kajfasz

Thomson-CSF Communications
66, rue du Fossé Blanc - BP 156

92231 Gennevilliers (France)

firstname.lastname@tcc.thomson-csf.com

Corinne Ancourt, François Irigoin
Ecole des Mines de Paris - CRI

35 rue Saint Honoré
77305 Fontainebleau (France)
firstname.lastname@cri.ensmp.fr

Bernard Dion
SIMULOG

1 rue James Joule
78286 Guyancourt (France)
firstname.lastname@simulog.fr

ABSTRACT
Increasing of computation needs and improving of processor
integration make the mapping of embedded real-time applications
more and more expensive. PROMPT [1] provides a new approach
which relies on the co-operation of two technologies whose main
strength consists in simultaneously taking into account regular
and irregular aspects of telecom applications on Systems-On-a-
Chip.

Keywords
System-on-a-Chip, heterogeneous multiprocessor embedded
system, constraint, mapping environment.

1. INTRODUCTION
In the next decade, “Systems-On-a-Chip” (SOC) will play a
crucial role in telecom applications (UMTS, Wide Band, …).
Deep sub-micron technologies are designed to give an answer to
the high level of integration required by these applications. They
will have to deal with all the various levels of digital processing,
from Signal Processing (SP), in digital beam-forming applications
for instance, to protocol stacks.

The architecture of these SOC will be fundamentally
heterogeneous. It will integrate various computing engines
devoted to specific functions like number crunching (filtering,
FFT, …), Digital Signal Processing, data processing and/or
decision and supervision. Number cruncher engines, which
exploit data parallelism are optimally designed using
homogeneous SIMD structures. They may be interconnected with

VLIW, DSP, RISC cores or micro-controllers in order to enlarge
the application spectrum. For instance, Mefisto [2] an example of
advanced SOC architecture, is based on a SIMD computation unit
(Marañon), a floating point unit (mAgicFPU) and a general-
purpose processor (ARM).

Figure 1. Global Architecture of the Mefisto SOC.

Unfortunately, programming of such SOC becomes harder and
harder. Indeed, mapping and performance estimation of real-time
applications on this kind of engines, closely interconnected on a
single silicon die, is not trivial at all. Moreover, complexity of
software development (processing and communication) is
drastically increasing because each engine uses its own tools
(Assembler, C/C++ compilers, optimizer, debugger, …) and
furthermore because on-chip inter-engine communications are not
supported by these tools.

This paper focuses on a new approach, and the environment
which is based on, for helping users to map telecom applications
onto SOC. It is currently validated through a prototype
environment which is based on the co-operation between two
complementary methodologies. One of them is optimized to
handle SIMD and regular aspects of SP applications and SOC,
whereas the other one takes into account irregular and MIMD
aspects required by the SOC and such applications.

This article is articulated as follows. The next section gives an
overview of some development tools for mapping and optimizing
embedded real-time applications onto multiprocessor architectures
to rapid prototyping. Section 3 describes AAA and PLC2
methodologies that compose the generic software design approach
of the PROMPT project and why it makes sense to combine them.
Before concluding, section 4 focuses on an example which
illustrates our new global approach.

2. RELATED WORK
Several development tools that aim at mapping and optimizing
applications onto multi-processors are presently available as
commercial or research products. APOTRES97, CASCH, Fx,
GEDAE, Ptolemy, SynDEx, TRAPPER are tools of this type. We
do not intend here to provide a state-of-the-art but only give an
overview of three of these tools which are close to our needs.

Ptolemy [3] (University of Berkeley) is a simulation, modeling
and code generation environment for SP heterogeneous systems; it
can use several models in the same simulation to take into account
several aspects of an embedded system. It performs optimizations
based on a very abstract model of architecture avoiding to take
into account the SIMD and MIMD characteristics of the
architecture.

SynDEx [4] (INRIA) is a system-level CAD for rapid prototyping
and optimizing the implementation of real-time embedded
applications on heterogeneous and homogeneous multiprocessor
architectures. It generates dedicated (very low overhead)
executives without deadlock for these architectures.

