
RCPU
RISC CENTRAL PROCESSING UNIT

REFERENCE MANUAL
Revision 1

Revised 1 February 1999

PREFACE
This manual defines the functionality of the RCPU for use by software and hard-
ware developers. The RCPU is a PowerPC-based processor used in the Motorola
MPC500 family of microcontrollers.

0.1 Audience

This manual is intended for system software and hardware developers and appli-
cations programmers who want to develop products for RCPU-based microcontrol-
ler systems. It is assumed that the reader understands operating systems,
microprocessor and microcontroller system design, and the basic principles of
RISC processing.

0.2 Additional Reading

This section lists additional reading that provides background to or supplements
the information in this manual.

• John L. Hennessy and David A. Patterson, Computer Architecture: A Quanti-
tative Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

• PowerPC Microprocessor Family: the Programming Environments, MPCFPE/
AD (Motorola order number)

• IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-
1985), published by the Institute of Electrical and Electronics Engineers, Inc.,
New York, NY

• Motorola technical summaries and device manuals for individual RCPU-based
microcontrollers; and module reference manuals (such as this manual) that
describe the operation of the individual modules in RCPU-based MCUs in de-
tail. Refer to http://www.mcu.motsps.com for a comprehensive listing of avail-
ble documentation.

0.3 Conventions

This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase
text without an overbar. Signals that are active high are referred
to as asserted when they are high and negated when they are
low.

ACTIVE_LOW A bar over a signal name indicates that the signal is active low.
Active-low signals are referred to as asserted (active) when they
are low and negated when they are high.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example,
RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -1

bcctrx

0x0F Hexadecimal numbers

0b0011 Binary numbers

rA|0 The contents of a specified GPR or the value 0.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase
text. Specific bit fields or ranges are shown in brackets.

x In certain contexts, such as a signal encoding, this indicates a
don’t care. For example, if a field is binary encoded 0bx001, the
state of the first bit is a don’t care.

0.4 Nomenclature

Logic level one is the voltage that corresponds to Boolean true (1) state.

Logic level zero is the voltage that corresponds to Boolean false (0) state.

To set a bit or bits means to establish logic level one on the bit or bits.

To clear a bit or bits means to establish logic level zero on the bit or bits.

A signal that is asserted is in its active logic state. An active low signal changes
from logic level one to logic level zero when asserted, and an active high signal
changes from logic level zero to logic level one.

A signal that is negated is in its inactive logic state. An active low signal changes
from logic level zero to logic level one when negated, and an active high signal
changes from logic level one to logic level zero.

LSB means least significant bit or bits. MSB means most significant bit or bits. Ref-
erences to low and high bytes are spelled out.
 MOTOROLA RCPU

