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Abstract

This paper presents a connection between two real-time models: a deadline-based model
and a latency-based model. The importance of the latency-based model is proved through a
result showing that two deadlines, instead of a latency constraint, over-constrain the real-
time applications. Moreover, we give a deadline-marking algorithm based on the relation
between deadlines and latency constraints. This algorithm provides non-preemptive feasible
schedules for systems with precedence constraints and deadlines, or more complex systems
with deadlines and latencies. This is the first step toward non-preemptive schedulability
for distributed architectures (without over-constraining the system) like, for example, the
automotive applications using protocols such as Controller Area Network (CAN).
Keywords: scheduling, real-time, non-preemptive, latency, deadline, periodicity.



Real-time systems are, first of all, reactive systems, i.e., an output event produced by
actuators reacting to an event coming into the system through sensors. This behavior is
commonly seen in periodic systems of operations. In the classical deadline-based model
given in Liu (1976), an operation becomes available at its release time which is repeated
periodically. The start time of an operation is greater or equal to its release time. The
operation must be scheduled before its deadline which is relative to the release time. The
formal definition of this model is given in section 1. We refer to the classical model as the
”deadline-based model”.

However, the deadline-based model with release times is not adaptable to some ap-
plications such as real-time control. For example, if the start times of input and output
operations of a control law are not periodic, then the performances of the controller de-
crease. In Torngren (1998), the author lists different results which take into account this
variable delay by increasing the complexity of the control law, but the delay between
control law computation and the output operation need to be constant. Therefore, strict
periodicity constraints are necessary in these cases (see Korst (1996)).

In our model given in Cucu and Sorel (2002) besides the strict periodicity constraints,
two other types of constraints may be imposed on these systems. Firstly, since some
operations can produce data consumed by other operation(s), we need to specify that a
producer operation must be executed before that of the consumer. So we impose prece-
dence constraints between these operations, e.g., by specifying the application through
a directed acyclic graph. Secondly, in some applications, we need to bound the delay
between the start time of an operation and the end of another operation. For example,
we consider a system which locates a flying object and has to estimate its trajectory every
5 ms. If three different sensors working with a 5 ms periodicity acquire the x, y and z
space positions of the object, then several seconds might elapse between the x acquisition
and the y. Such a localization method leads to a very bad trajectory estimation. One
solution is to bound the delay between the first acquisition and the last. In these specific
cases, this constraint is a latency constraint.

Theoretical definitions for this type of constraint were given in the case of data-flow
graphs (see Goddard (2000)) and in the case of repeated precedence constraints (see van
Beek and Wilken (2001)). These definitions are limited to particular cases and can not be
employed to describe the elapsed time between any two operations related to each other
by precedence constraints. Klein et al. also proposed modifications of the deadline, taking
into account this type of constraint (see Klein et al. (1994)), but this over-constrains the
system as we will prove in Section 1.

In Gerber et al. (1995) the authors justified the interest in ”end-to-end” constraints,
but the examples only contain ”end-to-end” constraints between sensors and actuators.
Obviously the latency constraint is an ”end-to-end” constraint. Moreover, the latency
constraints are not limited to sensors and actuators.

Our paper generalizes the results concerning end-to-end constraints (Gerber et al.
(1995), Kang et al. (1997)). We take into account several latency constraints which
are not necessarily imposed between one sensor and one actuator. In the localization
example described previously, latency constraints are imposed between the three sensors
(x, y and z) and if the aim of the trajectory estimation is to shoot the flying object, then
another latency constraint can be imposed between the computation of the estimated
next position of the flying object and the resulting shot. So, in this application there are
multiple latency constraints but none of them is imposed between sensors and actuators.

We give the formal definition of our model in Section 1. We will refer to our model as



”latency-based model”.
The results for a non-preemptive deadline-based model with release times, periodicity

constraints and deadlines are poor (see Jeffay et al. (1991)). The interest in these systems
is growing, e.g., in automotive applications using protocols like CAN. This paper presents
a connection between the deadline-based and the latency-based models. Therefore, using
the latency-based problem, we propose new results for the deadline-based problem and for
more complex systems containing both models that can be found in distributed systems.