GEDAE [5] (Lockheed Martin ATL) is a commercial
programming environment, whereas both previous ones are
research tools. As SynDEx does, it allows rapid prototyping on
heterogeneous and homogeneous multiprocessor machines; on the
contrary, it is not possible to specify generic architectures not
provided by the environment. It generates executives based on a
real-time OS.

Each tool has its own features but none of them allows to
simultaneously take into account SIMD and MIMD architectures
in the optimization process, as it is necessary for the SOC we are
aiming here. We choose to extend the SynDEx capabilities
towards SIMD by combining it with the EPHORAT tool which is
specially devoted to SIMD architectures.

3. METHODOLOGIES
Consequently, our approach is based on a co-operation between
two methodologies and use of their associated tools:
�

 the Algorithm Architecture Adequation (AAA) [6,7]
methodology for homogeneous and heterogeneous MIMD
architectures, with the SynDEx software,

�
 the PLC2 [8,9] methodology, concurrent constraint
programming model-based, optimized for homogeneous SIMD
architectures, with the EPHORAT software.

After their own description, some comparisons will help to
understand our motivations to couple them.

3.1 AAA
The goal of the AAA methodology is to find the best matching
between an application algorithm and an MIMD architecture,
while satisfying constraints. We will use further only the generic

word "algorithm" in order to denote the set of all the algorithms
used to specify the functionality of an application. Algorithms
may be coded in any source languages. Note that "Adequation" is
a French word meaning an efficient matching; it is different from
the English word "adequacy" which involves a sufficient
matching. AAA is based on graph models to exhibit both the
potential parallelism of the algorithm and the available parallelism
of the multiprocessor (Cf. bottom of Figure 2). The
implementation consists in distributing and scheduling the
algorithm data-flow graph on the multiprocessor hyper-graph
while satisfying real-time constraints. Heuristics are used to
optimize the real-time performances and resources allocation of
real-time applications running on the multiprocessor. This
optimized implementation process is formalized in terms of
graphs transformations. The results are on the one hand a timing
simulation of the behavior of the algorithm running on the
architecture, and on the other hand an optimized Synchronized
Distributed Executive, automatically built from a library of
architecture-dependent executive primitives composing the
executive kernel. There is one executive kernel for each supported
processor. These primitives support boot-loading, memory
allocation, inter-engine communications, sequentialization of user
supplied computation functions and of intra and interprocessor
communications, and finally synchronizations between sequences
of computations and interprocessor communications.

3.2 PLC2
PLC2 methodology focuses on mapping of Systematic Signal
Processing (SSP) applications on parallel computation units
(SIMD or SPMD) using a concurrent constraints programming
language. Systematic means that such application is based on
patterns of computations repeated several times through loops on
different data. SIMD architectures are dedicated to implement this
kind of applications. PLC2 uses a global multi-model approach to
describe the general mapping problem. It takes as input the
specification of different models (Cf. bubbles in bottom of Figure
3) such as the target machine, the communication costs, the
partitioning, the memory allocation and the scheduling models.
These models are represented with mathematical variables and
affine constraints. Non linear constraints (Cf. small arrows in
bottom of Figure 3) such as the number of processors link the
different models and generally are composed with complex and
polynomial terms. The latency, resources and data-flow
dependencies constraints are global constraints. While storing the
different constraints, the constraints solver system builds a
solution-space on a model-per-model basis. Each model solution-
space is pruned when constraints are propagated from other
models. Indeed the modelled symbolic constraints are propagated
concurrently and the solutions satisfying the global problem are
enumerated. The solution outlook depends on several criteria as
memory allocation or latency. Solutions must be looked for in a
resulting overall search space using a specific global search. This
search relies, first on the semantics of the variables of each model
and their importance w.r.t. other models and, second the goal to
achieve (i.e. resource minimization under latency constraint,
latency minimization under resource constraint). Each variable
takes part in a global cross-model composite solving, such that
only relevant information is exchanged between models. The
result is a fine-grain schedule of computational blocks, their
distribution onto processors, the latency and the memory
allocation.

Figure 2. AAA Methodology within the PROMPT Environment.

Figure 3. PLC2 Methodology within the PROMPT Environment.

3.3 Motivations for combining AAA and
PLC2
In order to understand why it makes sense to combine AAA and
PLC2 methodologies, we compare them according to three items:
algorithm model, architecture model and features of the tools
which support these methodologies.