-2 Revised 1 February 1999 REFERENCE MANUAL

TABLE OF CONTENTSParagraph Page

Number Number

Section 1
OVERVIEW

1.1 RCPU Overview. 1-1

1.1.1 RCPU Features . 1-2

1.1.2 RCPU Block Diagram . 1-3

1.1.3 Instruction Sequencer. 1-5

1.1.4 Independent Execution Units . 1-6

1.1.4.1 Branch Processing Unit (BPU). 1-7

1.1.4.2 Integer Unit (IU) . 1-7

1.1.4.3 Floating Point Unit (FPU) . 1-8

1.1.4.4 Load/Store Unit (LSU) . 1-8

1.1.5 Instruction Cache . 1-9

1.1.6 Instruction Pipeline . 1-9

1.1.7 Development Support. 1-10

1.2 Levels of the PowerPC ArchitectureTM . 1-11

1.3 The RCPU as a PowerPCTM Implementation . 1-11

1.3.1 PowerPC Registers and Programming Model . 1-11

1.3.1.1 General-Purpose Registers (GPRs). 1-12

1.3.1.2 Floating-Point Registers (FPRs). 1-12

1.3.1.3 Condition Register (CR) . 1-12

1.3.1.4 Floating-Point Status and Control Register (FPSCR). 1-12

1.3.1.5 Machine State Register (MSR). 1-12

1.3.1.6 Special-Purpose Registers (SPRs) . 1-12

1.3.1.7 User-Level SPRs . 1-12

1.3.1.8 Supervisor-Level SPRs . 1-13

1.3.2 Instruction Set and Addressing Modes. 1-13

1.3.2.1 PowerPC Instruction Set . 1-14

1.3.2.2 PowerPC Addressing Modes . 1-15

1.3.2.3 RCPU Instruction Set . 1-15

1.3.3 PowerPC Exception Model. 1-15

Section 2
REGISTERS

2.1 Programming Models. 2-1

2.2 PowerPC UISA Register Set . 2-3

2.2.1 General Purpose Registers (GPRs) . 2-3

2.2.2 Floating-Point Registers (FPRs) . 2-3

2.2.3 Floating-Point Status and Control Register (FPSCR). 2-4

2.2.4 Condition Register (CR) . 2-8

2.2.4.1 Condition Register CR0 Field Definition. 2-9
RCPU TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 iii

Paragraph Page

Number Number

2.2.4.2 Condition Register CR1 Field Definition. 2-9

2.2.4.3 Condition Register CRn Field — Compare Instructio . 2-10

2.2.5 Integer Exception Register (XER) . 2-10

2.2.6 Link Register (LR). 2-11

2.2.7 Count Register (CTR) . 2-11

2.3 PowerPC VEA Register Set — Time Base . 2-12

2.4 PowerPC OEA Register Set. 2-13

2.4.1 Machine State Register (MSR). 2-13

2.4.2 DAE/Source Instruction Service Register (DSISR) . 2-16

2.4.3 Data Address Register (DAR) . 2-16

2.4.4 Time Base Facility (TB) — OEA . 2-16

2.4.5 Decrementer Register (DEC) . 2-17

2.4.6 Machine Status Save/Restore Register 0 (SRR0) . 2-18

2.4.7 Machine Status Save/Restore Register 1 (SRR1) . 2-19

2.4.8 General SPRs (SPRG0–SPRG3) . 2-19

2.4.9 Processor Version Register (PVR) . 2-20

2.4.10 Implementation-Specific SPRs . 2-20

2.4.10.1 EIE, EID, and NRI Special-Purpose Registers . 2-20

2.4.10.2 Instruction-Cache Control Registers. 2-21

2.4.10.3 Development Support Registers. 2-21

2.4.10.4 Floating-Point Exception Cause Register (FPECR) . 2-22

Section 3
OPERAND CONVENTIONS

3.1 Data Alignment and Memory Organization . 3-1

3.2 Byte Ordering . 3-2

3.2.1 Structure Mapping Examples . 3-3

3.2.1.1 Big-Endian Mappin . 3-3

3.2.1.2 Little-Endian Mapping. 3-4

3.2.2 Data Memory in Little-Endian Mode . 3-4

3.2.2.1 Aligned Scalars. 3-4

3.2.2.2 Misaligned Scalars . 3-6

3.2.2.3 String Operations . 3-7

3.2.2.4 Load and Store Multiple Instructions . 3-7

3.2.3 Instruction Memory Addressing in Little-Endian Mode . 3-8

3.2.4 Input/Output in Little-Endian Mod . 3-10

3.3 Floating-Point Data . 3-10

3.3.1 Floating-Point Data Format . 3-10

3.3.2 Value Representation . 3-12

3.3.3 Normalized Numbers (±NORM) . 3-13

3.3.4 Zero Values (±0). 3-14

3.3.5 Denormalized Numbers (±DENORM) . 3-14

3.3.6 Infinities (±×). 3-15
 MOTOROLA TABLE OF CONTENTS RCPU

iv Revised 1 February 1999 REFERENCE MANUAL

Paragraph Page

Number Number

3.3.7 Not a Numbers (NaNs) . 3-15

3.3.8 Sign of Result . 3-16

3.3.9 Normalization and Denormalizatio . 3-17

3.3.10 Data Handling and Precision . 3-17

3.3.11 Rounding . 3-19

3.4 Floating-Point Execution Models . 3-21

3.4.1 Execution Model for IEEE Operations . 3-22

3.4.2 Execution Model for Multiply-Add Type Instructions. 3-24

3.4.3 Non-IEEE Operation . 3-25

3.4.4 Working Without the Software Envelop . 3-25

Section 4
ADDRESSING MODES AND INSTRUCTION SET SUMMARY

4.1 Memory Addressing . 4-1

4.1.1 Memory Operands . 4-2

4.1.2 Addressing Modes and Effective Address Calculatio . 4-2

4.2 Classes of Instructions. 4-3

4.2.1 Definition of Boundedly Undefined . 4-3

4.2.2 Defined Instruction Class . 4-3

4.2.3 Illegal Instruction Class. 4-4

4.2.4 Reserved Instruction Class. 4-4

4.3 Integer Instructions. 4-5

4.3.1 Integer Arithmetic Instructions . 4-5

4.3.2 Integer Compare Instructions . 4-11

4.3.3 Integer Logical Instructions. 4-12

4.3.4 Integer Rotate and Shift Instructions . 4-14

4.3.4.1 Integer Rotate Instructions . 4-16

4.3.4.2 Integer Shift Instructions. 4-17

4.4 Floating-Point Instructions . 4-19

4.4.1 Floating-Point Arithmetic Instructions. 4-19

4.4.2 Floating-Point Multiply-Add Instructions . 4-22

4.4.3 Floating-Point Rounding and Conversion Instructions . 4-25

4.4.4 Floating-Point Compare Instructions . 4-27

4.4.5 Floating-Point Status and Control Register Instructions. 4-28

4.5 Load and Store Instructions . 4-30

4.5.1 Integer Load and Store Address Generation . 4-30

4.5.1.1 Register Indirect with Immediate Index Addressing . 4-30

4.5.1.2 Register Indirect with Index Addressing . 4-31

4.5.1.3 Register Indirect Addressing . 4-32

4.5.2 Integer Load Instructions . 4-33

4.5.3 Integer Store Instructions . 4-36

4.5.4 Integer Load and Store with Byte Reversal Instructions. 4-37

4.5.5 Integer Load and Store Multiple Instructions . 4-38
RCPU TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 v

Paragraph Page

Number Number

4.5.6 Integer Move String Instructions . 4-39

4.5.7 Floating-Point Load and Store Address Generation. 4-41

4.5.7.1 Register Indirect with Immediate Index Addressing . 4-41

4.5.7.2 Register Indirect with Index Addressing . 4-41

4.5.8 Floating-Point Load Instructions . 4-42

4.5.8.1 Double-Precision Conversion for Floating-Point Load Instructions 4-43

4.5.8.2 Floating-Point Load Single Operands. 4-44

4.5.9 Floating-Point Store Instructions . 4-44

4.5.9.1 Double-Precision Conversion for Floating-Point Store Instructions 4-46

4.5.9.2 Floating-Point Store-Single Operands . 4-47

4.5.10 Floating-Point Move Instructions . 4-47

4.6 Flow Control Instructions . 4-48

4.6.1 Branch Instruction Address Calculation . 4-49

4.6.1.1 Branch Relative Address Mod . 4-49

4.6.1.2 Branch Conditional Relative Address Mod . 4-50

4.6.1.3 Branch to Absolute Address Mod . 4-51

4.6.1.4 Branch Conditional to Absolute Address Mode . 4-52

4.6.1.5 Branch Conditional to Link Register Address Mode. 4-52

4.6.1.6 Branch Conditional to Count Register . 4-53

4.6.2 Conditional Branch Control. 4-54

4.6.2.1 BO Operand and Branch Prediction . 4-54

4.6.2.2 BI Operan . 4-56

4.6.2.3 Simplified Mnemonics for Conditional Branches . 4-56

4.6.3 Branch Instructions . 4-56

4.6.4 Condition Register Logical Instructions . 4-57

4.6.5 System Linkage Instructions. 4-58

4.6.6 Simplified Mnemonics for Branch and Flow Control Instructions 4-59

4.6.7 Trap Instructions . 4-59

4.7 Processor Control Instructions. 4-60

4.7.1 Move to/from Machine State Register and Condition Register Instructions 4-60

4.7.2 Move to/from Special Purpose Register Instructions . 4-61

4.7.3 Move from Time Base Instruction . 4-64

4.8 Memory Synchronization Instructions . 4-65

4.9 Memory Control Instructions . 4-68

4.10 Recommended Simplified Mnemonics . 4-68

Section 5
INSTRUCTION CACHE

5.1 Instruction Cache Organizatio . 5-1

5.2 Programming Model. 5-3

5.2.1 I-Cache Control and Status Register (ICCST) . 5-3

5.2.2 I-Cache Address Register (ICADR) . 5-5

5.2.3 I-Cache Data Register (ICDAT) . 5-5
 MOTOROLA TABLE OF CONTENTS RCPU

vi Revised 1 February 1999 REFERENCE MANUAL

Paragraph Page

Number Number

5.3 Instruction Cache Operation . 5-5

5.3.1 Cache Hit . 5-6

5.3.2 Cache Miss. 5-6

5.3.3 Instruction Fetch on a Predicted Path . 5-6

5.4 Cache Commands . 5-7

5.4.1 Instruction Cache Block Invalidate . 5-7

5.4.2 Invalidate All . 5-8

5.4.3 Load and Lock . 5-8

5.4.4 Unlock Line. 5-9

5.4.5 Unlock All . 5-9

5.4.6 Cache Enable . 5-9

5.4.7 Cache Disable . 5-9

5.4.8 Cache Inhibit. 5-9

5.4.9 Cache Read . 5-10

5.5 I-Cache and On-Chip Memories with Zero Wait States . 5-11

5.6 Cache Coherency . 5-11

5.7 Updating Code and Attributes of Memory Regions . 5-11

5.8 Reset Sequence. 5-11

5.9 Debugging Support . 5-12

5.9.1 Running a Debug Routine from the I-Cache . 5-12

5.9.2 Instruction Fetch from the Development Port . 5-12

Section 6
EXCEPTIONS

6.1 Exception Classes . 6-2

6.1.1 Ordered and Unordered Exceptions . 6-2

6.1.2 Synchronous, Precise Exceptions . 6-2

6.1.3 Asynchronous Exceptions . 6-4

6.1.3.1 Asynchronous, Maskable Exceptions. 6-5

6.1.3.2 Asynchronous, Non-Maskable Exceptions . 6-5

6.2 Exception Vector Table . 6-5

6.3 Precise Exception Model Implementation . 6-7

6.4 Implementation of Asynchronous Exceptions . 6-8

6.5 Recovery from Exceptions . 6-9

6.5.1 Recovery from Ordered Exceptions . 6-9

6.5.2 Recovery from Unordered Exceptions . 6-9

6.5.3 Commands to Alter MSR[EE] and MSR[RI] . 6-10

6.6 Exception Order and Priority . 6-10

6.7 Ordering of Synchronous, Precise Exceptions. 6-12

6.8 Exception Processing. 6-13

6.8.1 Enabling and Disabling Exceptions . 6-16

6.8.2 Steps for Exception Processing . 6-16

6.8.3 DAR, DSISR, and BAR Operation . 6-17
RCPU TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 vii

Paragraph Page

Number Number

6.8.4 Returning from Supervisor Mode . 6-18

6.9 Process Switching . 6-18

6.10 Exception Timing . 6-18

6.11 Exception Definitions . 6-20

6.11.1 Reset Exception (0x0100) . 6-20

6.11.2 Machine Check Exception (0x00200) . 6-21

6.11.2.1 Machine Check Exception Enable . 6-21

6.11.2.2 Checkstop State . 6-22

6.11.2.3 Machine-Check Exceptions and Debug Mode . 6-22

6.11.3 External Interrupt (0x00500) . 6-22

6.11.4 Alignment Exception (0x00600) . 6-23

6.11.4.1 Interpretation of the DSISR as Set by an Alignment Exception 6-24

6.11.5 Program Exception (0x00700) . 6-26

6.11.6 Floating-Point Unavailable Exception (0x00800) . 6-28

6.11.7 Decrementer Exception (0x00900). 6-29

6.11.8 System Call Exception (0x00C00) . 6-29

6.11.9 Trace Exception (0x00D00) . 6-30

6.11.10 Floating-Point Assist Exception (0x00E00) . 6-31

6.11.10.1 Floating-Point Software Envelope . 6-31

6.11.10.2 Floating-Point Assist for Denormalized Operands . 6-32

6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode. 6-34

6.11.10.4 Floating-Point Exception Cause Register . 6-34

6.11.10.5 Floating-Point Enabled Exceptions. 6-36

6.11.10.6 Invalid Operation Exception Conditions . 6-42

6.11.10.7 Zero Divide Exception Condition . 6-43

6.11.10.8 Overflow Exception Condition . 6-44

6.11.10.9 Underflow Exception Condition . 6-44

6.11.10.10 Inexact Exception Condition . 6-45

6.11.11 Software Emulation Exception (0x01000) . 6-46

6.11.12 Data Breakpoint Exception (0x01C00) . 6-47

6.11.13 Instruction Breakpoint Exception (0x01D00) . 6-48

6.11.14 Maskable External Breakpoint Exception (0x01E00) . 6-49

6.11.15 Non-Maskable External Breakpoint Exception (0x01F00) . 6-49

Section 7
INSTRUCTION TIMING

7.1 Instruction Flow . 7-1

7.1.1 Instruction Sequencer Data Path . 7-2

7.1.2 Instruction Issu . 7-3

7.1.3 Basic Instruction Pipeline . 7-3

7.2 Execution Unit Timing Details . 7-5

7.2.1 Integer Unit (IU) . 7-5

7.2.1.1 Update of the XER During Divide Instructions . 7-6
 MOTOROLA TABLE OF CONTENTS RCPU

viii Revised 1 February 1999 REFERENCE MANUAL

Paragraph Page

Number Number

7.2.2 Floating Point Unit (FPU) . 7-6

7.2.3 Load/Store Unit (LSU) . 7-6

7.2.3.1 Load/Store Instruction Issue . 7-7

7.2.3.2 Load/Store Synchronizing Instructions . 7-7

7.2.3.3 Load/Store Instruction Timing Summary . 7-7

7.2.3.4 Bus Cycles for String Instructions. 7-8

7.2.3.5 Stalls During Floating-Point Store Instructions . 7-8

7.2.4 Branch Processing Unit (BPU) . 7-9

7.3 Serializatio . 7-9

7.3.1 Execution Serialization . 7-9

7.3.2 Fetch Serialization . 7-10

7.4 Context Synchronization . 7-10

7.5 Implementation of Special-Purpose Registers . 7-10

7.6 Instruction Execution Timing . 7-11

7.7 Instruction Execution Timing Examples . 7-16

7.7.1 Load from Internal Memory Example . 7-16

7.7.2 Write-Back Arbitration Examples . 7-17

7.7.3 Load with Private Write-Back Bus . 7-18

7.7.4 Fastest External Load Example . 7-19

7.7.5 History Buffer Full Example . 7-20

7.7.6 Store and Floating-Point Example . 7-21

7.7.7 Branch Folding Example . 7-22

7.7.8 Branch Prediction Example . 7-23

Section 8
DEVELOPMENT SUPPORT

8.1 Program Flow Tracking . 8-1

8.1.1 Indirect Change-of-Flow Cycles . 8-2

8.1.1.1 Marking the Indirect Change-of-Flow Attribute . 8-3

8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribut 8-4

8.1.2 Instruction Fetch Show Cycle Control . 8-4

8.1.3 Program Flow-Tracking Pins . 8-5

8.1.3.1 Instruction Queue Status Pins . 8-5

8.1.3.2 History Buffer Flush Status Pins. 8-7

8.1.3.3 Flow-Tracking Status Pins in Debug Mode . 8-7

8.1.3.4 Cycle Type, Write/Read, and Address Type Pins . 8-7

8.1.4 External Hardware During Program Trace . 8-8

8.1.4.1 Back Trace . 8-9

8.1.4.2 Window Trace. 8-9

8.1.4.3 Synchronizing the Trace Window to Internal CPU Events . 8-9

8.1.4.4 Detecting the Trace Window Starting Address. 8-10

8.1.4.5 Detecting the Assertion or Negation of VSYNC . 8-11

8.1.4.6 Detecting the Trace Window Ending Address . 8-11
RCPU TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 ix

Paragraph Page

Number Number

8.1.5 Compress . 8-12

8.2 Watchpoint and Breakpoint Support . 8-12

8.2.1 Watchpoints . 8-13

8.2.1.1 Restrictions on Watchpoint Detection. 8-14

8.2.1.2 Byte and Half-Word Working Modes . 8-14

8.2.1.3 Generating Six Compare Types. 8-16

8.2.1.4 I-Bus Support Detailed Description . 8-17

8.2.1.5 L-Bus Support Detailed Description . 8-18

8.2.1.6 Treating Floating-Point Numbers . 8-20

8.2.2 Internal Breakpoints . 8-21

8.2.2.1 Breakpoint Counters. 8-21

8.2.2.2 Trap-Enable Programming . 8-21

8.2.2.3 Ignore First Match. 8-22

8.2.3 External Breakpoints . 8-22

8.2.4 Breakpoint Masking . 8-22

8.3 Development Port . 8-23

8.3.1 Development Port Signals . 8-24

8.3.1.1 Development Serial Clock . 8-24

8.3.1.2 Development Serial Data In . 8-25

8.3.1.3 Development Serial Data Out. 8-26

8.3.2 Development Port Registers. 8-26

8.3.2.1 Development Port Shift Register . 8-27

8.3.2.2 Trap Enable Control Register . 8-27

8.3.3 Development Port Clock Mode Selection . 8-27

8.3.4 Development Port Transmissions. 8-32

8.3.5 Trap-Enable Input Transmissions. 8-33

8.3.6 CPU Input Transmissions. 8-33

8.3.7 Serial Data Out of Development Port — Non-Debug Mode . 8-34

8.3.8 Serial Data Out of Development Port — Debug Mod . 8-34

8.3.8.1 Valid Data Output . 8-35

8.3.8.2 Sequencing Error Output . 8-35

8.3.8.3 CPU Exception Output . 8-36

8.3.8.4 Null Output . 8-36

8.3.9 Use of the Ready Bit. 8-36

8.4 Debug Mode Functions . 8-37

8.4.1 Enabling Debug Mod . 8-37

8.4.2 Entering Debug Mod . 8-38

8.4.3 Debug Mode Operation . 8-39

8.4.4 Freeze Function . 8-40

8.4.5 Exiting Debug Mod . 8-40

8.4.6 Checkstop State and Debug Mode . 8-40

8.5 Development Port Transmission Sequence . 8-41

8.5.1 Port Usage in Debug Mode . 8-41
 MOTOROLA TABLE OF CONTENTS RCPU

x Revised 1 February 1999 REFERENCE MANUAL

Paragraph Page

Number Number

8.5.2 Debug Mode Sequence Diagram . 8-43

8.5.3 Port Usage in Normal (Non-Debug) Mod . 8-44

8.6 Examples of Debug Mode Sequences. 8-45

8.6.1 Prologue Instruction Sequence . 8-45

8.6.2 Epilogue Instruction Sequence . 8-45

8.6.3 Peek Instruction Sequence . 8-46

8.6.4 Poke Instruction Sequence. 8-46

8.7 Software Monitor Support . 8-47

8.8 Development Support Registers . 8-48

8.8.1 Register Protectio . 8-49

8.8.2 Comparator A–D Value Registers (CMPA–CMPD) . 8-51

8.8.3 Comparator E–F Value Registers . 8-51

8.8.4 Comparator G–H Value Registers (CMPG–CMPH) . 8-52

8.8.5 I-Bus Support Control Register. 8-52

8.8.6 L-Bus Support Control Register 1. 8-54

8.8.7 L-Bus Support Control Register 2. 8-56

8.8.8 Breakpoint Counter A Value and Control Register. 8-58

8.8.9 Breakpoint Counter B Value and Control Register. 8-59

8.8.10 Exception Cause Register (ECR) . 8-59

8.8.11 Debug Enable Register (DER) . 8-61

Section 9
INSTRUCTION SET

9.1 Instruction Formats . 9-1

9.1.1 Split Field Notation . 9-1

9.1.2 Instruction Fields . 9-1

9.1.3 Notation and Conventions . 9-3

9.2 RCPU Instruction Set . 9-6

Appendix A
INSTRUCTION SET LISTINGS

Appendix B
MULTIPLE-PRECISION SHIFTS

Appendix C
FLOATING-POINT MODELS AND CONVERSIONS

C.1 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word C-1
C.2 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Wor C-1
C.3 Floating-Point Models . C-1

C.3.1 Floating-Point Round to Single-Precision Model . C-1
C.3.2 Floating-Point Convert to Integer Model . C-5

C.4 Floating-Point Convert from Integer Model . C-8

Appendix D
SYNCHRONIZATION PROGRAMMING EXAMPLES
RCPU TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 xi

Paragraph Page

Number Number

D.1 General Information. D-1
D.2 Synchronization Primitives . D-2

D.2.1 Fetch and No-Op . D-2
D.2.2 Fetch and Store . D-2

D.3 Fetch and Ad . D-2
D.3.1 Fetch and AND . D-3
D.3.2 Test and Set. D-3

D.4 Compare and Swap . D-3
D.5 List Insertion . D-4

Appendix E
SIMPLIFIED MNEMONICS

E.1 Symbols . E-1
E.2 Simplified Mnemonics for Subtract Instructions. E-2

E.2.1 Subtract Immediate . E-2
E.2.2 Subtract . E-2

E.3 Simplified Mnemonics for Compare Instructions . E-2
E.4 Simplified Mnemonics for Rotate and Shift Instructions . E-3
E.5 Simplified Mnemonics for Branch Instructions. E-4

E.5.1 BO and BI Fields . E-5
E.5.2 Basic Branch Mnemonics. E-5
E.5.3 Branch Mnemonics Incorporating Conditions . E-9
E.5.4 Branch Prediction . E-11

E.6 Simplified Mnemonics for Condition Register Logical Instructions . E-12
E.7 Simplified Mnemonics for Trap Instructions. E-13
E.8 Simplified Mnemonics for Special-Purpose Registers . E-14
E.9 Recommended Simplified Mnemonics . E-15

E.9.1 No-Op. E-16
E.9.2 Load Immediate . E-16
E.9.3 Load Address . E-16
E.9.4 Move Register . E-16
E.9.5 Complement Register . E-17
E.9.6 Move to Condition Register . E-17

Section 10INDEX
 MOTOROLA TABLE OF CONTENTS RCPU

xii Revised 1 February 1999 REFERENCE MANUAL

Figure Title Page

LIST OF FIGURES
1-1 RCPU-Based Microcontroller ... 1-2
1-2 RCPU Block Diagram ... 1-4
1-3 RCPU Instruction Flow ... 1-6
1-4 Basic Instruction Pipeline ... 1-10
2-1 RCPU Programming Model .. 2-2
3-1 Big-Endian Byte Ordering ... 3-2
3-2 Big-Endian Mapping of Structure S .. 3-4
3-3 Little-Endian Mapping of Structure S .. 3-4
3-4 PowerPC Little-Endian Structure S in Memory ... 3-5
3-5 PowerPC Little-Endian Structure S as Seen by Processor 3-6
3-6 PowerPC Little-Endian Mode, Word Stored at Address 5 3-6
3-7 Word Stored at Little-Endian

Address 5 as Seen by Big-Endian Addressing ... 3-7
3-8 PowerPC Big-Endian

Instruction Sequence as Seen by Processor .. 3-9
3-9 PowerPC Little-Endian

Instruction Sequence as Seen by Processor .. 3-9
3-10 Floating-Point Single-Precision Format .. 3-10
3-11 Floating-Point Double-Precision Format ... 3-11
3-12 Biased Exponent Format .. 3-12
3-13 Approximation to Real Numbers ... 3-13
3-14 Format for Normalized Numbers .. 3-14
3-15 Format for Zero Numbers ... 3-14
3-16 Format for Denormalized Numbers .. 3-14
3-17 Format for Positive and Negative Infinities ... 3-15
3-18 Format for NANs ... 3-15
3-19 Representation of QNaN .. 3-16
3-20 Single-Precision Representation in an FPR ... 3-19
3-21 Rounding Flow Diagram ... 3-20
3-22 Relation of Z1 and Z2 ... 3-21
4-1 Register Indirect with Immediate Index Addressing 4-31
4-2 Register Indirect with Index Addressing ... 4-32
4-3 Register Indirect Addressing .. 4-33
4-4 Register Indirect with Immediate Index Addressing 4-41
4-5 Register Indirect with Index Addressing .. 4-42
4-6 Branch Relative Addressing ... 4-50
4-7 Branch Conditional Relative Addressing .. 4-51
4-8 Branch to Absolute Addressing .. 4-51
4-9 Branch Conditional to Absolute Addressing ... 4-52
4-10 Branch Conditional to Link Register Addressing .. 4-53
4-11 Branch Conditional to Count Register Addressing 4-54
RCPU LIST OF FIGURES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 xxix

Figure Title Page
5-1 Instruction Cache Organization .. 5-2
5-2 Instruction Cache Data Path ... 5-3
6-1 History Buffer Queue .. 6-8
6-2 RCPU Floating-Point Architecture .. 6-32
6-3 Real Numbers Axis for Denormalized Operands .. 6-33
7-1 Instruction Flow .. 7-2
7-2 Instruction Sequencer Data Path .. 7-3
7-3 Basic Instruction Pipeline ... 7-5
7-4 Number of Bus Cycles Needed for String Instruction Execution 7-8
7-5 Load from Internal Memory Example ... 7-17
7-6 Write-Back Arbitration Example I .. 7-17
7-7 Write-Back Arbitration Example II ... 7-18
7-8 Load with Private Write-Back Bus Example ... 7-19
7-9 External Load Example .. 7-20
7-10 History Buffer Full Example .. 7-21
7-11 Store and Floating-Point Example .. 7-22
7-12 Branch Folding Example .. 7-23
7-13 Branch Prediction Example .. 7-24
8-1 Watchpoint and Breakpoint Support in the RCPU .. 8-13
8-2 Partially Supported Watchpoint/Breakpoint Example 8-16
8-3 I-Bus Support General Structure .. 8-17
8-4 L-Bus Support General Structure ... 8-19
8-5 Development Port Support Logic .. 8-24
8-6 Development Port Registers and Data Paths ... 8-26
8-7 Enabling Clock Mode Following Reset ... 8-29
8-8 Asynchronous Clocked Serial Communications ... 8-30
8-9 Synchronous Clocked Serial Communications ... 8-31
8-10 Synchronous Self-Clocked Serial Communications 8-32
8-11 Enabling Debug Mode at Reset .. 8-38
8-12 Entering Debug Mode Following Reset .. 8-39
8-13 General Port Usage Sequence Diagram .. 8-44
8-14 Debug Mode Logic ... 8-48
9-1 Instruction Description .. 9-6
 MOTOROLA LIST OF FIGURES RCPU

xxx Revised 1 February 1999 REFERENCE MANUAL

Table Title Page

LIST OF TABLES
1-1 RCPU Execution Units ... 1-7
2-1 FPSCR Bit Categories ... 2-5
2-2 FPSCR Bit Settings .. 2-5
2-3 Floating-Point Result Flags in FPSCR.. 2-8
2-4 Bit Settings for CR0 Field of CR ... 2-9
2-5 Bit Settings for CR1 Field of CR ... 2-9
2-6 CRn Field Bit Settings for Compare Instructions .. 2-10
2-7 Integer Exception Register Bit Definitions .. 2-11
2-8 Time Base Field Definitions .. 2-13
2-9 Machine State Register Bit Settings ... 2-15
2-10 Floating-Point Exception Mode Bits .. 2-16
2-11 Time Base Field Definitions .. 2-17
2-12 Uses of SPRG0–SPRG3 .. 2-20
2-13 Processor Version Register Bit Settings ... 2-20
2-14 EIE, EID, AND NRI Registers .. 2-21
2-15 Instruction Cache Control Registers .. 2-21
2-16 Development Support Registers .. 2-22
3-1 Memory Operands .. 3-1
3-2 EA Modifications ... 3-5
3-3 Load/Store String Instructions .. 3-7
3-4 Load/Store Multiple Instructions ... 3-8
3-5 IEEE Floating-Point Fields .. 3-11
3-6 Recognized Floating-Point Numbers .. 3-13
3-7 FPSCR Bit Settings — RN Field... 3-20
3-8 Interpretation of G, R, and X Bits .. 3-23
3-9 Location of the Guard, Round and Sticky Bits .. 3-23
4-1 Integer Arithmetic Instructions .. 4-6
4-2 Integer Compare Instructions ... 4-12
4-3 Integer Logical Instructions ... 4-13
4-4 Rotate and Shift Operations ... 4-15
4-5 Integer Rotate Instructions .. 4-16
4-6 Integer Shift Instructions ... 4-18
4-7 Floating-Point Arithmetic Instructions ... 4-19
4-8 Floating-Point Multiply-Add Instructions ... 4-22
4-9 Floating-Point Rounding and Conversion Instructions 4-26
4-10 CR Bit Settings ... 4-27
4-11 Floating-Point Compare Instructions .. 4-28
4-12 Floating-Point Status and Control Register Instructions 4-29
4-13 Integer Load Instructions .. 4-34
4-14 Integer Store Instructions .. 4-37
4-15 Integer Load and Store with Byte Reversal Instructions 4-38
RCPU LIST OF TABLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 xxxvii