This paper is composed of four sections. The following section introduces the two
models. Section 2 gives an algorithm for choosing the next operation to be scheduled,
among the available operations, relative to the deadlines of their successors. Section
3 proposes an algorithm transforming an instance of a scheduling problem using the
deadline-based model into an instance of a scheduling problem using the latency-based
model. The paper ends with Section 4 giving suggestions for future research.

1 Two real-time models

Before presenting the two models, we give the following definitions (by system of opera-
tions we understand a set of operations with computation times and different constraints):

Definition 1 For a system of operations, schedule S is a total order on the set of oper-
ations associating each operation A, a start time sA which is the time instant when the
operation starts its execution. We denote by S the set of the possible schedules of a system
of operations. An operation is scheduled once its start time is known.

Definition 2 A system of operations is schedulable if there is at least one schedule satis-
fying the constraints of the system.

We present the deadline-based model given by Liu and Layland (see Figure 1) in the
non-preemptive case. An operation A becomes available, i.e., it requests its execution, at
its release time rA. The release time is periodically repeated with a period TA. So if the
first release of an operation A is r0 = rA then the i’th release time of the operation is
ri = rA + iTA,∀i ≥ 1. Each instance of an operation A which requests its execution at
t = ri must finish its execution by ri + DA, where DA is the deadline of A. We denote by
CA its computation time and we consider worst-case execution times.

r
i

r
i+1

s i i+1
s

C C

DA DA

ri+2T T

A A

A A

Figure 1: Model proposed by Liu and Layland

For the latency-based model, the operations are always executed as soon as they are
available and they are repeated periodically with a period TA (see Figure 2). So if the first
start time s0 = sA of an operation A is known, then the i’th start time of the operation is



si = sA + iTA,∀i ≥ 1. The computation time CA is also known and we consider worst-case
execution times.
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Figure 2: Model of periodic operations without release time

In the deadline-based model the release time of an operation is known, but not its
start time. Moreover, for an operation the start times of all instances are not known at
the moment when the start time of the first instance is.

In the latency-based model only the start time of the first instance of an operation is
unknown. Once the start time of the first instance is known, the start times of all the
instances are also known and their release times are useless for this model.

The difference between the two models is depicted for an operation A in Figure 3. We
consider the deadline-based model for the first schedule and the latency-based model for
the second.
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Figure 3: Difference between the deadline-based model (above) and the latency-based
model

In the latency-based model we can define precedence constraints and latency con-
straints for the same set of operations. We use a graph-based model to specify the prece-
dences between operations through a directed graph G = (V, E) where V is the set of
operations and E ⊆ V × V the set of edges which represents the precedence constraints
between operations. Therefore, if the directed pair of operations (A, B) ∈ E, then B can
be executed, only if A has already been executed. In the case of precedence constraints,



an operation is available when all its predecessors are already executed (see Cucu and
Sorel (2003)).

Since the graph describes a real-time system, which is reactive, this latter graph has a
pattern infinitely repeated (Grandpierre et al. (1999)) which induces an infinite repetition
of all operations (see Figure 4).
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Figure 4: Graph describing a real-time system

For the sake of simplicity and since we use only directed graphs, we will use the term
path instead of directed path.

We denote by P the set of all paths of graph G. If there is at least one path from A
to B, then we have P (A, B) ∈ P. If @P (A, B) ∈ P, then there is no path from A to B.
We denote by D(A) = {B ∈ V such that P (A, B) ∈ P}.

Definition 3 On a pair of operations (A, B) with P (A, B) ∈ P and A and B belonging to
the same pattern, a latency constraint L(A, B) is imposed if the operations are scheduled
such that sB + CB − sA ≤ LAB, LAB ∈ N+. The latency constraint L(A, B) has the value
LAB. Let L be the set of all latency constraints imposed for a system.

