
From Concurrent Multi-clock Programs to Deterministic Asy nchronous
Implementations

Dumitru Potop-Butucaru Robert de Simone Yves Sorel Jean-Pierre Talpin

INRIA, France
{FirstName.LastName}@inria.fr

Abstract

We propose a general method to characterize and syn-
thesize correctness-preserving, asynchronous wrappers for
synchronous processes on a globally asynchronous locally
synchronous (GALS) architecture. Based on the theory
of weakly endochronous systems, our technique uses a
compact representation of the abstract synchronization
configurations of the analyzed process to determine a
minimal set of synchronization patterns generating all
possible reactions.

1. Introduction

Synchronous programming is nowadays a widely ac-
cepted paradigm for the design of critical applications such
as digital circuits or embedded software [3], especially
when a semantic reference is sought to ensure the coher-
ence between the implementation and the various simu-
lations. The synchronous paradigm supports a notion of
deterministic concurrencywhich facilitates the functional
modeling and analysis of embedded systems.

While modeling a synchronous process or module can
be easy, implementing a concurrent system by composing
synchronous modular specifications is often hardened by
the need of preserving global synchronizations in the
model of the system. These synchronization artifacts need
most of the time to be preserved, at least in part, in order
to ensure functional correctness when the behavior of the
whole system depends on properties such as the arrival
order of events on different channels, or the presence or
absence of an event at a certain instant.

We address this issue and focus on the characteriza-
tion and synthesis of wrappers that control the execution
of synchronous processes in a GALS architecture. Our
aim is to preserve the functional properties of individ-
ual synchronous processes deployed on an asynchronous
execution environment. To this aim, we shall start by
considering a multi-clocked or polychronous model of
computation and lay the proper theoretical background to
finally establish properties pertaining on the assurance of
asynchronous implementability.

Our technique is mathematically founded on the theory
of weakly endochronous systems, due to Potop, Caillaud,
and Benveniste [11]. Weak endochrony gives a composi-
tional sufficient condition establishing that a concurrent

synchronous specification exhibits no behavior where in-
formation on the absence of an event is needed. Thus,
the synchronous specification can safely be executed with
identical results in any asynchronous environment (where
absence cannot be sensed). Weak endochrony thus gives
a latency-insensitivity and scheduling-independence crite-
rion.

In this paper, we propose the first general method
to check weak endochrony on multi-clock synchronous
programs. The method is based on the construction of
so-called generator sets. Generator sets contain mini-
mal synchronization patterns that characterize all pos-
sible reactions of a multi-clocked program. These sets
are used to check that a specification is indeed weakly
endochronous, in which case they can be used to generate
the GALS wrapper. In case the specification is not weakly
endochronous, the generators can be used to generate
intuitive error messages. Thus, we provide an alternative
to classical compilation schemes for multi-clock programs,
such as the clock hierarchization techniques used in Sig-
nal/Polychrony [1].
Outline. The paper is organized as follows: Section 2
and Section 3 give an intuition of the problem addressed
in this paper together with references to previous work
and an idea of the desired solution. Section 4 defines the
formalism that will support our presentation. Section 5
summarizes the original theory of [11] and adapts it to
our framework. Section 6 defines novel algorithms to
determine if a specification is weakly endochronous. We
conclude in Section 7.

2. Multi-clock synchronous system

We use a small, intuitive example to present our prob-
lem, the desired result, and the main implementation
issues. The example, pictured in Fig. 1, is a simple recon-
figurable adder, where two independent single-word ALUs
can be used either independently, or synchronized to form
a double-word ALU. The choice between synchronized
and non-synchronized mode is done using theSYNC
signal. The carry between the two adders is propagated
through the BooleanC wire wheneverSYNCis present.

1. To simplify figures and notations, we group both integer inputs of
ADD1 under I1, and both integer inputs of ADD2 under I2. This poses
no problem because from the synchronization perspective ofthis paper
the two integer inputs of an adder have the same properties.

ADD2

I1

I2 O2

O1

SYNC
C

ADD1

Figure 1. Data-flow of a configurable adder. 1

We consider a discrete model of time, where executions
are sequences ofreactions, indexed by aglobal clock.
Given a synchronous specification (also calledprocess), a
reaction is a valuation of theinput, output and internal
(local) signals of the process. Fig. 2 gives a possible
execution of our example. We shall denote withV(P) the
finite set of signals of a processP . We shall distinguish
inside V(P) the disjoint sub-sets ofinput and output
signals, respectively denotedI(P) andO(P).

Clock 1 2 3 4 5 6 7

I1 (1,2) ⊥ (9,9) (9,9) ⊥ (2,5) ⊥
O1 3 ⊥ 8 8 ⊥ 7 ⊥

SYNC ⊥ ⊥ • ⊥ ⊥ • ⊥
C ⊥ ⊥ 1 ⊥ ⊥ 0 ⊥
I2 ⊥ ⊥ (0,0) (0,0) ⊥ (1,4) (2,3)

O2 ⊥ ⊥ 1 0 ⊥ 5 5

Figure 2. A synchronous run of the adder

If we denote withEXAMPLEour configurable adder, then

V(EXAMPLE) = {I1, I2, SY NC, O1, O2, C}
I(EXAMPLE) = {I1, I2, SY NC}
O(EXAMPLE) = {O1, O2}

All signals are typed. We denote withDS the domain of a
signalS. Not all signals need to have a value in a reaction,
to model cases where only parts of the process compute.
We will say that a signal ispresentin a reaction when it
has a value inDS. Otherwise, we say that it isabsent.
Absence is simply represented with value⊥, which is
appended to all domainsD⊥

S
= DS ∪ {⊥}. Formally, a

reaction of the process is a valuation of its signals into
their extended domainsD⊥

S
. We denote withR the set of

all such valuations. Thesupportof a reactionr, denoted
supp(r), is the set of present signals. For instance, the
support of reaction 4 in Fig. 2 is{I1, I2, O1, O2}. In
a reactionr, we distinguish theinput event, which is
the restrictionr |I(EXAMPLE) of r to input signals, and the
output event, which is the restrictionr |O(EXAMPLE) to output
signals.