Table Title Page
4-16 Integer Load and Store Multiple Instructions .. 4-39
4-17 Integer Move String Instructions ... 4-40
4-18 Floating-Point Load Instructions ... 4-42
4-19 Floating-Point Store Instructions ... 4-45
4-20 Floating-Point Move Instructions .. 4-48
4-21 BO Operand Encodings .. 4-55
4-22 Branch Instructions ... 4-56
4-23 Condition Register Logical Instructions .. 4-58
4-24 System Linkage Instructions .. 4-59
4-25 Trap Instructions... 4-60
4-26 TO Operand Bit Encoding... 4-60
4-27 Move to/from Machine State Register/Condition Register Instructions 4-61
4-28 Move to/from Special Purpose Register Instructions 4-62
4-29 User-Level SPR Encodings ... 4-62
4-30 Supervisor-Level SPR Encodings ... 4-63
4-31 Development Support SPR Encodings ... 4-64
4-32 Move from Time Base Instruction .. 4-65
4-33 User-Level TBR Encodin g .. 4-65
4-34 Memory Synchronization Instructions ... 4-67
4-35 Instruction Cache Management Instruction .. 4-68
5-1 Instruction Cache Programming Model ... 5-3
5-2 ICCST Bit Settings... 5-4
5-3 ICADR Bit Settings .. 5-5
5-4 ICDAT Bit Settings... 5-5
5-5 ICADR Bits Function for the Cache Read Command.. 5-10
5-6 ICDAT Layout During a Tag Read... 5-11
6-1 RCPU Exception Classes ... 6-2
6-2 Handling of Precise Exceptions ... 6-4
6-3 Exception Vectors and Conditions .. 6-6
6-4 Manipulating EE and RI Bits .. 6-10
6-5 Exception Priorities ... 6-11
6-6 Detection Order of Synchronous Exceptions... 6-13
6-7 Machine State Register Bit Settings ... 6-15
6-8 Floating-Point Exception Mode Bits ... 6-16
6-9 MSR Setting Due to Exception .. 6-17
6-10 DAR, BAR, and DSISR Values in Exception Processing 6-18
6-11 Exception Latency ... 6-19
6-12 Settings Caused by Reset .. 6-20
6-13 Machine Check Exception Processor Actions ... 6-21
6-14 Register Settings Following a Machine Check Exception 6-22
6-15 Register Settings Following External Interrupt.. 6-23
 MOTOROLA LIST OF TABLES RCPU

xxxviii Revised 1 February 1999 REFERENCE MANUAL

Table Title Page
6-16 Register Settings for Alignment Exception ... 6-24
6-17 DSISR[15:21] Settings .. 6-25
6-18 Register Settings Following Program Exception ... 6-28
6-19 Register Settings Following a Floating-Point Unavailable Exception 6-28
6-20 Register Settings Following a Decrementer Exception 6-29
6-21 Register Settings Following a System Call Exception 6-30
6-22 Register Settings Following a Trace Exception .. 6-30
6-23 Register Settings Following a Floating-Point Assist Exception......................... 6-31
6-24 Software/Hardware Partitioning in Operands Treatment................................... 6-33
6-25 FPECR Bit Settings .. 6-35
6-26 FPSCR Bit Settings .. 6-36
6-27 Floating-Point Result Flags in FPSCR.. 6-38
6-28 Floating-Point Exception Mode Bits .. 6-41
6-29 Register Settings Following a Software Emulation Exception 6-47
6-30 Register Settings Following Data Breakpoint Exception 6-48
6-31 Register Settings Following an Instruction Breakpoint Exception..................... 6-48
6-32 Register Settings Following a

Maskable External Breakpoint Exception.. 6-49
6-33 Register Settings Following a

Non-Maskable External Breakpoint Exception .. 6-50
7-1 Load/Store Instructions Timing ... 7-8
7-2 Encodings of External-to-the-Processor SPRs .. 7-11
7-3 Instruction Execution Timing .. 7-12
7-4 Control Registers and Serialized Access ... 7-15
8-1 Program Trace Cycle Attribute Encodings... 8-3
8-2 Fetch Show Cycles Control ... 8-4
8-3 VF Pins Instruction Encodings .. 8-6
8-4 VF Pins Queue Flush Encodings... 8-6
8-5 VFLS Pin Encodings.. 8-7
8-6 Cycle Type Encodings ... 8-8
8-7 Detecting the Trace Buffer Starting Point .. 8-11
8-8 I-bus Watchpoint Programming Options.. 8-18
8-9 L-Bus Data Events ... 8-20
8-10 L-Bus Watchpoints Programming Options... 8-20
8-11 Trap Enable Data Shifted Into Development Port Shift Register 8-33
8-12 Breakpoint Data Shifted Into Development Port Shift Register 8-33
8-13 CPU Instructions/Data Shifted into Shift Register.. 8-33
8-14 Status Shifted Out of Shift Register — Non-Debug Mode 8-34
8-15 Status/Data Shifted Out of Shift Register .. 8-35
8-16 Sequencing Error Activity .. 8-36
8-17 Checkstop State and Debug Mode.. 8-41
RCPU LIST OF TABLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 xxxix

Table Title Page
8-18 Debug Mode Development Port Usage ... 8-42
8-19 Non-Debug Mode Development Port Usage ... 8-45
8-20 Prologue Events .. 8-45
8-21 Epilogue Events... 8-46
8-22 Peek Instruction Sequence.. 8-46
8-23 Poke Instruction Sequence.. 8-47
8-24 Development Support Programming Model ... 8-49
8-25 Development Support Registers Read Access Protection 8-50
8-26 Development Support Registers Write Access Protection................................. 8-50
8-27 CMPA-CMPD Bit Settings ... 8-51
8-28 CMPE-CMPF Bit Settings.. 8-51
8-29 CMPG-CMPH Bit Settings ... 8-52
8-30 ICTRL Bit Settings ... 8-53
8-31 LCTRL1 Bit Settings .. 8-55
8-32 LCTRL2 Bit Settings .. 8-56
8-33 Breakpoint Counter A Value and Control Register (COUNTA) 8-58
8-34 Breakpoint Counter B Value and Control Register (COUNTB) 8-59
8-35 ECR Bit Settings .. 8-60
8-36 DER Bit Settings ... 8-62
9-1 Instruction Formats ... 9-2
9-2 RTL Notation and Conventions ... 9-4
9-3 Precedence Rules .. 9-5
9-4 Simplified Mnemonics for addi Instruction ... 9-10
9-5 Simplified Mnemonics for addic Instruction ... 9-11
9-6 Simplified Mnemonics for addic. Instruction .. 9-12
9-7 Simplified Mnemonics for addis Instruction ... 9-13
9-8 Simplified Mnemonics for

bc, bca, bcl, and bcla Instructions ... 9-22
9-9 Simplified Mnemonics for

bcctr and bcctrl Instructions ... 9-26
9-10 Simplified Mnemonics for
bclr and bclrl Instructions .. 9-28
9-11 Simplified Mnemonics for cmp Instruction ... 9-30
9-12 Simplified Mnemonics for cmpi Instruction .. 9-31
9-13 Simplified Mnemonics for cmpl Instruction .. 9-32
9-14 Simplified Mnemonics for cmpli Instruction.. 9-33
9-15 Simplified Mnemonics for creqv Instruction ... 9-37
9-16 Simplified Mnemonics for crnor Instruction.. 9-39
9-17 Simplified Mnemonics for cror Instruction .. 9-40
9-18 Simplified Mnemonics for crxor Instruction .. 9-42
9-19 Simplified Mnemonics for mfspr Instruction... 9-114
 MOTOROLA LIST OF TABLES RCPU

xl Revised 1 February 1999 REFERENCE MANUAL

Table Title Page
9-20 TBR Encodings for mftb... 9-115
9-21 Simplified Mnemonics for mfspr Instruction... 9-116
9-22 Simplified Mnemonics for mtcrf Instruction .. 9-117
9-23 Simplified Mnemonics for mtspr Instruction... 9-124
9-24 Simplified Mnemonics for nor Instruction... 9-131
9-25 Simplified Mnemonics for or Instruction... 9-132
9-26 Simplified Mnemonics for ori Instruction .. 9-134
9-27 Simplified Mnemonics for rlwimi Instruction... 9-137
9-28 Simplified Mnemonics for rlwinm Instruction.. 9-139
9-29 Simplified Mnemonics for rlwnm Instruction .. 9-140
9-30 Simplified Mnemonics for subf Instruction ... 9-173
9-31 Simplified Mnemonics for subfc Instruction ... 9-174
9-32 Simplified Mnemonics for tw Instruction .. 9-180
9-33 Simplified Mnemonics for twi Instruction.. 9-181
A-1 Complete Instruction List Sorted by Mnemonic... A-1
E-1 Condition Register CR Field Bit Symbol .. E-1
E-2 Word Compare Simplified Mnemonics ... E-3
E-3 Word Rotate and Shift Instructions.. E-4
E-4 BO Operand Encodings ... E-5
E-5 Simplified Branch Mnemonics .. E-6
E-6 Operands for Simplified Branch Mnemonics ... E-7
E-7 Simplified Branch Mnemonics with Comparison Conditions E-9
E-8 Operands for Simplified Branch

Mnemonics with Comparison Conditions .. E-10
E-9 Condition Register Logical Mnemonics... E-12
E-10 Trap Mnemonics Encoding ... E-13
E-11 Trap Mnemonics... E-13
E-12 TO Operand Bit Encoding ... E-14
E-13 SPR Simplified Mnemonics .. E-15
RCPU LIST OF TABLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 xli

Table Title Page
 MOTOROLA LIST OF TABLES RCPU

xlii Revised 1 February 1999 REFERENCE MANUAL

SECTION 1
OVERVIEW

This section provides an overview of RCPU features and the PowerPC Architec-
tureTM and summarizes the operation of the RCPU as a PowerPCTM implementa-
tion.

1.1 RCPU Overview

The RCPU is a single-issue, 32-bit implementation of the PowerPC architecture.
The processor provides 32-bit effective addresses, integer data types of 8, 16, and
32 bits, and floating-point data types of 32 and 64 bits.

The RCPU integrates four execution units: an integer unit (IU), a load/store unit
(LSU), a branch processing unit (BPU), and a floating-point unit (FPU). The RCPU
can issue one sequential (non-branch) instruction per clock cycle. In addition, the
processor attempts to evaluate branch conditions ahead of time and execute
branch instructions simultaneously with sequential instructions, often resulting in
zero-cycle execution time for branch instructions. Instructions can complete out of
order for increased performance; however, the processor makes execution appear
sequential.

RCPU-based microcontrollers (MCUs) include an on-chip, four-Kbyte, two-way
set-associative instruction cache (I-cache). The I-cache uses a least recently used
(LRU) replacement algorithm.

RCPU-based MCUs include a number of features to aid in system debugging. Fea-
tures implemented in the silicon include internal breakpoint comparators, internal
bus visibility, program flow tracking, and a development port.

Figure 1-1 is a simplified block diagram of an RCPU-based MCU.
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-1

Figure 1-1 RCPU-Based Microcontroller

The following subsections describe the features of the RCPU, provide a block dia-
gram showing the major functional units, and give an overview of RCPU operation.

1.1.1 RCPU Features

Major features of the RCPU are as follows:

• High-performance microprocessor
— Single clock-cycle execution for most instructions

• Four independent execution units
— Independent load/store unit (LSU) for load and store operations
— Branch processor unit (BPU) featuring static branch prediction

ON-CHIP
PERIPHERAL

ON-CHIP
PERIPHERAL

INTERMODULE BUS 2 (IMB2)

DEVELOPMENT
SUPPORT

RISC MCU
PROCESSOR

ON-CHIP SRA

PERIPHERAL

4-KBYTE

DEVELOPMENT

EXTERNAL

PORT

I-CACHE

CONTROL UNIT

INTERNAL LOAD/STORE BUS

INTERNAL INSTRUCTION BUS (I-BUS)

(PCU)

SYSTEM
INTERFACE

UNIT

(RCPU)

IRQs

BUS
(SIU)

RCPU MCU

(L-BUS)
 MOTOROLA OVERVIEW RCPU

1-2 Revised 1 February 1999 REFERENCE MANUAL

— A 32-bit integer unit (IU)
— Floating-point unit (FPU) for both single- and double-precision operations

(fully IEEE 754-compliant when used with software envelope)
• 32 general-purpose registers (GPRs) for integer operands
• 32 floating-point registers (FPRs) for single- or double-precision operands
• Facilities for enhanced system performance

— Programmable big- and little-endian byte ordering
— Atomic memory references

• In-system testability and debugging features through boundary-scan capa-
bility

• High instruction and data throughput
— Condition register (CR) look-ahead operations performed by BPU
— Branch-folding capability during execution (zero-cycle branch execution

time)
— Programmable static branch prediction on unresolved conditional

branches
— A pre-fetch queue that can hold up to four instructions, providing look-

ahead capability
— Interlocked pipelines with feed-forwarding that control data dependencies

in hardware
— Four-Kbyte instruction cache: two-way set-associative, LRU replacement

algorithm
— Programmable static branch prediction on conditional branches

1.1.2 RCPU Block Diagram

Figure 1-2 provides a block diagram of the RCPU.
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-3

Figure 1-2 RCPU Block Diagram

WRITE BACK BUS S
O

U
R

C
E

 B
U

S
E

SC
O

N
T

R
O

L
B

U
S

B
R

A
N

C
H

I-ADDR

I-DATA

L-ADDR

L-DATA

F
P

R
(3

2
X

 6
4)

L
O

A
D

/

F
LO

A
T

IN
G

D
A

T
A

F
P

R

H
IS

T
O

R
Y

LO
A

D
/

IN
T

E
G

E
R

A

D
D

R
E

S
S

IM
U

L/
ID

IV

A
LU

/
G

P
R

H
IS

T
O

R
Y

G
P

R
(3

2
X

 3
2)

C
O

N
T

R
O

L
R

E
G

S

(4
 S

LO
T

S
/C

LO
C

K
)

IN
S

T
R

U
C

T
IO

N
P

R
E

-F
E

T
C

H
P

R
O

C
E

S
S

O
R

N
E

X
T

 A
D

D
R

E
S

S

G
E

N
E

R
A

T
IO

N

IN
ST

R
U

C
TI

O
N

 S
EQ

U
EN

CE
R

F
P

U

R
C

P
U

� ��

B
F

U

2 SLOTS/CLOC

Q
U

E
U

E
U

N
IT

RCPU BLOCK

S
T

O
R

E

D
A

T
A

S
T

O
R

E
LO

A
D

/
S

T
O

R
E

 MOTOROLA OVERVIEW RCPU

1-4 Revised 1 February 1999 REFERENCE MANUAL

1.1.3 Instruction Sequencer

The instruction sequencer provides centralized control over data flow between ex-
ecution units and register files. The sequencer implements the basic instruction
pipeline, fetches instructions from the memory system, issues them to available ex-
ecution units, and maintains a state history so it can back the machine up in the
event of an exception.

In addition, the sequencer implements all branch processor instructions, which in-
clude flow control and condition register instructions. Refer to 1.1.4.1 Branch Pro-
cessing Unit (BPU) for more details on the branch processing unit within the
instruction sequencer.

The instruction sequencer fetches the instructions from the instruction cache into
the instruction pre-fetch queue, which can hold up to four instructions. The proces-
sor uses branch folding (a technique of removing the branch instructions from the
pre-fetch queue) in order to execute branches in parallel with execution of sequen-
tial instructions. Sequential (non-branch) instructions reaching the top of the in-
struction pre-fetch queue are issued to the execution units. Instructions may be
flushed from the queue when an external interrupt is detected, a previous instruc-
tion causes an exception, or a branch prediction turns out to be incorrect.

All instructions, including branches, enter the history buffer along with processor
state information that may be affected by the instruction’s execution. This informa-
tion is used to enable out-of-order completion of instructions together with the han-
dling of precise exceptions. Instructions may be flushed from the machine when an
exception is taken. Refer to 6.3 Precise Exception Model Implementation and to
7.1 Instruction Flow for additional information.

An instruction retires from the machine after it finishes execution without exception
and all preceding instructions have already retired from the machine.

Figure 1-3 illustrates the instruction flow in the RCPU.
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-5

Figure 1-3 RCPU Instruction Flow

1.1.4 Independent Execution Units

The RCPU supports independent floating-point, integer, load/store, and branch
processing execution units, making it possible to implement advanced features
such as look-ahead operations. For example, since branch instructions do not de-
pend on GPRs or FPRs, branches can often be resolved early, eliminating stalls
caused by taken branches.

Table 1-1 summarizes the RCPU execution units.

EXECUTION UNITS

HISTORY BUFFER

INSTRUCTION BRANC
UNIT

ISSUE

RETIRE

FETCH

WRITE BACK

RISCPU INST FLOW

QUEUE
PRE-FETCH
 MOTOROLA OVERVIEW RCPU

1-6 Revised 1 February 1999 REFERENCE MANUAL

1.1.4.1 Branch Processing Unit (BPU)

The branch processor unit executes all branch instructions defined in the PowerPC
architecture, including flow control and condition register instructions.

The BPU is implemented as part of the instruction sequencer. The BPU performs
condition register look-ahead operations on conditional branches. The BPU looks
through the instruction queue for a conditional branch instruction and attempts to
resolve it early, achieving the effect of a zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the condi-
tional branch. (Refer to the discussion of the BO field in 4.6 Flow Control Instruc-
tions.) Therefore, when an unresolved conditional branch instruction is
encountered, the processor pre-fetches instructions from the predicted target
stream until the conditional branch is resolved.

The BPU contains an adder to compute branch target addresses and three special-
purpose, user-accessible registers: the link register (LR), the count register (CTR),
and the condition register (CR). The BPU calculates the return pointer for subrou-
tine calls and saves it into the LR. The LR also contains the branch target address
for the branch conditional to link register (bclrx) instruction. The CTR contains the
branch target address for the branch conditional to count register (bcctrx) instruc-
tion. The contents of the LR and CTR can be copied to or from any GPR. Because
the BPU uses dedicated registers rather than general-purpose or floating-point
registers, execution of branch instructions is independent from execution of integer
and floating-point instructions.

1.1.4.2 Integer Unit (IU)

The integer unit executes all fixed-point (integer) processor instructions defined by

Table 1-1 RCPU Execution Units

Unit Description

Branch processor
unit (BPU)

Includes the implementation of all branch instructions.

Load/store unit
(LSU)

Includes implementation of all load and store instructions, whether defined as
part of the integer processor or the floating-point processor.