The deadline can not describe a constraint between the start time of an operation and
the completion time1 of another operation as the latency constraint does (see Definition
3). If we want to describe this type of constraint using the deadline-based model, then
we need to modify the deadline of the second operation relative to the parameters of the
first operation as was done in Klein et al. (1994).

We consider the system of two operations A = (rA, CA, T, DA) and B = (rB, CB, T, DB)
with the same period. We can impose the latency constraint L(A, B) with the value LAB

by modifying the deadline of B. Lemma 1 gives this deadline modification and proves
that the constraint we want to impose is verified. We give the obtained set in Figure 5.

Lemma 1 We consider two operations A = (rA, CA, T, DA) and B = (rB, CB, T, DB) and
a latency constraint L(A, B) with a value LAB. The constraint L(A, B) is satisfied if the
deadline of B is modified as follows:

D∗
B = min(DB, (rA + LAB − rB)) (1)

1the completion time is the time instant where an operation ends its execution
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Figure 5: Modification of the operation B deadline to respect the latency constraint
L(A, B)

Proof. We denote by si
A and si

B the start times of the i’th instance of A, respectively
B. Similarly we denote by ri

A and ri
B the release times, and by f i

A and f i
B the completion

times of the i’th instance of A, respectively B. We have ri
A = rA + iT .

We prove that if the deadlines of two consecutive instances of A and B are met, then
the constraint L(A, B) is satisfied, i.e., ∀i si

B + CB − si
A ≤ LAB. Since CB is constant,

then si
B + CB − si

A is maximal if operation A starts as soon as possible, i.e., si
A = ri

A, and
operation B meets its deadlines but it starts as late as possible, i.e., si

B + CB = ri
B + DB.

Therefore we obtain:

max
k∈N

{sk
B + CB − sk

A} = max
k∈N

{rB + k T + D∗
B − (rA + k T )} ≤ rB − rA + D∗

B

From Equation (1) we have maxk∈N{sk
B + CB − sk

A} ≤ rB − rA + (rA + LAB − rB). We
obtain maxk∈N{sk

B + CB − sk
A} ≤ LAB and the constraint L(A, B) is satisfied. 2

We consider the reciprocal implication of Lemma 1, i.e., a schedule that satisfies the
constraint L(A, B) will always satisfy the modified deadline. We prove below (see Lemma
2) that this implication is not true. It implies that the modification of the deadline reduces
the space of solutions for a set of operations containing A and B. Thus the modification
of the deadline over-constrains the set of operations.

Lemma 2 For two operations A = (rA, CA, T, DA) and B = (rB, CB, T, DB) and a la-
tency constraint L(A, B) with a value LAB, the deadline of B is modified as follows:

D∗
B = min(DB, (rA + LAB − rB)) (2)

If the latency constraint L(A, B) is satisfied then the modified deadline D∗
B is not necessary

satisfied.

Proof. We consider the case where the i’th instance of the operation A starts its
execution as late as possible and satisfies its deadline. This latest start time is si

A =
ri
A + DA − CA, and consequently, if the latency constraint L(A, B) is satisfied, then the

corresponding latest completion time for operation B is:

f i
B = ri

A + DA − CA + LAB

f i
B = rA + iT + DA − CA + LAB

We consider that the deadline of operation B was actually modified, i.e., DB > (rA +
LAB − rB). Consequently D∗

B = rA + LAB − rB and we have for i’th deadline of operation



B:
ri
B + D∗

B = rA + iT + LAB

If we compare the latest completion time of operation B which satisfies L(A, B) and its
deadline, we obtain:

f i
B − (ri

B + D∗
B) = DA − CA

Consequently if DA > CA, then operation B can satisfy the latency constraint L(A, B)
without satisfying D∗

B. 2

For an over-constrained set of operations it might be impossible to find a schedule that
satisfies the latency constraint. For example for a set of three tasks A with (0, 2, 10, 10),
B with (0, 3, 10, 10) and C with (0, 8, 20, 20), we consider a latency constraint L(A, B)
of value 6. We obtain from operation B by modifying its deadline (see Equation (1)) a
new operation B∗ with (0, 3, 6, 10). The set of operations {A, B∗, C} is not schedulable
whereas there is a feasible schedule for the set of operations {A, B, C} given in Figure 6.