3.3.1 Algorithm Model
AAA and PLC2 methodologies share the same kind of model to
specify the algorithm: a data-flow graph based on data
dependencies between computation operations. The algorithms

may have regular and repetitive parts on one or several
dimensions. Benefits of this common model are not only its
declarative aspect (close to mathematical expressing of SP
algorithms) but also the potential parallelism related to the partial
execution order due to the data dependencies between operations.
This potential parallelism may be directly exploited in order to
implement the algorithm on the available parallel architectures.
However, in PLC2 which is devoted to SSP, each operation (a
vertex of the algorithm graph) is a nested loop executed without
any condition, whereas in SynDEx which is devoted to complex
applications with automatic control, SP and image processing that
may include some SSP, an operation has a more general control

structure, including nested loop, and may be conditioned.
Moreover, because PLC2 aims SIMD architectures it requires fine
grain operations in order to specify data parallelism. AAA allows
the user to specify the algorithm with different sizes of grain,
which are usually bigger when it is not necessary to detail data
parallelism.

3.3.2 Architecture Model
PLC2 implicitly considers fully-connected homogeneous
architectures (SIMD or MIMD using SPMD programming
model). "Homogeneous" means that processors of the architecture
are similar to each other (same memory capacity, same duration of
computation and communication tasks). AAA target machines are
MIMD architectures where one or several processors may be a
SIMD processor. The processor graph (described in extension)
has to be connected but not necessarily fully. The main difference
between PLC2 and AAA relies on the capability for PLC2 to
support a unique sequencer controlling several computation units,
whereas AAA deals with several sequencers, each of them
controlling one computation unit.

3.3.3 Tool Features
About the Man-Machine Interface, EPHORAT inputs mainly are
the architectural parameters (number of processors, latency,
memories capacity, throughputs, …), the algorithm and a partial
solution if necessary. SynDEx offers a graphical interface to
specify both the algorithm and architecture graphs and the
corresponding parameters (execution durations of computing and
communication operations, distribution constraints).

SynDEx provides libraries of portable operations to specify the
algorithm, EPHORAT provides libraries through a specification
language of SP applications: Array-OL [10].

Satisfying some constraints such as real-time or resources ones is
difficult not only due to the number of constraints but also to the
type of constraints: global or elementary constraints. The former
are complicated to manage because they all have to be respected
(PLC2 models). The latter are only intricate to handle because of
their number ; such constraints correspond to the operation
durations used by SynDEx. PLC2 automatically manages global
constraints (e.g. latency) thanks to a constraints solver.

SynDEx and EPHORAT are designed for validation, not for
simulation. As a matter of fact they only provide a schedule that
can be viewed as a prediction of the real-time behavior without
simulating the actual computations. SynDEx performs off line
distribution and scheduling of computations and communication
operations onto the processors composing the architecture.
EPHORAT computes a schedule of partitioned nested loops that
are interleaved to maximize parallelism. Moreover, EPHORAT is
not restricted to the validation of a given mapping since it is
ensured by the constraints solver itself. It can enumerate multiple
solutions without violating the whole constraints.

SynDEx uses optimization heuristics mainly based on critical path
computed from the execution durations of the operations in order
to minimize the response time of the application. EPHORAT
offers several optimization criteria (e.g. memory, latency).
Minimizing search space of solutions is one of the main strengths
of EPHORAT.

The optimized application has to be executed on a realistic
machine. Then code generation is a major issue. Whereas SynDEx
generates automatically a dedicated executive with very low
overhead, EPHORAT only generates placement directives.

3.3.4 Summary
Comparisons above showed two complementary methodologies.
PLC2 handles fine-grain, strongly repetitive (regular) and
unconditional algorithms on homogeneous SIMD (or MIMD
using SPMD programming model) architectures, whereas AAA
focuses on irregular, medium-grain and conditional algorithms on
heterogeneous MIMD architectures.