Integer unit (IU) Includes implementation of all integer instructions except load/store
instructions. This module includes the GPRs (including GPR history and
scoreboard) and the following subunits:
• The IMUL-IDIV unit includes the implementation of the integer multiply and

divide instructions.
• The ALU-BFU unit includes implementation of all integer logic, add and

subtract instructions, and bit field instructions.

Floating-point unit
(FPU)

Includes the FPRs (including FPR history and scoreboard) and the
implementation of all floating-point instructions except load and store floating-
point instructions.
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-7

the PowerPC architecture, except for fixed-point load and store instructions, which
are implemented by the load/store unit. The IU consists of two execution units:

• The IMUL-IDIV executes the integer multiply and divide instructions.
• The ALU-BFU unit executes all integer logic, add, and subtract instructions,

and bit-field instructions.

The IU includes the integer exception register (XER) and the general-purpose reg-
ister file. These registers are described in SECTION 2 REGISTERS.

1.1.4.3 Floating-Point Unit (FPU)

The floating-point unit executes all the floating-point processor instructions defined
by the PowerPC architecture, except for floating-point load and store instructions,
which are executed by the load/store unit.

The floating-point unit contains a double-precision multiply array, the floating-point
status and control register (FPSCR), and the FPRs. The multiply-add array allows
the processor to efficiently implement floating-point operations such as multiply,
multiply-add, and divide.

The RCPU depends on a software envelope to fully implement the IEEE floating-
point specification. Overflows, underflows, NaNs, and denormalized numbers
cause floating-point assist exceptions that invoke a software routine to deliver (with
hardware assistance) the correct IEEE result. Refer to 6.11.10 Floating-Point As-
sist Exception (0x00E00) for additional information.

To accelerate time-critical operations and make them more deterministic, the
RCPU provides a mode of operation that avoids invoking the software envelope
and attempts to deliver results in hardware that are adequate for most applications,
if not in strict conformance with IEEE standards. In this mode, denormalized num-
bers, NaNs, and IEEE-invalid operations are treated as legitimate, returning default
results rather than causing floating-point assist exceptions.

1.1.4.4 Load/Store Unit (LSU)

The load/store unit handles all integer and floating-point load and store instruc-
tions, including unaligned and string accesses. LSU instructions transfer data be-
tween the integer and floating-point register files and the chip-internal load/store
bus (L-bus). The load/store unit is implemented as an independent execution unit
so that stalls in the memory pipeline do not cause the master instruction pipeline to
stall (unless there is a data dependency). The unit is fully pipelined so that memory
instructions of any size may be issued on back-to-back cycles.

There is a 32-bit wide data path between the load/store unit and the integer register
file and a 64-bit wide data path between the load/store unit and the floating-point
register file.

The LSU interfaces with the external bus interface for all instructions that access
memory. Addresses are formed by adding the source one register operand speci-
 MOTOROLA OVERVIEW RCPU

1-8 Revised 1 February 1999 REFERENCE MANUAL

fied by the instruction (or zero) to either a source two register operand or to a 16-
bit, immediate value embedded in the instruction.

1.1.5 Instruction Cache

RCPU-based MCUs contain a 4-Kbyte, two-way set associative instruction cache.
The cache is organized into 128 sets, two lines per set, and four words per line.
Cache lines are aligned on four-word boundaries in memory.

A cache access cycle begins with an instruction request from the instruction unit in
the processor. In case of a cache hit, the instruction is delivered to the instruction
unit. In the case of a cache miss, the cache initiates a burst read cycle on the I-bus
with the address of the requested instruction. The first word received from the bus
is the requested instruction. The cache forwards this instruction to the instruction
unit of the CPU as soon as it is received from the I-bus. A cache line is then select-
ed to receive the data which will be coming from the bus. An LRU replacement al-
gorithm is used to select a line when no empty lines are available.

Each cache line can be used as an SRAM, thus allowing the application to lock crit-
ical code segments that need fast and deterministic execution time.

The instruction cache is described in SECTION 5 INSTRUCTION CACHE.

1.1.6 Instruction Pipeline

The RCPU is a pipelined processor. A pipelined processor is one in which the pro-
cessing of an instruction is broken down into discrete stages; in the RCPU, these
stages are dispatch, execute, writeback, and retirement (described below). Be-
cause instruction processing is broken into a series of steps, an instruction does
not require the entire resources of the processor. For example, after an instruction
completes the decode stage, it can pass on to the next stage, while the subsequent
instruction can advance into the decode stage.

The RCPU instruction pipeline has four stages:

1. The dispatch stage is implemented using a distributed mechanism. The
central dispatch unit broadcasts the instruction to all units. In addition,
scoreboard information (regarding data dependencies) is broadcast to each
execution unit. Each execution unit decodes the instruction. If the instruction
is not implemented, a program exception is taken. If the instruction is legal
and no data dependency is found, the instruction is accepted by the appro-
priate execution unit, and the data found in the destination register is copied
to the history buffer. If a data dependency exists, the machine is stalled until
the dependency is resolved.

2. In the execute stage, each execution unit that has an executable instruction
executes the instruction (perhaps over multiple cycles).

3. In the writeback stage, the execution unit writes the result to the destination
register and reports to the history buffer that the instruction is completed.

4. In the retirement stage, the history buffer retires instructions in architectural
order. An instruction retires from the machine if it completes execution with
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-9

no exceptions and if all instructions preceding it in the instruction stream
have finished execution with no exceptions. As many as six instructions can
be retired in one clock.

The history buffer maintains the correct architectural machine state. An exception
is taken only when the instruction is ready to be retired from the machine. When an
exception is taken, all instructions following the excepting instruction are canceled,
(i.e., the values of the affected destination registers are restored using the values
saved in the history buffer during the dispatch stage).

Figure 1-4 illustrates the basic instruction pipeline timing. Refer to SECTION 7 IN-
STRUCTION TIMING for more detailed timing illustrations.

Figure 1-4 Basic Instruction Pipeline

1.1.7 Development Support

Development tools are used by a microcomputer system developer to debug the
hardware and software of a target system. These tools are used to give the devel-
oper some control over the execution of the target program and to allow the user
to debug the program by observing its execution. In-circuit emulators, bus state an-
alyzers, and software monitors are the most frequently used debugging tools. The
RCPU supports the use of development tools by providing internal breakpoint com-
parators, internal bus visibility, program flow tracking, and a development port.

For details on development support, refer to SECTION 8 DEVELOPMENT SUP-
PORT.

I1 I2

I1

I1

I1

I1

LOAD

I1

STORE

I1

I1

����������������������� ������� ���������������������������������� �����������������������������������

I3 �
��������
��������������

I2

I2

I2

���
������

�������� ������FETCH

DECODE

READ AND EXECUTE

WRITEBACK (TO DEST REG)

L ADDRESS DRIVE

L DATA

LOAD WRITEBACK

BRANCH DECODE

BRANCH EXECUTE

����������������������� ������� ���������������������������������� �����������������������������������

RCPU INST PL
 MOTOROLA OVERVIEW RCPU

1-10 Revised 1 February 1999 REFERENCE MANUAL

1.2 Levels of the PowerPC Architecture

The PowerPC architecture consists of three layers. Adherence to the PowerPC ar-
chitecture can be measured in terms of which of the following levels of the archi-
tecture are implemented:

• PowerPC user instruction set architecture (UISA) — Defines the base user-
level instruction set, user-level registers, data types, floating-point exception
model, memory models for a uniprocessor environment, and programming
model for a uniprocessor environment.

• PowerPC virtual environment architecture (VEA) — Describes the memory
model for a multiprocessor environment, defines cache control instructions,
and describes other aspects of virtual environments. Implementations that
conform to the VEA also adhere to the UISA, but may not necessarily adhere
to the OEA.

• PowerPC operating environment architecture (OEA) — Defines the memory
management model, supervisor-level registers, synchronization require-
ments, and the exception model. Implementations that conform to the OEA
also adhere to the UISA and the VEA.

1.3 The RCPU as a PowerPC Implementation

This subsection describes the RCPU as a member of the PowerPC processor
family.

1.3.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most compu-
tational instructions. Source operands for these instructions are accessed from the
registers or are provided as immediate values embedded in the instruction opcode.
The three-register instruction format allows specification of a target register distinct
from the two source operands. Load and store instructions transfer data between
memory and on-chip registers.

PowerPC processors have two levels of privilege: supervisor mode of operation
(typically used by the operating system) and user mode of operation (used by the
application software). The programming models incorporate 32 GPRs, 32 FPRs,
special-purpose registers (SPRs), and several miscellaneous registers. Each Pow-
erPC processor also has its own unique set of implementation-specific registers.

The RCPU is a 32-bit implementation of the PowerPC architecture. In the RCPU,
the time base and FPRs are 64 bits; all other registers are 32 bits.

The following sections summarize the PowerPC registers that are implemented in
the RCPU. Refer to SECTION 2 REGISTERS for detailed descriptions of PowerPC
registers. In addition, for descriptions of the I-cache control registers, refer to SEC-
TION 5 INSTRUCTION CACHE. For details on development-support registers, re-
fer to SECTION 8 DEVELOPMENT SUPPORT.
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-11

1.3.1.1 General-Purpose Registers (GPRs)

The processor provides 32 user-level, general-purpose registers (GPRs). The
GPRs serve as the data source or destination for all integer instructions and pro-
vide addresses for all memory-access instructions.

1.3.1.2 Floating-Point Registers (FPRs)

The processor also provides 32 user-level 64-bit floating-point registers. The FPRs
serve as the data source or destination for floating-point instructions. These regis-
ters can contain data objects of either single- or double-precision floating-point for-
mats. The floating-point register file can only be accessed by the FPU.

1.3.1.3 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect
the results of certain operations, such as move, integer and floating-point compare,
arithmetic, and logical instructions, and provide a mechanism for testing and
branching.

1.3.1.4 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that
contains all exception signal bits, exception summary bits, exception enable bits,
and rounding control bits needed for compliance with the IEEE 754 standard.

1.3.1.5 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the
state of the processor. The contents of this register are saved when an exception
is taken and restored when the exception handling completes.

1.3.1.6 Special-Purpose Registers (SPRs)

The processor provides several special-purpose registers that serve a variety of
functions, such as providing controls, indicating status, configuring the processor,
and performing special operations. Some SPRs are accessed implicitly as part of
executing certain instructions. All SPRs can be accessed by using the move to/
from special-purpose register instructions, mtspr and mfspr.

1.3.1.7 User-Level SPRs

The following SPRs are accessible by user-level software:

• The link register (LR) can be used to provide the branch target address and
to hold the return address after branch and link instructions.

• The count register (CTR) is decremented and tested automatically as a result
of branch-and-count instructions.

• The integer exception register (XER) contains the integer carry and overflow
bits and two fields for the load string and compare byte indexed (lscbx) in-
struction. The XER is 32 bits wide in all implementations.
 MOTOROLA OVERVIEW RCPU

1-12 Revised 1 February 1999 REFERENCE MANUAL

• The time base (TB) can be read at the user privilege level. A separate SPR
number is provided for writing to the time base. Writes to the time base can
occur only at the supervisor privilege level.

NOTE
While these registers are defined as SPRs and can be accessed by
using the mtspr and mfspr instructions, they (except for the time
base) are typically accessed implicitly.

1.3.1.8 Supervisor-Level SPRs

The processor also contains SPRs that can be accessed only by supervisor-level
software. These registers consist of the following:

• The data access exception (DAE)/source instruction service register (DSISR)
defines the cause of data access and alignment exceptions.

• The data address register (DAR) holds the address of an access after an
alignment or data access exception.

• Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.
The DEC frequency is provided as a subdivision of the processor clock fre-
quency.

• The machine status save/restore registe r0 (SRR0) is used by the processor
to save the address of the instruction that caused the exception, and the ad-
dress to return to when a return from interrupt (rfi) instruction is executed.

• The machine status save/restore regist er1 (SRR1) is used to save machine
status on exceptions and to restore machine status when an rfi instruction is
executed.

• General SPRs, SPRG[0:3], are provided for operating system use.
• The processor version register (PVR) is a read-only register that identifies the

version (model) and revision level of the PowerPC processor.
• The time base (TB) can be written to only at the supervisor privilege level.

Separate SPR numbers are provided for reading and writing to the time base.

The following supervisor-level SPRs are implementation-specific to the RCPU:

• The EIE, EID, and NRI are provided to facilitate exception processing.
• Cache control SPRs allow system software to control the operation of the in-

struction cache.
• Development support SPRs allow development-system software control over

the on-chip development support.
• The floating-point exception cause register (FPECR) is a 32-bit internal status

and control register used to assist the software emulation of floating-point op-
erations.

1.3.2 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing
modes and summarize the instructions implemented in the RCPU.
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-13

1.3.2.1 PowerPC Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction
formats are consistent among all instruction types, permitting efficient decoding to
occur in parallel with operand accesses. This fixed instruction length and consis-
tent format greatly simplify instruction pipelining. In addition, each instruction is de-
fined in a way that simplifies pipelined implementations and allows maximum
realization of instruction-level parallelism.

The PowerPC instructions are divided into the following categories:

• Integer instructions. These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions

• Floating-point instructions. These include floating-point computational instruc-
tions, as well as instructions that affect the floating-point status and control
register (FPSCR).
— Floating-point arithmetic instructions Floating-point multiply-add instruc-

tions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions

• Load/store instructions. These include integer and floating-point load and
store instructions.
— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store
— Floating-point move instructions

• Flow control instructions. These include branching instructions, condition reg-
ister logical instructions, trap instructions, and other instructions that affect the
instruction flow.
— Branch and trap instructions
— Condition register logical instructions

• Processor control instructions. These instructions are used for synchronizing
memory accesses and cache management.
— Move to/from special-purpose register instructions
— Synchronize
— Instruction synchronize

• Memory control instructions. These instructions provide control of the instruc-
tion cache.
— Instruction cache block invalidate

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point oper-
ands. The PowerPC architecture uses instructions that are four bytes long and
word-aligned. It provides for byte, half-word, and word operand loads and stores
between memory and a set of 32 general-purpose registers (GPRs). It also pro-
 MOTOROLA OVERVIEW RCPU

1-14 Revised 1 February 1999 REFERENCE MANUAL

vides for word and double-word operand loads and stores between memory and a
set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory
contents must be loaded into a register, modified, and then written back to the tar-
get location with distinct instructions.

1.3.2.2 PowerPC Addressing Modes

The effective address (EA) is the 32-bit address computed by the processor when
executing a memory access or branch instruction or when fetching the next se-
quential instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA = (rA|0) + offset (register indirect with immediate index)
• EA = (rA|0) + rB (register indirect with index)

Note that with register indirect with immediate index addressing, the offset can be
equal to zero.

Refer to 4.1.2 Addressing Modes and Effective Address Calculation for addi-
tional information.

1.3.2.3 RCPU Instruction Set

The RCPU instruction set is defined as follows:

• The RCPU supports all 32-bit PowerPC UISA required instructions.
• The RCPU supports the following PowerPC VEA instructions: eieio, icbi,

isync, and mftb.
• The RCPU supports the following PowerPC OEA instructions: mfmsr, mfspr,

mtmsr, mtspr, rfi, and sc. (Note that mtspr, mfspr, and sc are also defined
in the UISA architecture.)

• The RCPU does not provide any implementation-specific instructions not de-
fined in the PowerPC architecture.

• The RCPU implements the following instruction which is defined as optional
in the PowerPC architecture: stfiwx.

An attempt to execute a PowerPC optional instruction that is not implemented in
hardware causes the RCPU to take the implementation dependent software emu-
lation exception.

For additional information on the PowerPC architecture, refer to PowerPC Micro-
processor Family: the Programming Environments, MPCFPE/AD (Motorola order
number).
RCPU OVERVIEW MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 1-15

1.3.3 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor
state as a result of external signals, errors, or unusual conditions arising in the ex-
ecution of instructions. When exceptions occur, the address of the instruction to be
executed after control is returned to the original program and the contents of the
machine state register are saved to the save/restore registers (SRR0 and SRR1).
Program control then passes from user to supervisor level, and software continues
execution at an address (exception vector) predetermined for each exception.

Although multiple exception conditions can map to a single exception vector, the
specific condition can be determined by examining a register associated with the
exception — for example, the DAE/DSISR and the FPSCR. Specific exception
conditions can be explicitly enabled or disabled by software.

While exception conditions may be recognized out of order, they are handled strict-
ly in order. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream are allowed to complete.
Any exceptions caused by those instructions are handled in order.

Unless a catastrophic condition causes a non-maskable exception, only one ex-
ception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the ex-
ception handler handles an exception, the instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the processor can recover the
machine state following an exception.

For additional information on exception handling, refer to SECTION 6 EXCEP-
TIONS.
 MOTOROLA OVERVIEW RCPU

1-16 Revised 1 February 1999 REFERENCE MANUAL

SECTION 2
REGISTERS

This section describes the RCPU register organization as defined by the three lev-
els of the PowerPC architecture: the user instruction set architecture (UISA), the
virtual environment architecture (VEA), and the operating environment architecture
(OEA), as well as the RCPU’s implementation-specific registers.

2.1 Programming Models

The processor operates at one of two privilege levels: supervisor level (typically
used by the operating environment) or user level (used by the application soft-
ware). This division allows the operating system to control the application environ-
ment, protecting operating-system and critical machine resources. Instructions that
control the state of the processor and supervisor registers can be executed only
when the processor is operating at the supervisor level.