In many cases we are only interested in the presence
or absence of a signal, because it transmits no data, just
synchronization (or because we are only interested in
synchronization aspects). To represent such signals, the
Signal language [6] uses a dedicatedevent type of
domainDevent = {•}. We follow the same convention:

In our example,SYNChas typeevent . To represent re-
actions, we use aset-like conventionand omit signals with
value⊥. In Fig. 2, the signal types areSY NC : event,
O1, O2 : integer, I1, I2 : integer pair, C : Boolean.
Reaction 4 is denoted(I1(9,9), O18, I2(0,0), O20).

3. Deterministic asynchronous implementation

We consider a synchronous process, and we want to
execute it in an asynchronous environment where inputs
arrive and outputs depart via asynchronous FIFO channels
with uncontrolled (but finite) communication latencies. To
simplify, we assume that we have exactly one channel
for each input and output signal of the process. We also
assume a very simple correspondence between messages
on channels and signal values: Each message on a channel
corresponds to exactly one value (not absence) of a signal
in a reaction. In particular, no message represents absence.

We assume that the execution of the synchronous pro-
cess is a cyclic repetition of 3 steps:

1) assembling asynchronous input messages arriving
onto the input channels into a synchronous input
event acceptable by the process,

2) triggering a reaction of the process for the recon-
structed input event, and

3) transforming the output event of the reaction into
messages onto the output asynchronous channels.

In order to achieve deterministic execution,2 the main
difficulty lies in step (1), as it involves the potential re-
construction of signal absence, whereas absence is mean-
ingless in the chosen asynchronous framework. Recon-
structing reactions from asynchronous messages must be
done in a deterministic fashion, regardless of the message
arrival order. This is not always possible. Assume, like
in Fig. 3, that we consider the inputs of Fig. 2 without
synchronization information.

I1 (1,2) (9,9) (9,9) (2,5)
O1 3 8 8 7

SYNC • •
C 1 0
I2 (0,0) (0,0) (1,4) (2,3)

O2 1 0 5 5

Figure 3. Corresponding asynchronous run. No syn-
chronization exists between the various signals, so
that correctly reconstructing synchronous inputs from
the asynchronous ones is impossible

The adderADD1will then receive the first value(1, 2)
on the input channelI1 and• onSYNC. Depending on the
arrival order, which cannot be determined, any of the reac-
tions(I1(1,2), O13, SY NC•, C0) or (I1(1,2), O13) can be
executed, leading to divergent computations. The problem
is that these two reactions are not independent, but no
value of a given channel allows to differentiate one from

2. Like in [10], determinism can be relaxed here to predictability – the fact that
the environment is always informed of the choices made inside the process. While
this involves no changes in the following technical results, we preferred a simpler
presentation.

the other (so one can’t deterministically choose between
them in an asynchronous environment).

Earlier we have seen that deterministic input event
reconstruction is impossible for some synchronous pro-
cesses. This means that a methodology to implement syn-
chronous processes on an asynchronous architecture must
rely on the (implicit or explicit) identification of some
class of processes for which reconstruction is possible.
Then, giving a deterministic asynchronous implementation
to a random synchronous process can be done in two steps:

1) transforming the initial process, through added syn-
chronizations and/or signals, so that it belongs to the
implementable class, and then

2) generating an implementation for the transformed
process.

The choice of the class of implementable processes is
therefore essential. On one hand, choosing a small class
can highly simplify analysis and code generation in step
(2). On the other, small classes of processes result in
heavier synchronization added to the process in step (1).
Our choice, justified in the next section, is the class of
weakly endochronous processes. This paper proposes a
technique for checking weak endochrony of real-life (real-
size) specifications.

3.1. Previous work. Motivation

The most developed notions identifying classes of
implementable processes are the concepts oflatency-
insensitive systemsof Carloni et al. [4] and the en-
dochronous systemsof Benvenisteet al. [2], [6]. The
latency-insensitive systems are those featuring no signal
absence. Transforming processes featuring absence, such
as our example of Figures 1 and 2, into latency-insensitive
ones amounts to transforming the presence/absence of a
signal into a true/false value that is sent and received as
an asynchronous message. This is easy to check and im-
plement, but often results in an unneeded communication
overhead due to the absence messages.

The endochronous systemsand the related hardware-
centric generalized latency-insensitive systems[14] are
those where the presence and absence of all signals
can be incrementally inferred starting from the state and
from signals that are always present. For instance, Fig. 4
presents a run of an endochronous system obtained by
transforming theSYNCsignal of our example into one
that carries values from 0 to 3: 0 forADD1 executing
alone, 1 for ADD2 executing alone, 2 for both adders
executing without communicating (Cabsent), and 3 for the
synchronized execution of the two adders (Cpresent). Note
that the value ofSYNCdetermines the presence/absence
of all signals.

Checking endochrony consists in ordering the signals
of the process in a tree representing the incremental
presence inference process (the signals that are always
read are all placed in the tree root). The compilation of
the Signal/Polychrony language is currently founded on a
version of endochrony [1].