4. AN INNOVATIVE GLOBAL APPROACH
Our new approach consists in simultaneously taking into account
regular and irregular aspects of telecom algorithms as well as the
SIMD and MIMD aspects required by the SOC. This approach
relies on the AAA methodology with the assistance of PLC2 for
the more intensive and data-parallel parts of the algorithm
implemented on the SIMD part of the architecture. The way both
tools communicate is shown through figures 2 and 3 and further
illustrated. The benefit of this approach is that it provides a global
optimization improved by local optimizations for regular parts of
the algorithm. As a result, the user may obtain on the one hand a
more accurate timing simulation of the behavior of the algorithm
running on the architecture, and on the other hand a dedicated
distributed real-time executive automatically generated.

Our innovative global approach would improve productivity
through rapid prototyping using executives generation. Moreover,
debugging of distributed executives is no more a costly task;
based on timing simulations this approach enables evaluation and
performance optimization of algorithms without any physical
available architecture, and easy re-targeting of algorithms on other
architectures.

Combining AAA and PLC2 methodologies actually leads to
coupled their respective tools SynDEx and EPHORAT. In order
to figure out the principles of this coupling we give below a
realistic example of a SSP (radio telecom) application optimized
with SynDEx/EPHORAT.

First the algorithm and the architecture must be specified on both
tools. The algorithm (Cf. top of Figure 4) is made of computing
operations "filtPuiCor, detect, max, filt_final, Corr and pond"
(each of them is based on nested loops since it is a SSP
application). There is a sensor operation "antennes’’ and an
actuator operation "modem". The sensor produces data for
filtPuiCor and Corr, which in turn produces data to detect and
pond and so on, until the actuator operation. The architecture (Cf.
top left of Figure 4) is the Mefisto SOC, made of two processors
the mAgicFPU and the Marañon. The mAgicFPU a floating point
DSP processor can execute all the operations of the algorithm
whatever their data types are, but regular non floating point
computing may be slower than if executed by the Marañon. This
latter a SIMD processor (called "root" on the figure 4) can only
deal with non floating point data. Corr, filtPuiCor and filt_final
operate on non floating point data and require high computational
power; then they are best suited to be executed by the SIMD unit
of the SOC. All other operations operate on floating point data, so
they must be executed by the mAgicFPU.

Figure 4. A basic SSP application specified with SynDEx and the resulting timing simulation.

In order to perform optimizations, SynDEx’s heuristics need the
execution duration of each operation of the algorithm on each
processor able to execute it. The execution durations of each
operation executed on the mAgicFPU is obtained by measuring its
in real-time. EPHORAT is used to optimize and determine the
accurate value of the execution duration of each operation
executed on the SIMD Marañon; it also provides the optimized
data mapping exploiting the data-parallelism of the SIMD
architecture. Then SynDEx uses these results for communication
and code generation.

For instance, Figure 5 shows the mapping results of three SIMD
tasks (reduced to filtPuiCor in Figure 4) that have to be executed
by the Marañon. From the Man-Machine Interface where the
characteristics of the target architecture Marañon and the (radio
telecom) algorithm are described (Cf. top left of Figure 5), a
solution is computed by EPHORAT according to the optimization
criterion (e.g. memory, latency) then printed on screen (Cf. top
right of Figure 5) and in a report file. Bottom of Figure 5
illustrates the partitioning (how nested loops are split and on

which processor) and the scheduling (how computation blocks of
which period are interleaved) of the last solution found.

When an operation is not able to be executed by a processor its
execution duration on that processor gets an infinite value. In our
example pond, max and detect operations get an infinite value for
the SIMD Marañon and finite values for the mAgicFPU. The
timing simulation diagram produced by SynDEx (Cf. bottom right
of Figure 4), shows that there is no parallelism in the algorithm
specified as presented previously in the top of Figure 4. It points
out clearly that hardware resources are poorly exploited since the
FPU processor has to wait the end of Corr execution before
starting to execute pond. Symmetrically the SIMD processor has
to wait the end of pond, before starting to execute filtPuiCor.
Moreover, the communications between the SIMD and the FPU
induce execution delays and, on an implementation point of view,
these communications may require large data buffer (to store data
in order to transmit them between processors) which may not be
available on the SIMD.

Figure 5. EPHORAT partitioning and scheduling results.