Supervisor-level access is provided through the processor’s exception mecha-
nism. That is, when an exception is taken, either due to an error or problem that
needs to be serviced or deliberately through the use of a trap instruction, the pro-
cessor begins operating in supervisor mode. The level of access is indicated by the
privilege-level (PR) bit in the machine state register (MSR).

Figure 2-1 shows the user-level and supervisor-level RCPU programming models
and also illustrates the three levels of the PowerPC architecture. The numbers to
the left of the SPRs indicate the decimal number that is used in the syntax of the
instruction operands to access the register.

NOTE
Registers such as the general-purpose registers (GPRs) and float-
ing-point registers (FPRs) are accessed through operands that are
part of the instructions. Access to registers can be explicit (that is,
through the use of specific instructions for that purpose such as move
to special-purpose register (mtspr) and move from special-purpose
register (mfspr) instructions) or implicitly as the part of the execution
of an instruction. Some registers are accessed both explicitly and
implicitly.
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-1

Figure 2-1 RCPU Programming Model

Supervisor-Level SPRs
SPR18 DAE/ Source Instruction Service Register (DSISR)

SPR19 Data Address Register (DAR)

SPR22 Decrementer Register (DEC)

SPR26 Save and Restore Register 0 (SRR0)

SPR27 Save and Restore Register 1 (SRR1)

SPR80 External Interrupt Enable (EIE) *
SPR81 External Interrupt Disable (EID) *
SPR82 Non-Recoverable Interrupt (NRI) *

SPR272 SPR General 0 (SPRG0)

SPR273 SPR General 1 (SPRG1)

SPR274 SPR General 2 (SPRG2)

SPR275 SPR General 3 (SPRG3)

SPR284 Time Base Lower – Write (TBL)

SPR285 Time Base Upper – Write (TBU)

SPR287 Processor Version Register (PVR)

SPR560 I-Cache Control and Status Register (ICCST) *
SPR561 I-Cache Address Register (ICADR) *
SPR562 I-Cache Data Port (ICDAT) *

SPR1022 Floating-Point Exception Cause Register (FPECR) *

Development Support SPRs

SPR144 Comparator A Value Register (CMPA) *
SPR145 Comparator B Value Register (CMPB) *
SPR146 Comparator C Value Register (CMPC) *
SPR147 Comparator D Value Register (CMPD) *
SPR148 Exception Cause Register (ECR) *
SPR149 Debug Enable Register (DER) *
SPR150 Breakpoint Counter A Value and Control (COUNTA) *
SPR151 Breakpoint Counter B Value and Control (COUNTB) *
SPR152 Comparator E Value Register (CMPE) *
SPR153 Comparator F Value Register (CMPF) *
SPR154 Comparator G Value Register (CMPG) *
SPR155 Comparator H Value Register (CMPH) *
SPR156 L-Bus Support Comparators Control (LCTRL1) *
SPR157 L-Bus Support Comparators Control (LCTRL2) *
SPR158 I-Bus Support Control Register (ICTRL) *
SPR159 Breakpoint Address Register (BAR) *
SPR630 Development Port Data Register (DPDR) *

GPR0

GPR1

GPR31

0 31

USER MODEL UISA

0 63

FPR0

FPR1

FPR31

0 31

0 31

Floating Point
Status and

Control
Register

CR

0 31

FPSCR

0 31

Condition
Register

User-Level SPRs
SPR1 Integer Exception Register (XER)

SPR8 Link Register (LR)

SPR9 Count Register (CTR)

Machine State
Register

MSR

0 31

SUPERVISOR MODEL OEA

USER MODEL VEA

Time Base Facility
(for Reading)

SPR268 Time Base Lower — Read (TBL)

SPR269 Time Base Upper — Read (TBU)

0 31

0 31

0 31

RMCU CPU REG MA* Implementation-specific to the RCPU
 MOTOROLA REGISTERS RCPU

2-2 Revised 1 February 1999 REFERENCE MANUAL

Where not otherwise noted, reserved fields in registers are ignored when written
and return zero when read. An exception to this rule is XER[16:23]. These bits are
set to the value written to them and return that value when read.

2.2 PowerPC UISA Register Set

The PowerPC UISA registers can be accessed by either user- or supervisor-level
instructions. The general-purpose registers and floating-point registers are
accessed through instruction operands. Access to registers can be explicit (that is,
through the use of specific instructions for that purpose such as the mtspr and mf-
spr instructions) or implicit as part of the execution (or side effect) of an instruction.
Some registers are accessed both explicitly and implicitly.

2.2.1 General Purpose Registers (GPRs)

Integer data is manipulated in the integer unit’s thirty-two 32-bit GPRs, shown be-
low. These registers are accessed as source and destination registers through op-
erands in the instruction syntax.

2.2.2 Floating-Point Registers (FPRs)

The PowerPC architecture provides thirty-two 64-bit FPRs. These registers are ac-
cessed as source and destination registers through operands in floating-point in-
structions. Each FPR supports the double-precision, floating-point format. Every
instruction that interprets the contents of an FPR as a floating-point value uses the
double-precision floating-point format for this interpretation.

All floating-point arithmetic instructions operate on data located in FPRs and, with
the exception of the compare instructions (which update the CR), place the result
into an FPR. Information about the status of floating-point operations is placed into
the floating-point status and control register (FPSCR) and in some cases, into the
CR, after the completion of the operation’s writeback stage. For information on how
the CR is affected by floating-point operations, see 2.2.4 Condition Register
(CR).

Load and store double instructions transfer 64 bits of data between memory and
the FPRs in the floating-point processor with no conversion. Load single instruc-

GPRs — General Purpose Registers

0 31

GPR0

GPR1

. . .

. . .

GPR31

RESET: UNCHANGED
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-3

tions transfer and convert floating-point values in single-precision floating-point for-
mat from memory to the same value in double-precision floating-point format in the
FPRs. Store single instructions are provided to read a double-precision floating-
point value from a floating-point register, convert it to single-precision floating-point
format, and place it in the target memory location.

Single- and double-precision arithmetic instructions accept values from the FPRs
in double-precision format. For single-precision arithmetic instructions, all input val-
ues must be representable in single-precision format; otherwise, the result placed
into the target FPR and the setting of status bits in the FPSCR and in the condition
register are undefined.

The floating-point arithmetic instructions produce intermediate results that may be
regarded as infinitely precise. After normalization or denormalization, if the preci-
sion of the intermediate result cannot be represented in the destination format (ei-
ther 32-bit or 64-bit) then it must be rounded. The final result is then placed into the
FPR in the double-precision format.

2.2.3 Floating-Point Status and Control Register (FPSCR)

The FPSCR controls the handling of floating-point exceptions and records status
resulting from the floating-point operations. FPSCR[0:23] are status bits.
FPSCR[24:31] are control bits.

FPSCR[0:12] and FPSCR[21:23] are floating-point exception condition bits. These
bits are sticky, except for the floating-point enabled exception summary (FEX) and
floating-point invalid operation exception summary (VX). Once set, sticky bits re-
main set until they are cleared by an mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction.

Table 2-1 summarizes which bits in the FPSCR are sticky bits, which are normal
status bits, and which are control bits.

FPRs — Floating-Point Registers

0 63

FPR0

FPR1

. . .

. . .

FPR31

RESET: UNCHANGED
 MOTOROLA REGISTERS RCPU

2-4 Revised 1 February 1999 REFERENCE MANUAL

FEX and VX are the logical ORs of other FPSCR bits. Therefore these two bits are
not listed among the FPSCR bits directly affected by the various instructions.

A listing of FPSCR bit settings is shown in Table 2-2.

Table 2-1 FPSCR Bit Categories

Bits Type

[0], [3:12], [21:23] Status, sticky

[1:2], [13:20] Status, not sticky

[24:31] Control

FPSCR — Floating-Point Status and Control Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FX FEX VX OX UX ZX XX VXS-
NAN

VXISI VXIDI VXZDZ VXIMZ VXVC FR FI FPRF0

RESET: UNCHANGED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FPRF[16:19] 0 VX-
SOFT

VX-
SQRT

VXCVI VE OE UE ZE XE NI RN

RESET: UNCHANGED

Table 2-2 FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction implicitly sets FPSCR[FX] if
that instruction causes any of the floating-point exception bits in the FPSCR to change fro
zero to one. The mcrfs instruction implicitly clears FPSCR[FX] if the FPSCR field containing
FPSCR[FX] is copied. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions can set or clear FP-
SCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the en-
abled exception conditions. It is the logical OR of all the floating-point exception bits masked
with their respective enable bits. The mcrfs instruction implicitly clears FPSCR[FEX] if the re-
sult of the logical OR described above becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1
instructions cannot set or clear FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any in-
valid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrfs instruction implicitly clears FPSCR[VX] if the result of the logical OR described above
becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot set or clear FP-
SCR[VX] explicitly. This is not a sticky bit.
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-5

3 OX Floating-point overflow exception. This is a sticky bit. See 6.11.10.8 Overflow Exception Con-
dition.

4 UX Floating-point underflow exception. This is a sticky bit. See 6.11.10.9 Underflow Exception
Condition.

5 ZX Floating-point zero divide exception. This is a sticky bit. See 6.11.10.7 Zero Divide Exception
Condition.

6 XX Floating-point inexact exception. This is a sticky bit. See 6.11.10.10 Inexact Exception Con-
dition.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See 6.11.10.6 Invalid
Operation Exception Conditions.

8 VXISI Floating-point invalid operation exception for ∞-∞. This is a sticky bit. See 6.11.10.6 Invalid
Operation Exception Conditions.

9 VXIDI Floating-point invalid operation exception for ∞/∞. This is a sticky bit. See 6.11.10.6 Invalid
Operation Exception Conditions.

10 VXZDZ Floating-point invalid operation exception for 0/0. This is a sticky bit. See 6.11.10.6 Invalid Op-
eration Exception Conditions.

11 VXIMZ Floating-point invalid operation exception for ×*0. This is a sticky bit. See 6.11.10.6 Invalid Op-
eration Exception Conditions.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See 6.11.10.6
Invalid Operation Exception Conditions.

13 FR Floating-point fraction rounded. The last floating-point instruction that potentially rounded the
intermediate result incremented the fraction. (See 3.3.11 Rounding.) This bit is not sticky.

14 FI Floating-point fraction inexact. The last floating-point instruction that potentially rounded the in-
termediate result produced an inexact fraction or a disabled exponent overflow. (See 3.3.11
Rounding.) This bit is not sticky.

[15:19] FPRF Floating-point result flags. This field is based on the value placed into the target register even
if that value is undefined. Refer to Table 2-3 for specific bit settings.
15 Floating-point result class descriptor (C). Floating-point instructions other than the

compare instructions may set this bit with the FPCC bits, to indicate the class of
the result.

[16:19] Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Other
floating-point instructions may set the FPCC bits with the C bit, to indicate the class
of the result. Note that in this case the high-order three bits of the FPCC retain their
relational significance indicating that the value is less than, greater than, or equal
to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

20 — Reserved

Table 2-2 FPSCR Bit Settings (Continued)

Bit(s) Name Description
 MOTOROLA REGISTERS RCPU

2-6 Revised 1 February 1999 REFERENCE MANUAL

Table 2-3 illustrates the floating-point result flags that correspond to FPSCR bits
[15:19].

21 VXSOFT Floating-point invalid operation exception for software request. This bit can be altered only by
the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. The purpose of VXSOFT is to allow
software to cause an invalid operation condition for a condition that is not necessarily associat-
ed with the execution of a floating-point instruction. For example, it might be set by a program
that computes a square root if the source operand is negative. This is a sticky bit. See 6.11.10.6
Invalid Operation Exception Conditions.

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit. This guar-
antees that software can simulate fsqrt and frsqrte, and to provide a consistent interface to
handle exceptions caused by square-root operations. See 6.11.10.6 Invalid Operation Excep-
tion Conditions.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
6.11.10.6 Invalid Operation Exception Conditions.

24 VE Floating-point invalid operation exception enable. See 6.11.10.6 Invalid Operation Exception
Conditions.

25 OE Floating-point overflow exception enable. See 6.11.10.8 Overflow Exception Condition.

26 UE Floating-point underflow exception enable. This bit should not be used to determine whether
denormalization should be performed on floating-point stores. See 6.11.10.9 Underflow Ex-
ception Condition.

27 ZE Floating-point zero divide exception enable. See 6.11.10.7 Zero Divide Exception Condition.

28 XE Floating-point inexact exception enable. See 6.11.10.10 Inexact Exception Condition .

29 NI Non-IEEE mode bit. See 3.4.3 Non-IEEE Operation.

[30:31] RN Floating-point rounding control. See 3.3.11 Rounding.
00 = Round to nearest
01 = Round toward zero
10 = Round toward +infinity
11 = Round toward –infinity

Table 2-2 FPSCR Bit Settings (Continued)

Bit(s) Name Description
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-7

2.2.4 Condition Register (CR)
The condition register (CR) is a 32-bit register that reflects the result of certain op-
erations and provides a mechanism for testing and branching. The bits in the CR
are grouped into eight 4-bit fields, CR0 to CR7.

The CR fields can be set in the following ways:

• Specified fields of the CR can be set by a move instruction (mtcrf) to the CR
from a GPR.

• Specified fields of the CR can be moved from one CR x field to another with
the mcrf instruction.

• A specified field of the CR can be set by a move instruction (mcrfs) to the CR
from the FPSCR.

• A specified field of the CR can be set by a move instruction (mcrxr) to the CR
from the XER.

• Condition register logical instructions can be used to perform logical opera-
tions on specified bits in the condition register.

• CR0 can be the implicit result of an integer operation.
• CR1 can be the implicit result of a floating-point operation.
• A specified CR field can be the explicit result of either an integer or floating-

point compare instruction.

Instructions are provided to test individual CR bits.

Table 2-3 Floating-Point Result Flags in FPSCR

Result Flags
(Bits [15:19])

C<>=?

Result value class

10001 Quiet NaN

01001 – Infinity

01000 – Normalized number

11000 – Denormalized number

10010 – Zero

00010 + Zero

10100 + Denormalized number

00100 +Normalized number

00101 +Infinity

CR — Condition Register

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

RESET: UNCHANGED
 MOTOROLA REGISTERS RCPU

2-8 Revised 1 February 1999 REFERENCE MANUAL

2.2.4.1 Condition Register CR0 Field Definition

In most integer instructions, when the CR is set to reflect the result of the operation
(that is, when Rc = 1), and for addic., andi., and andis., the first three bits of CR0
are set by an algebraic comparison of the result to zero; the fourth bit of CR0 is cop-
ied from XER[SO]. For integer instructions, CR[0:3] are set to reflect the result as
a signed quantity. The result as an unsigned quantity or a bit string can be deduced
from the EQ bit.

The CR0 bits are interpreted as shown in Table 2-4. If any portion of the result (the
32-bit value placed into the destination register) is undefined, the value placed in
the first three bits of CR0 is undefined.

2.2.4.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the oper-
ation (that is, when Rc = 1), the CR1 field (bits 4 to 7 of the CR) is copied from
FPSCR[0:3] to indicate the floating-point exception status. For more information
about the FPSCR, see 2.2.3 Floating-Point Status and Control Register
(FPSCR). The bit settings for the CR1 field are shown in Table 2-5.

Table 2-4 Bit Settings for CR0 Field of CR

CR0
Bit

Description

0 Negative (LT) — This bit is set when the result is negative.

1 Positive (GT) — This bit is set when the result is positive (and not zero).

2 Zero (EQ) — This bit is set when the result is zero.

3 Summary overflow (SO) — This is a copy of the final state of XER[SO] at the completion of the instruction.

Table 2-5 Bit Settings for CR1 Field of CR

CR1
Bit

Description

0 Floating-point exception (FX) — This is a copy of the final state of FPSCR[FX] at the completion of the
instruction.

1 Floating-point enabled exception (FEX) — This is a copy of the final state of FPSCR[FEX] at the comple-
tion of the instruction.

2 Floating-point invalid exception (VX) — This is a copy of the final state of FPSCR[VX] at the completion of
the instruction.

3 Floating-point overflow exception (OX) — This is a copy of the final state of FPSCR[OX] at the completion
of the instruction.
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-9

2.2.4.3 Condition Register CRn Field — Compare Instruction

When a specified CR field is set by a compare instruction, the bits of the specified
field are interpreted as shown in Table 2-6. A condition register field can also be
accessed by the mfcr, mcrf, and mtcrf instructions.

2.2.5 Integer Exception Register (XER)

The integer exception register (XER) is a user-level, 32-bit register.

The SPR number for the XER is one. The bit definitions for XER, shown in Table
2-7, are based on the operation of an instruction considered as a whole, not on in-
termediate results. For example, the result of the subtract from carrying (subfcx)
instruction is specified as the sum of three values. This instruction sets bits in the
XER based on the entire operation, not on an intermediate sum.

In most cases, reserved fields in registers are ignored when written and return zero
when read. However, XER[16:23] are set to the value written to them and return
that value when read.

Table 2-6 CRn Field Bit Settings for Compare Instructions

CRn Bit1

NOTES:
1. Here, the bit indicates the bit number in any one of the four-bit subfields, CR[0:7]

Description

0 Less than, floating-point less than (LT, FL).
For integer compare instructions, (rA) < SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM,
UIMM, or (rB) (logical comparison).
For floating-point compare instructions, (frA) < (frB).