Clock 1 2 3 4 5

I1 (1,2) (9,9) (9,9) (2,5) ⊥
O1 3 8 8 7 ⊥

SYNC 0 3 2 3 1
C ⊥ 1 ⊥ 0 ⊥
I2 ⊥ (0,0) (0,0) (1,4) (2,3)

O2 ⊥ 1 0 5 5

Figure 4. Endochronous solution

The endochronous reaction reconstruction process is
fully deterministic, and the presence of all signals is
synchronized w.r.t. some base signal(s) in a hierarchic
fashion. This means that no concurrency remains between
sub-processes of an endochronous process. For instance,
in the endochronous model of our adder, the behavior
of the two adders is synchronized at all instants by the
SYNC signal (whereas in the initial model the adders
can function independently wheneverSYNC is absent).
By consequence, using endochrony as the basis for the
development of systems with internal concurrency has 2
drawbacks:

• Endochrony is non-compositional (synchronization
code must be added even when composing processes
sharing no signal).

• Specifications and implementations/simulations are
over-synchronized.

Weak endochrony, due to Potop, Caillaud, and Ben-
veniste [11] and presented in Section 5, generalizes
endochrony by allowing both synchronized and non-
synchronized (independent) computations to be realized
by a given process.

Fig. 5 presents a run of a weakly endochronous system
obtained by replacing theSYNCsignal of our example
with two input signals:

• SYNC1, of Boolean type, is received at each exe-
cution of ADD1. It has value 0 to notify that no
synchronization is necessary, and value 1 to notify
that synchronization is necessary and the carry signal
C must be produced.

• SYNC2, of Boolean type, is received at each exe-
cution of ADD2. It has value 0 to notify that no
synchronization is necessary, and value 1 to notify
that synchronization is necessary and the carry signal
C must be read.

The two adders are synchronized whenSYNC1=1 and
SYNC2=1, corresponding to the cases whereSYNC=• in
the original design. However, the adders function indepen-
dently elsewhere (between synchronization points).

4. Multi-clock Specification in Signal

The use of weakly endochronous processes allows the
preservation of the independence of non-synchronized
computations,3 while adding the supplementary synchro-
nization needed to ensure deterministic execution in an

3. So that later analysis or implementation steps can exploit it.

I1 (1,2) (9,9) (9,9) (2,5)
O1 3 8 8 7

SYNC1 0 1 0 1
C 1 0

SYNC2 1 0 1 0
I2 (0,0) (0,0) (1,4) (2,3)

O2 1 0 5 5

Figure 5. Weakly endochronous solution.

asynchronous environment. Weak endochrony is preserved
by synchronous composition, thus supporting incremental
development. However, the lack of a practical technique
for checking and/or synthesizing weak endochrony limited
its use in practice until now.

We use the high-level multi-clock synchronous data-
flow language Signal [1] to demonstrate the applicability
of our technique. This language allows a simple repre-
sentation of clock synchronization constraints we are in-
terested in. Like other synchronous data-flow formalisms,
such as Lustre, Scade, Lucid, that could also have been
considered, Signal gives an implicit representation of
states that is most convenient (yet not mandatory) for a
direct illustration of our technique.

4.1. Finite stateless abstraction

We define our decision procedure for weak endochrony
on the finite-data stateless abstraction of Signal programs
that is already used in existing compilers. This subset is
defined by (1) a restriction to finite data types and (2) the
abstraction of delay equations (sole to introduce implicit
state transition) by synchronization constraints (between
the signals of a delay equation).

For programs featuring infinite data and delays (e.g.,
integer , float) the construction of an finite-data
stateless abstraction is done by a procedure of the Signal
compiler that is detailed in [9]. Given that a Signal specifi-
cation needs not be functionally complete, the abstraction
can be represented as a Signal process (and it is derived
through simple transformations of the Signal source).

The stateless abstraction does not mean all state infor-
mation is lost. The abstraction procedure automatically
conserves some of the underlying synchronization infor-
mation, and the programmer can force the preservation
of as much information as needed through the addition
of so-calledclock constraints(defined in Section 4.3.1),
which are preserved by the abstraction procedure. For
instance, activation conditions such as the ones used in
the compilation of Esterel [13] can be easily preserved in
this way.

However, the abstraction means that: (1) Certain weakly
endochronous processes are rejected, as the analysis can-
not determine it4 and (2) The code generated for a weakly
endochronous process may be over-synchronized.

4. For instance, because the integer signal used to choose between two
reactions has been abstracted away and replaced with a signal having only
a present or absent status.

4.2. Process structure

In Signal, a specification is aprocess, whose definition
may involve other processes, hierarchically. Fig. 6 gives
the Signal process corresponding to the configurable adder
of Fig. 1. A process is formed of a header defining its
name, an interface specification, a data-flow specification,
and a local declaration section. In our example, the top-
level process is namedEXAMPLE. Its interface defines 3
input signals (SYNC, I1 , and I2), identified with “?”,
and 2 output signals (O1 andO2), identified with “!”. Our
example has no state, and the infinite type signals (I1 , I2 ,
O1, O2) have been replaced with signals of typeevent by
the abstraction procedure. The Boolean type of the carry
C has also been transformed intoevent , because it is
computed fromI1 (we need to preserve determinism).