-
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≤ 6 ≤ 6

Figure 6: Example of schedule which satisfies the constraints of operation A, B and C

Without loss of generality we assume that all characteristics, i.e. the computation
times, the periods and the latency constraints, are defined as multiples of a clock tick τ
(time is discrete). Afterwards, the integer values of the given characteristics are implicitly
multiplied by τ .

2 Deadline-marking algorithm

In this section, we present a theorem proving that a deadline in the deadline-based model
can be expressed as latency constraint in the latency-based model. Thus we may solve
the non-preemptive scheduling problem of systems with precedence, strict periodicity and
deadlines. This problem is a sub-problem of latency-based problem with the latency
constraints replaced by deadlines. The results of this section stand for both uniprocessor
and multiprocessor cases.

The following theorem gives the relationship between the deadlines and the latency
constraints.

Theorem 1 A latency constraint L(A, B) is equivalent to a deadline for the operation B,
once the operation A is scheduled.

Proof. We prove the theorem by double implication.
First, we prove that a latency constraint L(A, B) of a pair (A, B) ∈ Lmay be expressed

as the deadline of operation B, once A is scheduled. Since (A, B) ∈ L, then we have
sB ≤ LAB + sA − CB. If we denote by DB the expression LAB + sA − CB, we obtain



sB ≤ DB (3)

Notice that in this case the deadline of B is relative to the time instant t = 0.
Once A is scheduled, sA is known and DB becomes known, also. Since sA is calculated

from the beginning of the schedule then the Equation (3) defines a deadline for B.
Second, we express the deadline of an operation B as a latency constraint L(·, B).

Since B has a deadline DB, then sB ≤ DB. We denote by A the first operation which
was scheduled, i.e., sA = 0. Since the deadline is defined by the start of the schedule, we
obtain sB−sA ≤ DB. Moreover, since the first scheduled operation is chosen among all the
operations without predecessors, then we have sB − sC ≤ DB,∀C ∈ V with Prec(C) = ∅
and B ∈ D(C), where Prec(C) is the set of predecessors of operation C. So, in order to
satisfy the deadline of B, we define several latency constraints LCB = DB for each C such
that Prec(C) = ∅ and B ∈ D(C). 2

Due to this theorem, we may use the scheduling algorithm given in Cucu and Sorel
(2002) for systems with precedence, strict periodicity and latency constraints to schedule
systems with precedence constraints, strict periodicity constraints and deadlines. This
scheduling algorithm uses a latency-marking algorithm. Theorem 1 proves that we can
modify the marking algorithm in order to take into account the deadlines. In this case
the function mark of operation A is equal to minB∈D(A){DB}. These marks are obtained
using the following deadline-marking algorithm:

Algorithm 1

Initialization: W =
⋃

A∈V and Suc(A)=∅ Prec(A) is the working-set. If A has a deadline

DA, then mark(A) = DA, otherwise mark(A) = ∞.

Step 1: for A ∈ W , mark(A) = min(mark(A), minB∈Suc(A){mark(B)}) andW = W\{A}.
We add to W the operations for which all the predecessors has been removed from W .

Step 2: repeat Step 1 until W = ∅.

Remark 1 Recursively, each operation inherits the deadlines of its successors. At the
end of the deadline-marking algorithm, the mark of an operation may be equal to either
its inherited deadline, or its initial deadline. Therefore, the algorithm does not modify the
marks of the operations without successors. This algorithm is applied to the pattern.