1 Greater than, floating-point greater than (GT, FG).
For integer compare instructions, (rA) > SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM,
UIMM, or (rB) (logical comparison).
For floating-point compare instructions, (frA) > (frB).

2 Equal, floating-point equal (EQ, FE).
For integer compare instructions, (rA) = SIMM, UIMM, or (rB).
For floating-point compare instructions, (frA) = (frB).

3 Summary overflow, floating-point unordered (SO, FU).
For integer compare instructions, this is a copy of the final state of XER[SO] at the completion of the
instruction.
For floating-point compare instructions, one or both of (frA) and (frB) is not a number (NaN).

XER — Integer Exception Register SPR 1

0 1 2 3 24 25 31

SO OV CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BYTES

RESET: UNCHANGED
 MOTOROLA REGISTERS RCPU

2-10 Revised 1 February 1999 REFERENCE MANUAL

2.2.6 Link Register (LR)

The 32-bit link register supplies the branch target address for the branch condi-
tional to link register (bclrx) instruction, and can be used to hold the logical address
of the instruction that follows a branch and link instruction.

NOTE
Although the two least-significant bits can accept any values written
to them, they are ignored when the LR is used as an address. The
link register can be accessed by the mtspr and mfspr instructions
using the SPR number eight. Prefetching instructions along the tar-
get path (loaded by an mtspr instruction) is possible provided the link
register is loaded sufficiently ahead of the branch instruction. It is
usually possible to prefetch along a target path loaded by a branch
and link instruction.

Both conditional and unconditional branch instructions include the option of placing
the effective address of the instruction following the branch instruction in the LR.
This is done regardless of whether the branch is taken.

Table 2-7 Integer Exception Register Bit Definitions

Bit(s) Name Description

0 SO Summary Overflow (SO) — The summary overflow bit is set whenever an instruction sets the
overflow bit (OV) to indicate overflow and remains set until software clears it. It is not altered by
compare instructions or other instructions that cannot overflow.

1 OV Overflow (OV) — The overflow bit is set to indicate that an overflow has occurred during exe-
cution of an instruction. Integer and subtract instructions having OE = 1 set OV if the carry out
of bit 0 is not equal to the carry out of bit 1, and clear it otherwise. The OV bit is not altered by
compare instructions or other instructions that cannot overflow.

2 CA Carry (CA) — In general, the carry bit is set to indicate that a carry out of bit 0 occurred during
execution of an instruction. Add carrying, subtract from carrying, add extended, and subtract
from extended instructions set CA to one if there is a carry out of bit 0, and clear it otherwise.
The CA bit is not altered by compare instructions or other instructions that cannot carry, except
that shift right algebraic instructions set the CA bit to indicate whether any '1' bits have been
shifted out of a negative quantity.

[3:24] — Reserved

[25:31] BYTES This field specifies the number of bytes to be transferred by a load string word indexed (lswx)
or store string word indexed (stswx) instruction.

LR — Link Register SPR 8

0 31

Branch Address

RESET: UNCHANGED
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-11

2.2.7 Count Register (CTR)

The count register (CTR) is a 32-bit register for holding a loop count that can be
decremented during execution of branch instructions that contain an appropriately
coded BO field. If the value in CTR is zero before being decremented, it is negative
one afterward. The count register provides the branch target address for the
branch conditional to count register (bcctrx) instruction.

Prefetching instructions along the target path is also possible provided the count
register is loaded sufficiently ahead of the branch instruction.

The count register can be accessed by the mtspr and mfspr instructions by spec-
ifying SPR 9. In branch conditional instructions, the BO field specifies the condi-
tions under which the branch is taken. The first four bits of the BO field specify how
the branch is affected by or affects the condition register and the count register.
The encoding for the BO field is shown in Table 4-21 in SECTION 4 ADDRESSING
MODES AND INSTRUCTION SET SUMMARY.

2.3 PowerPC VEA Register Set — Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition
to those in the UISA register set. The PowerPC VEA register set can be accessed
by all software with either user- or supervisor-level privileges.

The PowerPC VEA includes the time base facility (TB), a 64-bit structure that con-
tains a 64-bit unsigned integer that is incremented periodically. The frequency at
which the counter is updated is implementation-dependent and need not be con-
stant over long periods of time.

The TB consists of two 32-bit registers: time base upper (TBU) and time base lower
(TBL). In the context of the VEA, user-level applications are permitted read-only ac-
cess to the TB. The OEA defines supervisor-level access to the TB for writing val-
ues to the TB. Different SPR encodings are provided for reading and writing the
time base.

Refer to 2.4 PowerPC OEA Register Set for more information on writing to the TB.
Refer to 4.7.2 Move to/from Special Purpose Register Instructions for simpli-
fied mnemonics for reading and writing to the time base. For information on the
time base clock source, refer to the System Interface Unit Reference Manual (SI-
URM/AD).

CTR — Count Register SPR 9

0 31

Loop Count

RESET: UNCHANGED
 MOTOROLA REGISTERS RCPU

2-12 Revised 1 February 1999 REFERENCE MANUAL

In 32-bit PowerPC implementations such as the RCPU, it is not possible to read
the entire 64-bit time base in a single instruction. The mftb simplified mnemonic
copies the lower half of the time base register (TBL) to a GPR, and the mftbu sim-
plified mnemonic copies the upper half of the time base (TBU) to a GPR.

Because of the possibility of a carry from TBL to TBU occurring between reads of
the TBL and TBU, a sequence such as the following example is necessary to read
the time base on RCPU-based systems.

loop:
mftbu rx #load from TBU
mftb ry #load from TBL
mftbu rz #load from TBU
cmpw rz,rx #see if ‘old’=’new’
bne loop #loop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values
has been obtained.

2.4 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) includes a number of
SPRs and other registers that are accessible only by supervisor-level instructions.
Some SPRs are RCPU-specific; some RCPU SPRs may not be implemented in
other PowerPC processors, or may not be implemented in the same way.

2.4.1 Machine State Register (MSR)

The machine state register is a 32-bit register that defines the state of the proces-
sor. When an exception occurs, the current contents of the MSR are loaded into
SRR1, and the MSR is updated to reflect the new machine state. The MSR can
also be modified by the mtmsr, sc, and rfi instructions. It can be read by the mfmsr
instruction.

TB — Time Base (Reading) SPR 268, 269

0 31 32 63

TBU TBL

RESET: UNCHANGED

Table 2-8 Time Base Field Definitions

Bits Name Description

[0:31] TBU Time Base (Upper) — The high-order 32 bits of the time base

[32:63] TBL Time Base (Lower) — The low-order 32 bits of the time base
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-13

* Reset value of this bit depends on the value of the internal reset configuration word. Refer to the System Interface
Unit Reference Manual (SIURM/AD) for more information.

Table 2-13 shows the bit definitions for the MSR.

MSR — Machine State Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED ILE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EE PR FP ME FE0 SE BE FE1 0 IP RESERVED RI LE

RESET:

0 0 0 U 0 0 0 0 0 * 0 0 0 0 0 0
 MOTOROLA REGISTERS RCPU

2-14 Revised 1 February 1999 REFERENCE MANUAL

Table 2-9 Machine State Register Bit Settings

Bit(s) Name Description

[0:14] — Reserved

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to se-
lect the endian mode for the context established by the exception.

0 = Processor runs in big-endian mode during exception processing.
1 = Processor runs in little-endian mode during exception processing.

16 EE External interrupt enable

0 = The processor delays recognition of external interrupts and decrementer exception cond-
tions.

1 = The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level

0 = The processor can execute both user- and supervisor-level instructions.
1 = The processor can only execute user-level instructions.

18 FP Floating-point available

0 = The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores and moves. Floating-point enabled program exceptions can still occur and the FPRs
can still be accessed.

1 = The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME Machine check enable

0 = Machine check exceptions are disabled.
1 = Machine check exceptions are enabled.

20 FE0 Floating-point exception mode zero (See Table 2-10.)

21 SE Single-step trace enable

0 = The processor executes instructions normally.
1 = The processor generates a single-step trace exception upon the successful execution of

the next instruction. When this bit is set, the processor dispatches instructions in strict pro-
gram order. Successful execution means the instruction caused no other exception. Sin-
gle-step tracing may not be present on all implementations.

22 BE Branch trace enable

0 = No trace exception occurs when a branch instruction is completed
1 = Trace exception occurs when a branch instruction is completed

23 FE1 Floating-point exception mode 1 (See Table 2-10.)

24 — Reserved.

25 IP Exception prefix. The setting of this bit specifies the location of the exception vector table.

0 = Exception vector table starts at the physical address 0x0000 0000.
1 = Exception vector table starts at the physical address 0xFFF0 0000.

[26:29] — Reserved

30 RI Recoverable exception (for machine check and non-maskable breakpoint exceptions)

0 = Machine state is not recoverable.
1 = Machine state is recoverable.
Refer to SECTION 6 EXCEPTIONS for more information.

31 LE Little-endian mode

0 = Processor operates in big-endian mode during normal processing.
1 = Processor operates in little-endian mode during normal processing.
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-15

The floating-point exception mode bits are interpreted as shown in Table 2-10. For
further details see 6.11.10.5 Floating-Point Enabled Exceptions.

2.4.2 DAE/Source Instruction Service Register (DSISR)

The 32-bit DSISR identifies the cause of data access and alignment exceptions.

For information about bit settings, see 6.11.4 Alignment Exception (0x00600).

2.4.3 Data Address Register (DAR)

After an alignment exception, the DAR is set to the effective address of a load or
store element. For information, see 6.11.4 Alignment Exception (0x00600).

2.4.4 Time Base Facility (TB) — OEA

As described in 2.3 PowerPC VEA Register Set — Time Base, the time base (TB)
provides a 64-bit incrementing counter. The VEA defines user-level, read-only ac-
cess to the TB. Writing to the TB is reserved for supervisor-level applications such
as operating systems and bootstrap routines. The OEA defines supervisor-level
write access to the TB.

Table 2-10 Floating-Point Exception Mode Bits

FE[0:1] Mode

00 Ignore exceptions mode — Floating-point exceptions do not cause the
floating-point assist error handler to be invoked.

01, 10, 11 Floating-point precise mode — The system floating-point assist error
handler is invoked precisely at the instruction that caused the enabled
exception.

DSISR — DAE/Source Instruction Service Register SPR 18

0 31

DSISR

RESET: UNCHANGED

DAR — Data Address Register SPR 19

0 31

Data Address

RESET: UNCHANGED
 MOTOROLA REGISTERS RCPU

2-16 Revised 1 February 1999 REFERENCE MANUAL

The TB can be written at the supervisor privilege level only. The mttbl and mttbu
simplified mnemonics write the lower and upper halves of the TB, respectively. The
mtspr, mttbl, and mttbu instructions treat TBL and TBU as separate 32-bit regis-
ters; setting one leaves the other unchanged. It is not possible to write the entire
64-bit time base in a single instruction.

The TB can be written by a sequence such as the following:

lwz rx,upper # load 64-bit value for
lwz ry,lower # TB into rx and ry
li rz,0
mttbl rz # force TBL to 0
mttbu rx # set TBU
mttbl ry # set TBL

Loading zero into TBL prevents the possibility of a carry from TBL to TBU while the
time base is being initialized.

For information about reading the time base, refer to 2.3 PowerPC VEA Register
Set — Time Base.

2.4.5 Decrementer Register (DEC)

The DEC is a 32-bit decrementing counter that provides a mechanism for causing
a decrementer exception after a programmable delay. The DEC frequency is
based on a subdivision of the processor clock. Refer to the System Interface Unit
Reference Manual (SIURM/AD) for information on the clock source for the decre-
menter.

TB — Time Base (Writing) SPR 284, 285

0 31 32 63

TBU TBL

RESET: UNCHANGED

Table 2-11 Time Base Field Definitions

Bits Name Description

[0:31] TBU Time Base (Upper) — The high-order 32 bits of the time base

[32:63] TBL Time Base (Lower) — The low-order 32 bits of the time base
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-17

The DEC counts down, causing an exception (unless masked) when it passes
through zero. The DEC satisfies the following requirements:

• Loading a GPR from the DEC has no effect on the DEC.
• Storing a GPR to the DEC replaces the value in the DEC with the value in the

GPR.
• Whenever bit 0 of the DEC changes from zero to one, a decrementer excep-

tion request is signaled. Multiple DEC exception requests may be received
before the first exception occurs; however, any additional requests are can-
celed when the exception occurs for the first request. Refer to 6.11.7 Decre-
menter Exception (0x00900) for additional information.

• If the DEC is altered by software and the content of bit 0 is changed from zero
to one, an exception request is signaled.

The content of the DEC can be read or written using the mfspr and mtspr instruc-
tions. Using a simplified mnemonic for the mtspr instruction, the DEC can be writ-
ten from GPR rA with the following:

mtdec rA

If the execution of this instruction causes bit 0 of the DEC to change from zero to
one, an exception request is signaled. The DEC can be read into GPR rA with the
following instruction:

mfdec rA

Copying the DEC to a GPR does not affect the DEC content or the exception mech-
anism.

2.4.6 Machine Status Save/Restore Register 0 (SRR0)

The machine status save/restore register 0 (SRR0) is a 32-bit register that identi-
fies where instruction execution should resume when an rfi instruction is executed
following an exception. It also holds the effective address of the instruction that fol-
lows the system call (sc) instruction.

DEC — Decrementer Register SPR 22

0 31

Decrementing Counter

RESET: UNCHANGED

SRR0— Machine Status Save/Restore Register 0 SPR 26

0 31

SRR0

RESET: UNDEFINED
 MOTOROLA REGISTERS RCPU

2-18 Revised 1 February 1999 REFERENCE MANUAL

When an exception occurs, SRR0 is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun
execution. The instruction addressed by SRR0 may not have completed execution,
depending on the exception type. SRR0 addresses either the instruction causing
the exception or the immediately following instruction. The instruction addressed
can be determined from the exception type and status bits.

For information on how specific exceptions affect SRR0, refer to the descriptions
of individual exceptions in SECTION 6 EXCEPTIONS.

2.4.7 Machine Status Save/Restore Register 1 (SRR1)

SRR1 is a 32-bit register used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed.

In general, when an exception occurs, SRR1[0:15] are loaded with exception-spe-
cific information and of MSR[16:31] are placed into SRR1[16:31].

For information on how specific exceptions affect SRR1, refer to the individual ex-
ceptions in SECTION 6 EXCEPTIONS.

2.4.8 General SPRs (SPRG0–SPRG3)

SPRG0 through SPRG3 are 32-bit registers provided for general operating system
use, such as performing a fast state save and for supporting multiprocessor imple-
mentations. SPRG0–SPRG3 are shown below.

Uses for SPRG0–SPRG3 are shown in Table 2-12.

SRR1 — Machine Status Save/Restore Register 1 SPR 27

0 31

SRR1

RESET: UNDEFINED

SPRG0–SPRG3 — General Special-Purpose Registers 0–3 SPR 272 – SPR 275

0 31

SPRG0

SPRG1

SPRG2

SPRG3

RESET: UNCHANGED
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-19

2.4.9 Processor Version Register (PVR)

The PVR is a 32-bit, read-only register that identifies the version and revision level
of the PowerPC processor. The contents of the PVR can be copied to a GPR by
the mfspr instruction. Read access to the PVR is available in supervisor mode
only; write access is not provided.

2.4.10 Implementation-Specific SPRs

The RCPU includes several implementation-specific SPRs that are not defined by
the PowerPC architecture. These registers can be accessed by supervisor-level in-
structions only.

2.4.10.1 EIE, EID, and NRI Special-Purpose Registers

The RCPU includes three implementation-specific SPRs to facilitate the software
manipulation of the MSR[RI] and MSR[EE] bits. Issuing the mtspr instruction with
one of these registers as an operand causes the RI and EE bits to be set or cleared
as shown in Table 2-14.

Table 2-12 Uses of SPRG0–SPRG3

Register Description

SPRG0 Software may load a unique physical address in this register to identify an area of memory reserved for
use by the exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the exception handler to save the content of a GPR.
That GPR then can be loaded from SPRG0 and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

PVR — Processor Version Register SPR 287

0 15 16 31

VERSION REVISION

RESET: UNCHANGED

Table 2-13 Processor Version Register Bit Settings

Bit(s) Name Description

[0:15] VERSION A 16-bit number that identifies the version of the processor and of the PowerPC architec-
ture

[16:31] REVISION A 16-bit number that distinguishes between various releases of a particular version
 MOTOROLA REGISTERS RCPU

2-20 Revised 1 February 1999 REFERENCE MANUAL

A read (mfspr) of any of these locations is treated as an unimplemented instruc-
tion, resulting in a software emulation exception.

Refer to SECTION 6 EXCEPTIONS for more information on these registers.

2.4.10.2 Instruction-Cache Control Registers

The implementation-specific supervisor-level SPRs shown in Table 2-15 control
the operation of the instruction cache.

Refer to SECTION 5 INSTRUCTION CACHE for details on these registers.

2.4.10.3 Development Support Registers

Table 2-16 lists the implementation-specific RCPU registers provided for develop-
ment support.

Table 2-14 EIE, EID, AND NRI Registers

SPR Number
(Decimal)

Mnemonic MSR[EE] MSR[RI]

80 EIE 1 1

81 EID 0 1

82 NRI 0 0

Table 2-15 Instruction Cache Control Registers

SPR Number
(Decimal)

Name Description

560 ICCST I-cache control and status register

561 ICAD I-cache address register

562 ICDAT I-cache data port (read only)
RCPU REGISTERS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 2-21

Refer to SECTION 8 DEVELOPMENT SUPPORT for details about these registers.