1 process EXAMPLE = (? event SYNC,I1, I2
2 ! event O1, O2)
3 (| (O1,C) := ADD1 (SYNC,I1)
4 | O2 := ADD2 (SYNC,I2,C) |)
5 where event C ;
6 process ADD1 = (? event SYNC, I1
7 ! event O1, C)
8 (| I1 ˆ= O1 | SYNC ˆ< I1
9 | C ˆ= SYNC |) ;

10 process ADD2 = (? event SYNC, I2, C
11 ! event O2)
12 (| I2 ˆ= O2 | SYNC ˆ< I2
13 | C ˆ= SYNC |) ;
14 end ;

Figure 6. The Signal process of the configurable
adder in Fig. 1

The data-flow specification ofEXAMPLEconsists of
two equations, which define the interconnections between
ADD1, ADD2, and the environment. The local definition
section defines the internal signalC, and the processes
ADD1and ADD2. The hierarchy of processes allows the
structuring of a specification and the definition of signal
scopes that mask internal signals. ProcessEXAMPLEusing
processADD1 in its data-flow intuitively corresponds to
replacing each instance ofADD1 in EXAMPLEwith its
data-flow with the internal signals ofADD1being masked.

4.3. Data-flow

The data-flow specification of a process is formed of
equationsdefiningconstraintsbetween the signals of the
process. Any reaction satisfying all the equations of a
processP is a reaction ofP . We denote withR(P) the set
of all the reactions ofP . The use of a constraint language
allows us to easily manipulate functionally incomplete
specifications.

4.3.1. Clocks. Clock Constraints.The clock of a signal
S is another signal, denoted∧S, of typeevent , which is
present wheneverS is present. Clock signals are used to
specifyclock constraints.

The most common clock constraints areidentity, inclu-
sion, andexclusion. Lines 8 and 9 of Fig. 6, which gives

the constraints ofADD1, illustrates clock equality and
inclusion. The equation “I1 ∧=O1” specifies that signal
I1 is present in a reactioniff O1 is present. In other terms,
whenever inputs arrive, the adder produces an output. The
next equation requires thatI1 is present in reactions where
SYNCis present.

Otherwise said,∧SYNC is included in∧I1 . The last
equation states that the carry valueC is emitted byADD1
wheneverSYNC is present. The definition ofADD2 is
similar. The difference is that the carry signalC is here an
input, and not an output like inADD1. Clock exclusion is
not used in our example. Writing “S1∧#S2” requires that
S1 andS2 are never present in the same reaction.

4.3.2. Stateless Signal primitive language.The follow-
ing statements are the primitives of the Signal language
sub-set we consider. The delay primitive of the full
language, “X:=Y$ init V ” 5, is simply abstracted by
its synchronization requirement “X∧=Y”. The assignment
equation “X:=f(Y1,...,Yn) ” states that all the signals
have the same clock, and that the specified equality
relation holds at each instant where the signals are present.
Equation “X:=Y ” is a particular case of assignment. It
specifies the identity ofX and Y. Signal Y can also
be replaced with a data-flow expression built using the
following operators:

The operator when performs conditional down-
sampling. The signal “X when C” is equal toX whenever
the boolean signal C is present with valuetrue .
Otherwise, it is⊥. The shortcut for “∧C when C” is
“when C”. For instance, in Fig. 7, “when SYNC1=1” is
a signal of typeevent that is present when signalSYNC1
is present with value1. The operatordefault merges
two signals of the same type, giving priority to the first.
The signal “X default Y ” is present whenever one of
X or Y is present. It is equal toX wheneverX is present,
and is equal toY otherwise.

5. Weak endochrony

The theory ofweakly endochronous (WE) systems[11],
gives criteria establishing that a synchronous presentation
hides a behavior that is fundamentally asynchronous and
deterministic. Absence information is not needed, which
guarantees the deterministic implementability of the syn-
chronous specification in an asynchronous environment.6

Absence not being needed in computations means that
reactions sharing no common present value can be ex-
ecutedindependently(without any synchronization). Ab-

5. X is defined byV the first timeY occurs and then takes the previous
value ofY

6. The intuition behind weak endochrony is that we are looking for
systems where (1) all causality is implied by the sequencingof messages
on communication channels, and (2) all choices are visible as choices
over the value (and not present/absent status) of some message. As
explained in [10], the axioms of weak endochrony can be traced down
to the fundamental result of Keller [7] on the deterministicoperation
of a system in an asynchronous environment. Moreover, WE systems
are synchronous Kahn processes, and weak endochrony extends to a
synchronous framework the classical trace theory [8].

sence is treated as adon’t care valueimposing no syn-
chronization constraint (as opposed to present values).

process EXAMPLE2 = (? boolean S1, S2;
event I1,I2

! event O1,O2)
(| (O1,O2) := EXAMPLE (when S1, I1, I2)

| when S1 ˆ= when S2
|)

where
process EXAMPLE = the process in Fig. 6

end

Figure 7. A weakly endochronous refinement of pro-
cess EXAMPLE is obtained by limiting the use of sig-
nal absence (when compared to the other solutions)

This property suggests a natural organization of the
possible values of a signalS as a Scott domain defined by
⊥ ≤ v, for all v ∈ DS . The domain structure on particular
signals induces a product partial order≤ on reactions
with r1 ≤ r2 if and only if supp(r1) ⊆ supp(r2) and
r1(v) = r2(v) for all v ∈ supp(r1).

We say of two reactionsr1 and r2 that they arenon-
contradictory, writtenr1 ⊲⊳ r2, if r1(v) = r2(v) for all v ∈
supp(r1)∩supp(r2). Otherwise, we say that the reactions
arecontradictory, writtenr1 6⊲⊳ r2. Given a set of reactions
K, we shall say that it is non-contradictory, denoted⊲⊳ K

if any two reactions ofK are non-contradictory.
The least upper bound and greatest lower bound induced

by the order relation are respectively denoted with∨ and
∧, and called union and intersection of reactions. Ifr1 ⊲⊳

r2, bothr1 ∨ r2 andr1 ∧ r2 are defined, and we can also
define the differencer1 \r2, which has supportsupp(r1)\
supp(r2) and equalsr1 on its support. For a setK with
⊲⊳ we denote∨K =

∨
r∈K r.