A A A

B B B

C C C

first pattern second pattern third pattern

1 2 3

1

1

2

2

3

3

d d d

Figure 7: Graph of example 1



Example 1 Let G = (V , E) be a graph given in Figure 7. We consider that only C1 has
a deadline DC1. In Figure 7, the letter d on the edge from A1 to C1 implies that the
precedence constraint is due to data transfer. The algorithm is given in table 1, where by
m(A) we understand mark(A).

m(A1) m(A2) m(A3) m(B) m(C1) m(C2)
Initialization ∞ ∞ ∞ ∞ DC1 ∞
DC1 DC1 DC1 DC1 DC1 DC1 DC1

Table 1: Marks obtained using the marking algorithm

3 Transformation from deadline-based problem to latency-

based problem

In this section, we give an algorithm transforming the deadline-based model scheduling
problem into a latency-based model scheduling problem. We prove that the two problems
are equivalent from the point of view of complexity. Thus, the deadline-based problem
may be solved in the non-preemptive case using the results for the latency-based problem.
The results of this section stand for both uniprocessor and multiprocessor cases.

We consider a system with n operations and for each operation A, we have the com-
putation time cA, the release time rA and the deadline DA. The operation A is periodic
with the period TA. We transform this system using the following algorithm:

Algorithm 2

Step 1: for each operation A we add a fictive operation A′ with the computation time
equal to 0.

Step 2: we add a precedence constraint between A′ and A. We obtain a graph of prece-
dence constraints with 2n operations and n edges.

Step 3: we impose latency constraints for each (A′, A) with LA′A = DA.

Step 4: we impose strict periodicity constraints for each operation A′ with T ′
A equal to

the period of operation A.

Example 2 This example illustrates Algorithm 2. For a system of three operations A, B
and C with no precedence constraints, we obtain the graph given in Figure 8.

We denote by PRE the decision problem associated to the scheduling problem of
periodic systems with deadlines. We denote by PPLc the decision problem associated to
the scheduling problem built from PRE using the Algorithm 2.

Theorem 2 The decision problem PRE has, as a solution, the answer “yes” if, and only
if, the decision problem PPLc has, as a solution, the answer “yes”.
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Figure 8: Graph obtained using the Algorithm 2

Proof. We prove the theorem by double implication.
For the decision problem PRE each operation A has a release time rA, a deadline DA

defined from the release time, a period TA and a computation time CA.
We suppose that the problem PRE has the answer “yes” and we prove that the

decision problem PPLc also has the answer “yes”. We denote by S one of the schedules
which satisfies the constraints of scheduling problem PRE. This implies that for each
operation A we know the start time sA ∈ S such that rA ≤ sA ≤ DA.

From the schedule S, we build a schedule S ′ for the problem PPLc. Each operation
A′ associated to an operation A of an instance of the problem PRE has the start time of
its first instance sA′ equal to rA. Each operation A of an instance of the problem PPLc
has a start time equal to the start time of the operation A in the schedule S. The Figure
9 illustrates this construction. The operation A′ with the computation time equal to 0
is marked on the figure with non-continuous line. Consequently, since the deadlines are
satisfied in the schedule S then all the latency constraints are satisfied in the schedule
S ′. Since the operations A′ have computation times equal to 0 and their start times
are periodically repeated due to the periodicity of release times in schedule S, then the
periodicity constraints are satisfied in schedule S.

Similarly we build a schedule for problem PRE from a schedule of problem PPLc.
Consequently, there is at least a schedule for the first problem if and only if there is a
schedule for the problem built using the Algorithm2. The theorem is proved. 2

t = r =s
A A’

A’

A

A

sA

DA

L(A’,A)

Figure 9: Construction of a schedule for PPLc from a schedule for PRE



4 Conclusion and further research

We have presented two real-time models in the non-preemptive case. The first model is a
deadline-based model and the second is a latency-based model. After comparing the two
models and showing that there are applications that can not be described by deadlines
without over-constraining the system, we prove that the deadline may be defined using a
latency constraint.

The main contribution of the paper is that we provide a link between the deadline-
based model and the existing schedulability results obtained for the latency-based model.
Thus we provide an algorithm solving the scheduling problem with precedence, strict
periodicity constraints and deadlines as a particular case of the latency-based problem.
These results are the first step toward the schedulability analysis of systems such as
distributed systems, where deadlines and latency constraints may coexist. Therefore as a
future research project we propose to study these types of systems.
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