2.4.10.4 Floating-Point Exception Cause Register (FPECR)

The FPECR is a 32-bit supervisor-level internal status and control register used by
the floating-point assist software envelope. Refer to 6.11.10 Floating-Point Assist
Exception (0x00E00) for more information on this register.

Table 2-16 Development Support Registers

SPR Number
(Decimal)

Mnemonic Name

144 CMPA Comparator A Value Register

145 CMPB Comparator B Value Register

146 CMPC Comparator C Value Register

147 CMPD Comparator D Value Register

148 ECR Exception Cause Register

149 DER Debug Enable Register

150 COUNTA Breakpoint Counter A Value and Control Register

151 COUNTB Breakpoint Counter B Value and Control Register

152 CMPE Comparator E Value Register

153 CMPF Comparator F Value Register

154 CMPG Comparator G Value Register

155 CMPH Comparator H Value Register

156 LCTRL1 L-Bus Support Control Register 1

157 LCTRL2 L-Bus Support Control Register 2

158 ICTRL I-Bus Support Control Register

159 BAR Breakpoint Address Register

630 DPDR Development Port Data Register
 MOTOROLA REGISTERS RCPU

2-22 Revised 1 February 1999 REFERENCE MANUAL

SECTION 3
OPERAND CONVENTIONS

This section describes the conventions used for storing values in registers and
memory, accessing PowerPC registers, and representing data in these registers.

3.1 Data Alignment and Memory Organization

Bytes in memory are numbered consecutively starting with zero. Each number is
the address of the corresponding byte.

Memory operands can be bytes, half words, words, or double words, or, for the
load/store multiple and move assist instructions, a sequence of bytes or words. The
address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural align-
ment boundary equal to the operand length. In other words, the “natural” address
of an operand is an integral multiple of the operand length. A memory operand is
said to be aligned if it is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics
shown in Table 3-1. (Although not permitted as memory operands, quad words are
shown because quad-word alignment is desirable for certain memory operands.)

The concept of alignment is also applied more generally to data in memory. For ex-
ample, 12 bytes of data are said to be word-aligned if the address of the lowest-
numbered byte is a multiple of four.

Table 3-1 Memory Operands

Operand Length ADDR[28:31]
if aligned

Byte 8 bits xxxx1

NOTES:
1. An “x” in an address bit position indicates that the bit can be zero

or one independent of the state of other bits in the address .

Half word 2 bytes xxx01

Word 4 bytes xx001

Double word 8 bytes x0001

Quad word 16 bytes 0000
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-1

Some instructions require their memory operands to have certain alignments. In
addition, alignment may affect performance. For single-register memory access in-
structions, the best performance is obtained when memory operands are aligned.
Additional effects of data placement on performance are described in SECTION 7
INSTRUCTION TIMING.

Instructions are four bytes long and word-aligned.

3.2 Byte Ordering

There are two practical ways to order the four bytes in a word: big-endian and little-
endian. The PowerPC architecture supports both these formats.

Big-endian ordering assigns the lowest address to the highest-order eight bits of
the scalar. This is called big-endian because the big end of the scalar, considered
as a binary number, comes first in memory.

Little-endian byte ordering assigns the lowest address to the lowest-order (right-
most) eight bits of the scalar. The little end of the scalar, considered as a binary
number, comes first in memory.

Two bits in the MSR specify byte ordering: LE (little-endian mode) and ILE (excep-
tion little-endian mode). The LE bit specifies the endian mode in which the proces-
sor is currently operating, and ILE specifies the mode to be used when the system
error handler is invoked. That is, when an exception occurs, the ILE bit (as set for
the interrupted process) is copied into MSR[LE] to select the endian mode for the
context established by the exception. For both bits, a value of zero specifies big-
endian mode and a value of one specifies little-endian mode.

The default byte and bit ordering is big-endian, as shown in Figure 3-1. After a hard
reset, the hard reset handler (using the mtspr instruction) can select little-endian
mode for normal operation and exception processing by setting the LE and ILE bits,
respectively, in the MSR.

Figure 3-1 Big-Endian Byte Ordering

Byte 0 Byte 1 Byte N (max)

Big-Endian Byte Ordering

0 1 2 n

Big-Endian Bit Ordering

MSB

msb bit n (max)
 MOTOROLA OPERAND CONVENTIONS RCPU

3-2 Revised 1 February 1999 REFERENCE MANUAL

If individual data items were indivisible, the concept of byte ordering would be un-
necessary. The order of bits or groups of bits within the smallest addressable unit
of memory is irrelevant, because nothing can be observed about such order. Order
matters only when scalars, which the processor and programmer regard as indivis-
ible quantities, can be made up of more than one addressable units of memory.

For a device in which the smallest addressable unit is the 64-bit double word, there
is no question of the order of bytes within double words. All transfers of individual
scalars between registers and system memory are of double words. A subset of
the 64-bit scalar (for example, a byte) is not addressable in memory. As a result, to
access any subset of the bits of a scalar, the entire 64-bit scalar must be accessed,
and when a memory location is read, the 64-bit value returned is the 64-bit value
last written to that location.

For PowerPC processors, the smallest addressable memory unit is the byte (8
bits), and scalars are composed of one or more sequential bytes. When a 32-bit
scalar is moved from a register to memory, it occupies four consecutive byte ad-
dresses, and a decision must be made regarding the order of these bytes in these
four addresses.

3.2.1 Structure Mapping Examples

The following C programming example contains an assortment of scalars and one
character string. The value presumed to be in each structure element is shown in
hexadecimal in the comments and are used below to show how the bytes that com-
prise each structure element are mapped into memory.

struct {

int a; /* 0x1112_1314 word */

double b; /* 0x2122_2324_2526_2728 doubleword */

char * c; /* 0x3132_3334 word */

char d[7]; /* ‘A’,‘B’,‘C’,‘D’,‘E’,‘F’,‘G’array of bytes */

short e; /* 0x5152 halfword */

int f; /* 0x6162_6364 word */

} s;

Note that the C structure mapping introduces padding (skipped bytes) in the map
in order to align the scalars on their proper boundaries — four bytes between a and
b, one byte between d and e, and two bytes between e and f. Both big- and little-
endian mappings use the same amount of padding.

3.2.1.1 Big-Endian Mapping

The big-endian mapping of a structure S is shown in Figure 3-2. Addresses are
shown in hexadecimal at the left of each double word and in small figures below
each byte. The content of each byte, as shown in the preceding C programming
example, is shown in hexadecimal as characters for the elements of the string.
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-3

Figure 3-2 Big-Endian Mapping of Structure S

3.2.1.2 Little-Endian Mapping

Figure 3-3 shows the structure, S, using little-endian mapping. Double words are
laid out from right to left.

Figure 3-3 Little-Endian Mapping of Structure S

3.2.2 Data Memory in Little-Endian Mode

This section describes how data in memory is stored and accessed in little-endian
mode.

3.2.2.1 Aligned Scalars

For load and store instructions, the effective address is computed as specified in
the instruction descriptions in SECTION 4 ADDRESSING MODES AND IN-
STRUCTION SET SUMMARY. The effective address is modified as shown in Ta-
ble 3-2 before it is used to access memory.

00
11
00

12
01

13
02

14
03 04 05 06 07

08
21
08

22
09

23
0A

24
0B

25
0C

26
0D

27
0E

28
0F

10
31
10

32
11

33
12

34
13

‘A’
14

‘B’
15

‘C’
16

‘D’
17

18
‘E’
18

‘F’
19

‘G’
1A 1B

51
1C

52
1D 1E 1F

20
61
20

62
21

63
22

64
23

07 06 05 04
11
03

12
02

13
01

14
00

21
0F

22
0E

23
0D

24
0C

25
0B

26
0A

27
09

28
08

‘D’
17

‘C’
16

‘B’
15

‘A’
14

31
13

32
12

33
11

34
10

1F 1E
51
1D

52
1C 1B

‘G’
1A

‘F’
19

‘E’
18

61
23

62
22

63
21

64
20
 MOTOROLA OPERAND CONVENTIONS RCPU

3-4 Revised 1 February 1999 REFERENCE MANUAL

The modified EA is passed to the main memory and the specified width of the data
is transferred between a GPR or FPR and the addressed memory locations (as
modified). The effective address modification makes it appear to the processor that
individual aligned scalars are stored as little-endian, when in fact they are stored
as big-endian but in different bytes within double words from the order in which they
are stored in big-endian mode.

Taking into account the preceding description of EA modifications, in little-endian
mode structure S is placed in memory as shown in Figure 3-4.

Figure 3-4 PowerPC Little-Endian Structure S in Memory

Because of the modifications on the EA, the same structure S appears to the pro-
cessor to be mapped into memory this way when LM = 1 (little-endian enabled).
This is shown in Figure 3-5.

Table 3-2 EA Modifications

Data Width (Bytes) EA Modification

8 No change

4 XOR with 0b100

2 XOR with 0b110

1 XOR with 0b111

00
00 01 02 03

11
04

12
05

13
06

14
07

08
21
08

22
09

23
0A

24
0B

25
0C

26
0D

27
0E

28
0F

10
‘D’
10

‘C’
11

‘B’
12

‘A’
13

31
14

32
15

33
16

34
17

18
18 19

51
1A

52
1B 1C

‘G’
1D

‘F’
1E

‘E’
1F

20
20 21 22 23

61
24

62
25

63
26

64
27
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-5

Figure 3-5 PowerPC Little-Endian Structure S as Seen by Processor

Note that as seen by the program executing in the processor, the mapping for the
structure S is identical to the little-endian mapping shown in Figure 3-3. From out-
side of the processor, the addresses of the bytes making up the structure S are as
shown in Figure 3-4. These addresses match neither the big-endian mapping of
Figure 3-2 or the little-endian mapping of Figure 3-3. This must be taken into ac-
count when performing I/O operations in little-endian mode; this is discussed in
3.2.4 Input/Output in Little-Endian Mode.

3.2.2.2 Misaligned Scalars

Performing an XOR operation on the low-order bits of the address of a scalar re-
quires the scalar to be aligned on a boundary equal to a multiple of its length. When
executing in little-endian mode (LM = 1), the RCPU takes an alignment exception
whenever a load or store instruction is issued with a misaligned EA, regardless of
whether such an access could be handled without causing an exception in big-en-
dian mode (LM = 0).

The PowerPC architecture defines that half words, words, and double words be
placed in memory such that the little-endian address of the lowest-order byte is the
EA computed by the load or store instruction; the little-endian address of the next-
lowest-order byte is one greater, and so on. Figure 3-6 shows a four-byte word
stored at little-endian address 5. The word is presumed to contain the binary rep-
resentation of 0x1112 1314.

Figure 3-6 PowerPC Little-Endian Mode, Word Stored at Address 5

07 06 05 04
11
03

12
02

13
01

14
00

21
0F

22
0E

23
0D

24
0C

25
0B

26
0A

27
09

28
08

‘D’
17

‘C’
16

‘B’
15

‘A’
14

31
13

32
12

33
11

34
10

1F 1E
51
1D

52
1C 1B

‘G’
1A

‘F’
19

‘E’
18

61
23

62
22

63
21

64
20

12
07

13
06

14
05 04 03 02 01 00

00

0F 0E 0D 0C 0B 0A 09
11
08

08
 MOTOROLA OPERAND CONVENTIONS RCPU

3-6 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-7 shows the same word stored by a little-endian program, as seen by the
memory system (assuming big-endian mode).

Figure 3-7 Word Stored at Little-Endian
Address 5 as Seen by Big-Endian Addressing

NOTE
The misaligned word in this example spans two double words. The
two parts of the misaligned word are not contiguous in the big-endian
addressing space.

An implementation may choose to support only a subset of misaligned little-endian
memory accesses. For example, misaligned little-endian accesses contained with-
in a single double word may be supported, while those that span double words may
cause alignment exceptions.

3.2.2.3 String Operations

The load and store string instructions, listed in Table 3-3, cause alignment excep-
tions when they are executed in little-endian mode.

String accesses are inherently misaligned; they transfer word-length quantities be-
tween memory and registers, but the quantities are not necessarily aligned on word
boundaries.

NOTE
The system software must determine whether to emulate the except-
ing instruction or treat it as an illegal operation.

Table 3-3 Load/Store String Instructions

Mnemonic Description

lswi Load String Word Immediate

lswx Load String Word Indexed

stswi Store String Word Immediate

stswx Store String Word Indexed

lscbx Load String and Compare Byte Indexed

00
12
00

13
01

14
02 03 04 05 06 07

08
08 09 0A 0B 0C 0D 0E

11
0F
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-7

3.2.2.4 Load and Store Multiple Instructions

The load and store multiple instructions shown in Table 3-4 cause alignment ex-
ceptions when executed in little-endian mode.

Although the words addressed by these instructions are on word boundaries, each
word is in the half of its containing double word opposite from where it would be in
big-endian mode. Note that the system software must determine whether to emu-
late the excepting instruction or treat it as an illegal operation.

3.2.3 Instruction Memory Addressing in Little-Endian Mode

Each PowerPC instruction occupies 32 bits (one word) of memory. PowerPC pro-
cessors fetch and execute instructions as if the current instruction address had
been advanced one word for each sequential instruction. When operating in little-
endian mode, the address is modified according to the little-endian rule for fetching
word-length scalars; that is, it is XORed with 0b100. A program is thus an array of
little-endian words with each word fetched and executed in order (not including
branches).

Consider the following example:

loop:
cmplwi r5,0
beq done
lwzux r4, r5, r6
add r7, r7, r4
subi r5, 1
b loop

done:
stw r7, total

Assuming the program starts at address 0, these instructions are mapped into
memory for big-endian execution as shown in Figure 3-8.

Table 3-4 Load/Store Multiple Instructions

Mnemonic Instruction

lmw Load Multiple Word

stmw Store Multiple Word
 MOTOROLA OPERAND CONVENTIONS RCPU

3-8 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-8 PowerPC Big-Endian
Instruction Sequence as Seen by Processor

If this same program is assembled for and executed in little-endian mode, the map-
ping seen by the processor appears as shown in Figure 3-9.

Each machine instruction appears in memory as a 32-bit integer containing the val-
ue described in the instruction description, regardless of whether the processor is
operating in big- or little-endian mode. This is because scalars are always mapped
in memory in big-endian byte order.

Figure 3-9 PowerPC Little-Endian
Instruction Sequence as Seen by Processor

When little-endian mapping is used, all references to the instruction stream must
follow little-endian addressing conventions, including addresses saved in system
registers when the exception is taken, return addresses saved in the link register,
and branch displacements and addresses.

• An instruction address placed in the link register by branch and link, or an in-
struction address saved in an SPR when an exception is taken is the address
that a program executing in little-endian mode would use to access the in-
struction as a word of data using a load instruction.

• An offset in a relative branch instruction reflects the difference between the
addresses of the instructions, where the addresses used are those that a pro-

00 loop: cmplwi r5, 8 beq done

00 01 02 03 04 05 06 07

08 lwzux r4, r5, r6 add r7, r7, r4

08 09 0A 0B 0C 0D 0E 0F

10 subi r5, 1 b loop

10 11 12 13 14 15 16 17

18 done: stw r7, total

18 19 1A 1B 1C 1D 1E 1F

beq done loop: cmplwi 00

07 06 05 04 03 02 01 00

add r7, r7, r4 lwzux r4, r5, r6 08

0F 0E 0D 0C 0B 0A 09 08

b loop subi r5, 1 10

17 16 15 14 13 12 11 10

done: stw r7, total 18

1F 1E 1D 1C 1B 1A 19 18
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-9

gram executing in little-endian mode would use to access the instructions as
data words using a load instruction.

• A target address in an absolute branch instruction is the address that a pro-
gram executing in little-endian mode would use to access the target instruc-
tion as a word of data using a load instruction.

3.2.4 Input/Output in Little-Endian Mode

Input/output operations transfer a byte stream on both big- and little-endian sys-
tems. For a PowerPC system running in big-endian mode, both the processor and
the memory subsystem recognize the same byte as byte 0. However, this is not
true for a PowerPC system running in little-endian mode because of the modifica-
tion of the three low-order bits when the processor accesses memory.

In order for I/O transfers in little-endian mode to appear to transfer bytes properly,
they must be performed as if the bytes transferred were accessed one at a time,
using the little-endian address modification appropriate for the single-byte transfers
(XOR the bits with 0b111). This does not mean that I/O on little-endian PowerPC
machines must be done using only one-byte-wide transfers. Data transfers can be
as wide as desired, but the order of the bytes within double words must be as if
they were fetched or stored one at a time.

3.3 Floating-Point Data

This subsection describes how floating-point data is represented in floating-point
registers and in memory.

3.3.1 Floating-Point Data Format

The PowerPC architecture defines the representation of a floating-point value in
two different binary, fixed-length formats: a 32-bit format for a single-precision
floating-point value or a 64-bit format for a double-precision floating-point value.
Data in memory may use either the single-precision or double-precision format.
Floating-point registers use the double-precision format.

The length of the exponent and the fraction fields differ between these two preci-
sion formats. The structure of the single-precision format is shown in Figure 3-10;
the structure of the double-precision format is shown in Figure 3-11.