Weak endochrony is defined in an automata-theoretic
framework.We simplify it here according to our state-
less abstraction:

Definition 1 (stateless weak endochrony):We say that
processP is weakly endochronous if its set of reactions
R(P) is closed under the operations associated to the
previously-defined domain structure: intersection, union,
and difference of non-contradictory reactions.

Atoms

From our point of view oriented towards automated
analysis, it is most interesting that any behavior of a
WE system can be decomposed intoatomic transitions, or
atoms. Formally, the set of atomic reactions ofP , denoted
Atoms(P) is the set of the smallest (in the sense of≤)
reactions ofR(P) different from⊥. The set of atomic
transitions is characterized by two fundamental properties:
non-interference and generation.

Theorem 1 (atom set characterization):A stateless
processP is weakly endochronous if and only if there
exists a set of reactionsA ⊆ R(P) such that:

• Generation:The union of non-interfering atoms gen-
erates all the reactions ofR(P): R(P) = {

∨
K |

K ⊆ A∧ ⊲⊳ K}.
• Non interference:Two distinct atomsa1, a2 ∈ A,

a1 6= a2 either are contradictory or have disjoint
support (in the latter case we shall say that they are
independent).

(the proof of the theorem is given in reference [11])
Axiom (Non interference) implies that as soon as two
atoms are not independent, they can be distinguished by a
present value (not absence), meaning that choice between
them can be done in an asynchronous environment.

The characterization of Theorem 1 corresponds to the
case where no distinction is made between input, output
and internal signals of a system (which is the case in
[11]). As we seek to obtain deterministic asynchronous
implementations for Signal programs, we require that the
choice between any two contradictory atoms can be done
based on input signal values.7 Formally:

• Input choice: For any two contradictory atoms
a1, a2 ∈ A, there existss ∈ I(P) such thatai(s) 6=
⊥, i = 1, 2, anda1(s) 6= a2(s).

6. Checking weak endochrony

According to Theorem 1, checking weak endochrony is
determining when an atom set can be constructed for a
given process. We follow this approach by determining
for each processP one minimal set of supplementary
synchronizations (under the form of signal absence con-
straints) allowing the construction of a generator set with
atom-like properties. ProcessP is weakly endochronous
iff the generators are free of forced absence constraints.

6.1. Signal absence constraints

For processesP that are not weakly endochronous, the
set of reactionsR(P) is not closed under the operations
∨, ∧, \ defined in the previous section, meaning that we
cannot use generation properties to representR(P) in a
compactfashion. This is due to the fact that the model
does not allow the representation ofabsence constraints,
which are needed in order to represent thereaction to
signal absence.

To allow compact representation, we enrich the model
with absence constraints under the form ofconstrained
absence⊥⊥ signal values which are added to the domain
of each signal. An extended reactionr sets signalS to ⊥⊥
to represent the fact that upon union (∨) the signalS must
remain absent. This new value represents the classical
synchronizing absence of the synchronous model, which
must be preserved at composition time.However, we are
not interested in fully reverting to a synchronous setting,
but in preserving as few synchronizations as needed to
allow deterministic asynchronous execution.

7. To achieve predictability, choice can be done on input or output
signal values.

We denote withD⊥⊥
S = D⊥

S ∪ {⊥⊥} the new domain
with ⊥ ≤ ⊥⊥. The operators∧, ∨, and \ are extended
accordingly. We denote withR⊥⊥ the set of valuations
of the signals over the extended domains. OnR⊥⊥ we
can extend the operators∧, ∨, \, and⊲⊳. We define the
operator[] : R⊥⊥ → R that removes absence constraints
(replaces⊥⊥ values with⊥). We also define the converse
transformationR ∋ r 7→ r ∈ R⊥⊥ that transforms all the
⊥ values of a reaction into⊥⊥ values. We denote⊥⊥ = ⊥
the reaction assigning⊥⊥ to all signals.

6.2. Generators

We define in this section the notion ofminimal fully
constrained non-interfering set of generatorsof a process
P , which is very similar to an atom set, except (1) it
can be computed for any processP and (2) it involves
absence constraints. Such generator sets will represent for
us compact representations ofR(P), and the basic objects
in our weak endochrony check technique. The reactions of
such a generator set can be seen as tiles that can be united
(when disjoint) to generate all other reactions. Generators
can also be compared with the prime implicants of a
logic formula – they are reactions of smallest support that
generate all other reactions.

Definition 2 (Generator set):Let P be a process. A set
G ⊆ R⊥⊥ of partial reactions such that[g] 6= ⊥ for all
g ∈ G is a generator set ofR(P) if R(P) = {[

∨
g∈K g] |

K ⊆ G∧ ⊲⊳ K}.
As we are building our generator sets incrementally, it is

essential they preserve all the synchronization information
of the process, including all absence constraints. Such
generator sets are called fully constrained.

Definition 3 (Fully constrained generator set):A gen-
erator setG of processP is called fully constrained if
each atom represents all absence constraints associated to
it. Formally, for all g ∈ G we have:g =

∧
{r | r ∈

R(P) ∧ g ≤ r}.
Finally, we are looking for generator sets with atom-like

exclusiveness properties.
Definition 4 (Non-interfering generator set):A gener-

ator setG of processP is called non-interfering if for
all r1, r2 ∈ G with r1 ⊲⊳ r2 and [r1] ∧ [r2] 6= ⊥ we have
r1 = r2.