SynDEx/EPHORAT may help the user to solve both problems by
modifying the original algorithm specification. Since all the
operations are each based on nested loops, it is possible to split up
them into two smaller operations: Corr become Corr1 and Corr2,
pond become pond1 and pond2 and so on (Cf. top of Figure 6).
This transformation of the algorithm specification introduces
potential parallelism which will be exploited in order to optimize
the execution from a response time and load balancing point of
views. The new timing simulation made with SynDEx/EPHORAT
shows (Cf. right of Figure 6) that the operations now overlap their
executions. The overall execution (response time) of the algorithm
is reduced, and the data buffer required to store data in order to
transmit them between the processors, is smaller.

Thanks to SynDEx/EPHORAT it is easy to try several
modifications of this type in order to determine the correct
splitting of the operations. Big arrows of Figure 2 shows that
EPHORAT provides the latency (optimized execution duration of
SIMD blocks of operations) to SynDEx. The latter exploits it and
sends its results to EPHORAT back to resize the grain until a
correct splitting is found (see big arrows on Figure 3). Currently
both tools can only interact thanks to the exchange of data by
hand.

In this example only one split is necessary since more splits would
lead to increase the communication cost too much. Moreover,

since the FPU processor is able to execute all the operations of the
algorithm (but sometimes slower than the SIMD processor),
another solution to solve the problems mentioned before could be
to split some loops assigned to the SIMD in order to execute some
of them on the FPU according to the aimed response time.

5. CONCLUSION
PROMPT, a development environment to map telecom
applications on SOC is based on the co-operation between two
complementary methodologies AAA and PLC2. It consists in
simultaneously taking into account regular and irregular aspects of
SP applications as well as the SIMD and MIMD aspects required
by the SOC. The first SOC using this approach is Mefisto.

The kind of model used to specify the algorithm is shared by their
associated tools SynDEx and EPHORAT. Hence they can interact
and yield an integrated development environment for SOC from
specification to optimized code generation.

PROMPT provides the ability of sizing the grain. So results about
communications in terms of response time and memory allocation
can be studied.

Improving algorithm specifications (nested loops splitting and
distribution) enables to better benefit by SOC (SIMD-MIMD
tradeoff). This process is currently done by hand. Its automation is
planned into the optimization heuristics.

Figure 6. Algorithm specification modification for implementation improvement

6. REFERENCES
[1] "Placement Rapide Optimisé sur Machines Parallèles pour

applications Télécoms", Project supported by the French
Ministries of Industry and Research through the RNRT'98
(Réseau National de Recherche en Télécommunications)
program, http://www.tcc.thomson-csf.com/prompt

[2] D. Maufroid, P. S. Paolucci, P. Kajfasz, A. Bertini, "mAgic
FPU: VLIW Floating Point Engines for System-On-Chip
Applications". Proc. EMMSEC’99, Stockholm, Sweden,
(June, 1999).

[3] http://ptolemy.eecs.berkeley.edu/

[4] http://www-rocq.inria.fr/syndex/

[5] http://www.gedae.com

[6] T. Grandpierre, C. Lavarenne, Y. Sorel, "Optimized Rapid
Prototyping for Real Time Embedded Heterogeneous Multi-
Processors", CODES’99 : 7th International Workshop on
Hardware / Software Co-Design, Rome, Italia (May, 1999).

[7] Y. Sorel, "Massively parallel systems with real-time
constraints, the Algorithm Architecture Adequation
Methodology", Proc. Massively Parallel Computing Systems,
Italy (May, 1994).

[8] C. Ancourt, D. Barthou, C. Guettier, F. Irigoin, B. Jeannet, J.
Jourdan, J. Mattioli, "Automatic Data Mapping of Signal
Processing Applications", IEEE International Conference on
Application Specific Systems, Architectures and Processors,
p. 350-362, Zurich, Switzerland (July, 1997).

[9] C. Guettier, "Optimisation globale du placement
d’applications de traitement du signal sur architectures
parallèles utilisant la programmation logique avec
contraintes", PhD Thesis, Ecole des Mines de Paris,
(December, 1997).

[10] A. Demeure, A. Lafage, E. Boutillon, D. Rozzonelli, J-
C. Dufourd, J-L. Marro, "Array-OL : proposition d’un
formalisme Tableau pour le Traitement de Signal
multi-dimensionnel", GRETSI’95, Juan-les-Pins,
(France).