Every Signal process has a fully constrained non-
interfering generator set, obtained by replacing⊥ with ⊥⊥
in all the reactions ofR(P). But using this representation
amounts to reverting to the synchronous model, and not
exploiting the concurrency of the process. We are therefore
looking for least synchronized generator sets exhibiting
minimal absence constraints.

Definition 5 (Less synchronized generator set):Let P

be a process andG1, G2 two generator sets forP . We say
that G1 is less synchronized thanG2, denotedG1 � G2,
if for all g2 ∈ G2 there existsK ⊆ G1 with

∨
g∈K g ≤ g2

and [
∨

g∈K g] = [g2].
The procedures of the next section will build for each

process a fully constrained, non-interfering generator set
that is minimal in the sense of�.

GV
X:=Y default Z

=

= {(Xv, Y v, Zw) | v ∈ DX , w ∈ DX ∪ {⊥⊥}} ∪

{(Xv, Y ⊥⊥, Zv) | v ∈ DX} ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Y, Z}}

GV
X:=Y when Z

=

= {(Xv, Y v, Z1) | v ∈ DX} ∪

{(X⊥⊥, Y v, Z0) | v ∈ DX ∪ {⊥⊥}} ∪

{(X⊥⊥, Y v, Z⊥⊥) | v ∈ DX} ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Y, Z}}

GV
X:=f(Y

1
,...,Yn) =

= {(Xf(v1,...,vn), Y1
v1 , . . . , Yn

vn) | ∀i : vi ∈ DYi
} ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Yi | 1 ≤ i ≤ n}}

Figure 8. Minimal generator sets for primitive Signal
equations

Theorem 2:Let P be a process andG be a fully
constrained, non-interfering generator set that is minimal
in the sense of�. Then, P is weakly endochronous if
and only if the setAG = {[g] | g ∈ G} satisfies the
generation and non-interference properties of Theorem 1.
Moreover,P is deterministic if and only ifG satisfies the
input choice property of Section 5.

Proof sketch: If AG satisfies the given property, then
according to Theorem 1 we know thatP is weakly
endochronous.

In the other sense, assumeA is the set of atoms of the
weakly endochronous processP . For all a ∈ A we define

ga =
∧
{r | r ∈ R(P) ∧ a ≤ r}

Then, GA = {ga | a ∈ A} is a fully constrained non-
interfering generator set that can be proved minimal in
the sense of� (and it is unique with this property).�

If a process is not weakly endochronous, then there may
exist several minimal non-interfering generator sets. We
provide here a technique allowing the construction of one
such generator set. Our technique works inductively: We
compute a minimal generator set for each statement in a
bottom-up fashion following the syntax of the process.
We shall denote withGp the minimal non-interfering
generator set built for statementp. When, due to signal
scoping, we need to explicitly include in the notation the
setV of signals over which the reactions ofp are defined,
we shall extend the notation toGV

p . Fig. 8 and Fig. 9 give
minimal non-interfering generator sets for primitives and
clock equations.

In the remainder of the paper, when saying minimal
generator set, we mean a minimal fully constrained non-
interfering generator set.

GV
X∧=Y

= {(Xv, Y w) | v ∈ DX , w ∈ DY } ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Y }}

GV
X∧<Y

= {(Xv, Y w) | v ∈ DX ∪ {⊥⊥}, w ∈ DY } ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Y }}

Figure 9. Minimal generator sets for clock equations
(can be derived from primitives)

6.3. Algorithms

Given a Signal program, the computation of a mini-
mal generator set proceeds bottom-up in the syntax tree,
starting from the minimal generator sets of the primitives
(given above), and incrementally computing one minimal
generator set for each composed statement. Composed
statements are of only two types: parallel composition and
submodule instantiation. This section deals with parallel
composition: The main algorithm isParallelComposition,
which computes a minimal generator set ofp | q starting
from minimal generator sets ofp andq.

The signal scoping realized by subprocess instantiation
must be ignored, meaning that the local signals of the
generators of the sub-process are treated as local signals of
the instantiating process itself. This is necessary if the goal
is multi-task code generation, because hiding local signals
can hide actual dependencies and render non-interfering
reactions that are actually interfering in the sub-process.

Function 1 ParallelComposition
Input: Gp, Gq: generator set
Output: Gp|q: generator set

G′ ← ∅
for all g ∈ Gp do

ParallelCompositionAux(g,⊥,Gp,Gq,G′)
Gp|q ← MinimizeSynchronization(G′)

FunctionParallelCompositionand the recursive auxil-
iary (Procedure 2) perform an exploration of all combina-
tions of generators inp andq whose present signals hold
the same values. Our function operates by incrementally
adding atoms ofp and q on one side in an attempt
to match present values on the other side. The iteration
stops when the generators match or when all possibilities
have been exhausted. When the resulting generator set is
not minimal, functionMinimizeSynchronizationremoves
unnecessary synchronizations, as explained below.

The forall loop in Function ParallelComposition
determines a fully-constrained, non-interfering generator
set for p | q. Formally, it computes all minimal (in
the sense of inclusion) non-void non-contradictory sub-
sets {gp

1 , . . . , g
p
m} ⊆ Gp and {gq

1, . . . , g
q
n} ⊆ Gq with

[gp
1 ∨ . . . ∨ gp

m] = [gq
1 ∨ . . . ∨ gq

n] and g
p
1 ∨ . . . ∨ gp

m ⊲⊳

g
q
1 ∨ . . . ∨ gq

n, and places inG′ the generatorsgp
1 ∨ . . . ∨

gp
m ∨ g

q
1 ∨ . . . ∨ gq

n.
The resulting generator setG′ is not necessarily mini-

mal. For instance, consider the parallel compositionp0 |

Procedure 2 ParallelCompositionAux
Input: r1,r2 reactions,G1,G2 generator sets
Reference-passed:G: reaction set

if [r2] \ [r1] 6= ⊥ then
for all g ∈ G1 do

if g ⊲⊳ r1 and g ⊲⊳ r2 and [g] ∧ ([r2] \ [r1]) 6= ⊥
then

if [r1 ∨ g] = [r2] then G← G ∪ {r1 ∨ r2 ∨ g}
elseParallelCompositionAux(r1∨g,r2,G1,G2,G)

elseParallelCompositionAux(r2,r1,G2,G1,G)

q0, wherep0 is (| C ˆ< B | C ˆ# A |) and q0 is
(| C ˆ= when false |) (meaningq0 forces C to
always be absent). The generator set computed forp0 | q0

by the forall loop is:

G′ = {(A•, B⊥⊥, C⊥⊥), (A⊥⊥, B•, C⊥⊥), (A•, B•, C⊥⊥)}

which is not minimal, as the minimal generator set (where
A andB are independent) is:

Gp0|q0
= {(A•, B⊥, C⊥⊥), (A⊥, B•, C⊥⊥)}

The needed decomposition ofG′ into Gp0|q0
is done

by ProcedureMinimizeSynchronization. The procedure
uncovers concurrency by determining that existing gen-
erators can be further decomposed into less synchronized
generators. It works by attempting to remove one by one
each forced absence value of each generator, and then
using FunctionRemoveOneSynchronizationto obtain a
fully constrained, non-interfering generator set where the
chosen forced absence value is not necessary, and which
is therefore less synchronized than the previous one.

Procedure 3 MinimizeSynchronization
Input: G: set of generators over the set of variablesV
Reference-passed:G′: set of generators overV

while true do
Chooseg ∈ G, s ∈ V with g(s) = ⊥⊥ and

RemoveOneSynchronization(G, g, s) = (true, G′′)
for someG′′.

if there exist suchg, s, andG′′ then G← G′′

elseG′ ← G ; return

The procedure terminates when no more⊥⊥ values
can be removed. When this happens, some⊥⊥ values
may remain in the generator set. Some of them, like
those in our previous example (Gp0|q0

), are only there
to ensure completeness with respect to Definition 3, and
can be safely removed upon execution in an asynchronous
environment. When all remaining⊥⊥ values are of this
type, which is the case in our example, the program is
weakly endochronous, and the atom set is obtained by
removing all⊥⊥ values from the generator set. Checking
that this is the case amounts to checking for each generator
g that:

g =
∧
{g′ | g′ ∈ G ∧ [g] ≤ g′}

This means that the generator contains no⊥⊥ value in
addition to those prescribed by Definition 3.

When this is not the case, additional⊥⊥ values
are synchronization defects potentially leading to non-
determinism upon execution in an asynchronous environ-
ment. For instance, the generator set ofXˆ<Y (given in
Fig. 9) contains such synchronization defects.

Function 4 RemoveOneSynchronization
Input: G: set of generators overV , g0 ∈ G, s0 ∈ V

such thatg0(s0) = ⊥⊥
Output: Status:Boolean

G′: set of generators, ifStatus = true

g ←
∧
{g′ | g′ ∈ G ∧ [g] ≤ g′}

if g(s0) = ⊥⊥ then
Status← false

return
g′0 ← g0

g′0[s0]← ⊥
G′ ← {g′0}
G′′ ← {g0}
G← G \ {g0}
while true do

Chooseg1 ∈ G, g′1 ∈ G′ with g1 ⊲⊳ g′1 andg1∧g′1 6=
⊥
if such a pair existsthen

G← G \ {g1}
G′′ ← G′′ ∪ {g1}
Gtmp ← {g1 ∧ g′ | (g′ ∈ G′) ∧ (g1 ⊲⊳ g′) ∧
([g1 ∧ g′] 6= ⊥)}
Gtmp ← Gtmp ∪ {g′ \ g1 | (g′ ∈ G′) ∧ (g1 ⊲⊳

g′) ∧ ([g′ \ g1] 6= ⊥)}
gtmp ← g1 \

⋃
g′∈G′,g′⊲⊳g1

(g1 ∧ g′)
if [gtmp] 6= ⊥ then Gtmp ← Gtmp ∪ {gtmp}
Gtmp ← Gtmp ∪ {g

′ | (g′ ∈ G′) ∧ (g1 6⊲⊳ g′)}
G′ ← Gtmp

else
Status← CheckEquivalence(G′, G′′)
G′ ← G′ ∪G

return

The complexity of the MinimizeSynchronization
procedure is hidden within the auxiliary Function
RemoveOneSynchronization. Formally, this function
takes a set of reactions,8 and iteratively computes all
the intersections and differences of non-contradictory
reactions until no changes occur. The result of the process
is a set of reactionsG′ satisfying the non-interference
property of Theorem 1, generating a set of reactions that
includes the reactions generated byG, and such that
the number of all the forced absence values of all the
reactions ofG′ is strictly smaller than the similar number
for G. We preserveG′ generator set forp | q that is less
synchronized thanG wheneverG′ generates the same
reactions asG (that the removal of synchronizations does
not allow supplementary behaviors).

8. The result of removing of a forced absence value from a generator
of a generator set is not necessarily a generator set.

This check is done by FunctionCheckEquivalence.
When CheckEquivalencereturns false, we know that
the particular ⊥⊥ value given as input to Function
RemoveOneSynchronizationcannot be removed (it is
needed to preserve the synchronous semantics). For
example, in the computation ofGp0|q0

above, we
can assume that we start by removing the⊥⊥ value
of B in the first generator ofG′. Then, Function
RemoveOneSynchronizationwill produceGp0|q0

. No fur-
ther simplification is possible.

The computation of the intersections and differences be-
tween generators, and the equivalence check are optimized
in Function RemoveOneSynchronizationto only involve
generators that are actually modified. Non-interfering
atoms are not changed or analyzed.

Function 5 CheckEquivalence
Input: G′, G′′: sets of generators, withG′ less synchro-

nized thanG′′

Output: Equiv:Boolean
G′′ ← the set of reactions generated byG′

Equiv ← {[g] | g ∈ G} = {[r] | r ∈ G′′}

Once a minimal generator set is computed for a program
P , we use the criterion of Theorem 2 to check whether
P is weakly endochronous or not. WhenP is not weakly
endochronous, intuitive error messages can be provided,
showing each pair of generators that are interferent, yet
can only be distinguished using a forced absent value.

Using the previous algorithms to compute the minimal
fully constrained non-interfering generator set of the pro-
cess in Fig. 6 gives:

{(I1•, O1•, SY NC⊥⊥), (I2•, O2•, SY NC⊥⊥),

(I1•, O1•, I2•, O2•, SY NC•, C•)}

As expected, the process is not weakly endochronous
because [(I1•, O1•, I2•, O2•, SY NC•)] and
[(I1•, O1•, SY NC⊥⊥)] are neither conflicting, nor of
disjoint support. The minimal non-conflicting generator
set of the transformed process in Fig. 7 is:

{(I1•, O1•, SY NC10, C⊥⊥, SY NC⊥⊥),

(I2•, O2•, SY NC20, C⊥⊥, SY NC⊥⊥),

(I1•, O1•, I2•, O2•, SY NC11, SY NC21, C•), SY NC•}

The process is weakly endochronous.

7. Conclusion

We have defined a general method to characterize and
synthesize semantics-preserving wrappers to execute syn-
chronous processes on a globally asynchronous architec-
ture. This methods considers processes abstracted by high-
level synchronization constraints and is thus applicable to
a large variety of scenarios. Although we chose the Signal
language to illustrate our approach, the method itself is
independent of a domain-specific formalism.

GALS architectures constructed with our method have
a predictable behavior that is sound and complete with

respect to initial synchronous specifications, regardlessof
the size of the system or of latency in the network. The
result of the analysis allows to directly synthesize exec-
utives for all specifications whose processes are proven
stateless weakly endochronous. Moreover, in the case a
specification fails to meet expected criteria, our analysis
points directly at the faulty synchronization issue(s).

In the present paper, our main concern was to charac-
terize an effective criterion ensuring the functional cor-
rectness of GALS architectures in an untimed setting. A
longer-term objective is to take real-time requirements into
account. This should provide guarantees on more elaborate
constraints pertaining to periodicity, throughput, WCET.

Such an extension requires the definition of timing
analysis and scheduling techniques compatible with our
program execution model. Yet, the executives themselves
could be simplified under specific timing hypothesis (for
instance, a FIFO protocols can be simplified if the reader
is faster than the writer, etc.). In parallel, we are also
investigating ways to optimize the representation of atoms
better using, e.g., decision trees.

References

[1] P. Amagbégnon, L. Besnard, and P. Le Guernic. Imple-
mentation of the data-flow synchronous language signal.
In Proceedings PLDI’95, La Jolla, CA, USA, June 1995.

[2] A. Benveniste, B. Caillaud, and P. Le Guernic. Composi-
tionality in dataflow synchronous languages: Specification
and distributed code generation.Information and Compu-
tation, 163:125 – 171, 2000.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nico-
las Halbwachs, Paul Le Guernic, and Robert de Simone.
The synchronous languages 12 years later.Proceedings of
the IEEE, 91(1):64–83, January 2003.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
Theory of latency-insensitive design.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
20(9):18, Sep 2001.

[5] T. Grandpierre and Y. Sorel. From algorithm and archi-
tecture specification to automatic generation of distributed
real-time executives: a seamless flow of graphs transforma-
tions. InProceedings of First ACM and IEEE International
Conference on Formal Methods and Models for Codesign,
MEMOCODE’03, Mont Saint-Michel, France, June 2003.

[6] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony
for system design. Journal for Circuits, Systems and
Computers, April 2003. Special Issue on Application
Specific Hardware Design.

[7] Robert Keller. A fundamental theorem of asynchronous
parallel computation.Lecture Notes in Computer Science,
24:103–112, 1975.

[8] A. Mazurkiewicz. Concurrent program schemes and their
interpretations. Technical report, DAIMI, Arhus University,
1977.

[9] M. Nebut. Specification and analysis of synchronous
reactions. Formal Aspects of Computing, 16(3):263–291,
august 2004.

[10] D. Potop-Butucaru and B. Caillaud. Correct-by-
construction asynchronous implementation of modular syn-
chronous specifications. InProccedings ACSD’05, St.
Malo, France, June 2005.

[11] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Con-
currency in synchronous systems.Formal Methods in
System Design, 28(2):111–130, 2006.

[12] D. Potop-Butucaru, R. de Simone, and Y. Sorel. Necessary
and sufficient conditions for deterministic desynchroniza-
tion. In Proceedings EMSOFT 2007, Vienna, Austria.

[13] D. Potop-Butucaru, S. Edwards, and G. Berry.Compiling
Esterel. Springer, 2007.

[14] M. Singh and M. Theobald. Generalized latency-insensitive
systems for single-clock and multi-clock architectures. In
Proceedings DATE’04, Paris, France, 2004.