Figure 3-10 Floating-Point Single-Precision Format

0 8 9 31

S EXP FRACTION
 MOTOROLA OPERAND CONVENTIONS RCPU

3-10 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-11 Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:

• S (sign bit).
• EXP (exponent + bias)
• FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load
or store instruction for a byte or half word (or word in the case of floating-point dou-
ble-precision format), the value affected depends on whether the PowerPC system
is using big- or little-endian byte ordering, which is described in 3.2 Byte Ordering.
Big-endian mode is the default.

The significand consists of a leading implied bit concatenated on the right with the
FRACTION. This leading implied bit is a one for normalized numbers and a zero
for denormalized numbers in the unit bit position (that is, the first bit to the left of
the binary point). Parameters for the two floating-point formats are listed in Table
3-5.

The exponent is expressed as an 8-bit value for single-precision numbers or an 11-
bit value for double-precision numbers. These bits hold the biased exponent; the
true value of the exponent can be determined by subtracting 127 for single-preci-
sion numbers and 1023 for double-precision values. This is shown in Figure 3-12.
Note that using a bias eliminates the need for a sign bit. The highest-order bit is

0 11 12 63

S EXP FRACTION

Table 3-5 IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent
(unbiased)

+127 +1023

Minimum exponent –126 –1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-11

used both to generate the number, and is an implicit sign bit. Note also that two
values are reserved — all bits set indicates that the number is an infinity or NaN
and all bits cleared indicates that the number is either zero or denormalized.

3.3.2 Value Representation

The PowerPC architecture defines numerical and non-numerical values represent-
able within single- and double-precision formats. The numerical values are approx-
imations to the real numbers and include the normalized numbers, denormalized
numbers, and zero values. The non-numerical values representable are the posi-
tive and negative infinities and the NaNs. The positive and negative infinities are
adjoined to the real numbers but are not numbers themselves, and the standard
rules of arithmetic do not hold when they appear in an operation. They are related
to the real numbers by “order” alone. It is possible, however, to define restricted
operations among numbers and infinities as defined in the following paragraphs.
The relative location on the real number line for each of the defined entities is
shown in Figure 3-13.

.

Figure 3-12 Biased Exponent Format

Biased Exponent
(binary)

Single-Precision
(unbiased)

Double-Precision
(unbiased)

11.11 Reserved for Infinities and NaNs

11.10 +127 +1023

11.01 +126 +1022

. . .

. . .

. . .

10.00 1 1

01.11 0 0

01.10 –1 –1

. . .

. . .

. . .

00.01 –126 –1022

00.00 Reserved for Zeros and Denormalized Numbers

Positive

Negative

Zero
 MOTOROLA OPERAND CONVENTIONS RCPU

3-12 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-13 Approximation to Real Numbers

The positive and negative NaNs are not related to the numbers or ±× by order or
value, but they are encodings that convey diagnostic information such as the rep-
resentation of uninitialized variables.

Table 3-6 describes each of the floating-point formats.

3.3.3 Normalized Numbers (±NORM)

The values for normalized numbers have a biased exponent value in the range:

• 1–254 in single-precision format
• 1–2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:

NORM = (–1)s x 2E x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and (1.fraction) is the significand
composed of a leading unit bit (implied bit) and a fractional part. The format for nor-
malized numbers is shown in Figure 3-14.

Table 3-6 Recognized Floating-Point Numbers

Sign Bit Exponent (Biased) Leading Bit Mantissa Value

0 Maximum x Non-zero +NaN

0 Maximum x Zero +Infinity

0 0 < Exponent < Maximum 1 Non-zero +Normalized

0 0 0 Non-zero +Denormalized

0 0 0 Zero +0

1 0 0 Zero –0

1 0 0 Non-zero –Denormalized

1 0 < Exponent < Maximum 1 Non-zero –Normalized

1 Maximum x Zero –Infinity

1 Maximum x Non-zero –NaN

–INF –NORM –DENORM –0 +0 +DENORM +NORM +INF

Unrepresentable, small numbers

Tiny Tiny
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-13

Figure 3-14 Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number
are approximately equal to the following:

Single-precision format:

1.2x10-38 ð M ð 3.4x1038

Double-precision format:

2.2x10-308 ð M ð 1.8x10308

3.3.4 Zero Values (±0)

Zero values have a biased exponent value of zero and a fraction value of zero. This
is shown in Figure 3-15. Zeros can have a positive or negative sign. The sign of
zero is ignored by comparison operations (that is, comparison regards +0 as equal
to –0).

Figure 3-15 Format for Zero Numbers

3.3.5 Denormalized Numbers (±DENORM)

Denormalized numbers have a biased exponent value of zero and a non-zero frac-
tion value. The format for denormalized numbers is shown in Figure 3-16.

Figure 3-16 Format for Denormalized Numbers

Denormalized numbers are non-zero numbers smaller in magnitude than the rep-
resentable normalized numbers. They are values in which the implied unit bit is ze-
ro. Denormalized numbers are interpreted as follows:

MIN < EXPONENT < MAX
(BIASED) MANTISSA = ANY BIT PATTERN

SIGN OF MANTISSA, 0 OR 1

MANTISSA = 0

SIGN OF MANTISSA, 0 OR 1

EXPONENT = 0
(BIASED)

SIGN OF MANTISSA, 0 OR 1

EXPONENT = 0
(BIASED)

MANTISSA = ANY NON-ZERO
BIT PATTERN
 MOTOROLA OPERAND CONVENTIONS RCPU

3-14 Revised 1 February 1999 REFERENCE MANUAL

DENORM = (–1)s x 2Emin x (0.fraction)

Emin is the minimum representable exponent value (that is, –126 for single-preci-
sion, –1022 for double-precision).

3.3.6 Infinities (±×)

Positive and negative infinities have the maximum biased exponent value:

• 255 in the single-precision format
• 2047 in the double-precision format

The format for infinities is shown in Figure 3-17.

Figure 3-17 Format for Positive and Negative Infinities

The fraction value is zero. Infinities are used to approximate values greater in mag-
nitude than the maximum normalized value. Infinity arithmetic is defined as the lim-
iting case of real arithmetic, with restricted operations defined between numbers
and infinities. Infinities and the reals can be related as follows:

-× < every finite number < +×

Arithmetic using infinite numbers is always exact and does not signal any excep-
tion, except when an exception occurs due to the invalid operations as described
in 6.11.10.6 Invalid Operation Exception Conditions.

3.3.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a non-zero fraction value.
The format for NaNs is shown in Figure 3-18. The sign bit of NaNs is ignored (that
is, NaNs are neither positive nor negative). If the high-order bit of the fraction field
is a zero, the NaN is a signaling NaN (SNaN); otherwise it is a quiet NaN (QNaN).

Figure 3-18 Format for NANs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as invalid arith-

SIGN OF MANTISSA, 0 OR 1

EXPONENT = MAXIMUM
(BIASED) MANTISSA = 0

SIGN OF MANTISSA (0 for +NaN; 1 for –NaN)

EXPONENT = MAXIMUM
(BIASED)

MANTISSA = ANY NON-ZERO
BIT PATTERN
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-15

metic operations on infinities or on NaNs, when the invalid operation exception is
disabled (FPSCR[VE] = 0). Quiet NaNs propagate through all operations, except
ordered comparison, floating round to single precision, and conversion to integer
operations. Quiet NaNs do not signal exceptions, except during ordered compari-
son and conversion to integer operations. Specific encodings in QNaNs can thus
be preserved through a sequence of operations and used to convey diagnostic in-
formation to help identify results from invalid operations.

When a QNaN results from an operation because an operand is a NaN or because
a QNaN is generated due to a disabled invalid operation exception, the following
rule is applied to determine the QNaN with the high-order fraction bit set to one that
is to be stored as the result:

If (frA) is a NaN
Then frD ← (frA)

Else if (frB) is a NaN
Then frD ← (frB)
Else if (frC) is a NaN

Then frD ← (frC)
Else if generated QNaN

Then frD ← generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise,
if the operand specified by frB is a NaN (if the instruction specifies an frB operand),
that NaN is stored as the result. Otherwise, if the operand specified by frC is a NaN
(if the instruction specifies an frC operand), that NaN is stored as the result. Oth-
erwise, if a QNaN is generated by a disabled invalid operation exception, that
QNaN is stored as the result. If a QNaN is to be generated as a result, the QNaN
generated has a sign bit of zero, an exponent field of all ones, and a high-order
fraction bit of one with all other fraction bits zero. An instruction that generates a
QNaN as the result of a disabled invalid operation generates this QNaN. This is
shown in Figure 3-19.

Figure 3-19 Representation of QNaN

3.3.8 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when
the operation does not yield an exception. These rules apply even when the oper-
ands or results are ±0 or ±×.

The sign of the result of an addition operation is the sign of the source operand hav-
ing the larger absolute value. The sign of the result of the subtraction operation, x
– y, is the same as the sign of the result of the addition operation, x+(–y).

SIGN OF MANTISSA, NaN OR 1

111...1 1000....00
 MOTOROLA OPERAND CONVENTIONS RCPU

3-16 Revised 1 February 1999 REFERENCE MANUAL

When the sum of two operands with opposite sign, or the difference of two oper-
ands with the same sign, is exactly zero, the sign of the result is positive in all
rounding modes except round toward negative infinity (–×), in which case the sign
is negative.

• The sign of the result of a multiplication or division operation is the exclusive
OR of the signs of the source operands.

• The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

For multiply-add instructions, these rules are applied first to the multiplication op-
eration and then to the addition or subtraction operation (one of the source oper-
ands to the addition or subtraction operation is the result of the multiplication
operation).

3.3.9 Normalization and Denormalization

When an arithmetic operation produces an intermediate result, consisting of a sign
bit, an exponent, and a non-zero significand with a zero leading bit, the result is not
a normalized number and must be normalized before it is stored.

A number is normalized by shifting its significand left while decrementing its expo-
nent by one for each bit shifted, until the leading significand bit becomes one. The
guard bit and the round bit participate in the shift with zeros shifted into the round
bit; see 3.4.1 Execution Model for IEEE Operations.

During normalization, the exponent is regarded as if its range were unlimited. If the
resulting exponent value is less than the minimum value that can be represented
in the format specified for the result, the intermediate result is said to be “tiny” and
the stored result is determined by the rules described in 6.11.10.9 Underflow Ex-
ception Condition. The sign of the number does not change.

When an arithmetic operation produces a non-zero intermediate result whose ex-
ponent is less than the minimum value that can be represented in the format spec-
ified, the stored result may need to be denormalized. The result is determined by
the rules described in 6.11.10.9 Underflow Exception Condition.

A number is denormalized by shifting its significand to the right while incrementing
its exponent by one for each bit shifted until the exponent equals the format's min-
imum value. If any significant bits are lost in this shifting process, a loss of accuracy
has occurred, and an underflow exception is signaled. The sign of the number does
not change.

When denormalized numbers are operands of multiply and divide operations, op-
erands are prenormalized internally before the operations are performed.

3.3.10 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs
and memory. Data in double-precision format is not altered during the move. Sin-
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-17

gle-precision data is converted to double-precision format when loaded from mem-
ory into an FPR. A format conversion from double- to single-precision is performed
when data from an FPR is stored. Floating-point exceptions cannot occur during
these operations.

All arithmetic operations use floating-point double-precision format.

Floating-point single-precision formats are used by the following four types of in-
structions:

• Load Floating-Point Single-Precision (lfs) — This instruction accesses a sin-
gle-precision operand in single-precision format in memory, converts it to dou-
ble-precision, and loads it into an FPR. Exceptions are not detected during the
load operation.

• Round to floating-point single-precision — If the operand is not already in sin-
gle-precision range, the floating round to single-precision instruction rounds a
double-precision operand to single-precision, checking the exponent for sin-
gle-precision range and handling any exceptions according to respective en-
able bits in the FPSCR. The instruction places that operand into an FPR as a
double-precision operand. For results produced by single-precision arithmetic
instructions and by single-precision loads, this operation does not alter the
value.

• Single-precision arithmetic instructions — These instructions take operands
from the FPRs in double-precision format, perform the operation as if it pro-
duced an intermediate result correct to infinite precision and with unbounded
range, and then force this intermediate result to fit in single-precision format.
Status bits in the FPSCR and in the condition register are set to reflect the sin-
gle-precision result. The result is then converted to double-precision format
and placed into an FPR. The result falls within the range supported by the sin-
gle format.

For single-precision operations, source operands must be representable in
single-precision format. If they are not, the result placed into the target FPR,
and the setting of status bits in the FPSCR and in the condition register, are
undefined.

• Store Floating-Point Single-Precision (stfs) — This form of instruction con-
verts a double-precision operand to single-precision format and stores that
operand into memory. If the operand requires denormalization in order to fit in
single-precision format, it is automatically denormalized prior to being stored.
No exceptions are detected on the store operation (the value being stored is
effectively assumed to be the result of an instruction of one of the preceding
three types).

When the result of a load floating-point single-precision (lfs), floating-point round
to single-precision (frspx), or single-precision arithmetic instruction is stored in an
FPR, the low-order 29 fraction bits are zero. This is shown in Figure 3-20.
 MOTOROLA OPERAND CONVENTIONS RCPU

3-18 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-20 Single-Precision Representation in an FPR

The floating-point round to single-precision (frpsx) instruction allows conversion
from double to single precision with appropriate exception checking and rounding.
This instruction should be used to convert double-precision floating-point values
(produced by double-precision load and arithmetic instructions) to single-precision
values before storing them into single-format memory elements or using them as
operands for single-precision arithmetic instructions. Values produced by single-
precision load and arithmetic instructions can be stored directly, or used directly as
operands for single-precision arithmetic instructions, without preceding the store,
or the arithmetic instruction, by frspx.

A single-precision value can be used in double-precision arithmetic operations.
The reverse is true only if the double-precision value can be represented in single-
precision format. Some implementations may execute single-precision arithmetic
instructions faster than double-precision arithmetic instructions. Therefore, if dou-
ble-precision accuracy is not required, using single-precision data and instructions
can speed operations.

3.3.11 Rounding

All arithmetic instructions defined by the PowerPC architecture produce an inter-
mediate result considered infinitely precise. This result must then be written with a
precision of finite length into an FPR. After normalization or denormalization, if the
infinitely precise intermediate result cannot be represented in the precision re-
quired by the instruction, it is rounded before being placed into the target FPR.

The instructions that potentially round their result are the arithmetic, multiply-add,
and rounding and conversion instructions. As shown in Figure 3-21, whether
rounding occurs depends on the source values.

S EX x x x x x x x x x xx x x x x x x x x x x x x 00000000000000000000000000000

0 1 11 12 63

Bit 35
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-19

Figure 3-21 Rounding Flow Diagram

Each of these instructions sets FPSCR bits FR and FI, according to whether round-
ing occurs (FI) and whether the fraction was incremented (FR). If rounding occurs,
FI is set to one and FR may be either zero or one. If rounding does not occur, both
FR and FI are cleared. Other floating-point instructions do not alter FR and FI. Four
modes of rounding are provided that are user-selectable through the floating-point
rounding control field in the FPSCR. These are encoded as follows in Table 3-7.

Let Z be the infinitely precise intermediate arithmetic result or the operand of a con-
version operation. If Z can be represented exactly in the target format, no rounding
occurs and the result in all rounding modes is equivalent to truncation of Z. If Z can-
not be represented exactly in the target format, let Z1 and Z2 be the next larger and
next smaller numbers representable in the target format that bound Z; then Z1 or
Z2 can be used to approximate the result in the target format.

Table 3-7 FPSCR Bit Settings — RN Field

RN Rounding Mode

00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward –infinity

Roundin

Yes

No
FI = 0
FR = 0

No

FI = 1

FR = 0

Yes

FI = 1

Fraction
Incremented

RND FLO DIAG
 MOTOROLA OPERAND CONVENTIONS RCPU

3-20 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-22 shows a graphical representation of Z, Z1, and Z2.

Figure 3-22 Relation of Z1 and Z2

Rounding follows the four following rules:

• Round to nearest — Choose the best approximation (Z1 or Z2). In case of a
tie, choose the one which is even (i.e., with least significant bit equal to zero).
Refer to 3.4.1 Execution Model for IEEE Operations for details on how the
processor selects the best approximation.

• Round toward zero — Choose the smaller in magnitude (Z1 or Z2).
• Round toward +infinity — Choose Z1.
• Round toward –infinity — Choose Z2.

If Z is to be rounded up and Z1 does not exist (that is, if there is no number larger
than Z that is representable in the target format), then an overflow exception occurs
if Z is positive and an underflow exception occurs if Z is negative. Similarly, if Z is
to be rounded down and Z2 does not exist, then an overflow exception occurs if Z
is negative and an underflow exception occurs if Z is positive. The results in these
cases are defined in 6.11.10 Floating-Point Assist Exception (0x00E00).

3.4 Floating-Point Execution Models

The following paragraphs describe the floating-point execution models for IEEE
operations, as well as that for a special multiply-add type of instruction. In addition,
the execution model for non-IEEE compliant operation, used to accelerate time-
critical operations, is described.

The IEEE-754 standard includes 32-bit and 64-bit arithmetic. The standard re-
quires that single-precision arithmetic be provided for single-precision operands.
The standard permits double-precision arithmetic instructions to have either (or
both) single-precision or double-precision operands, but states that single-preci-
sion arithmetic instructions should not accept double-precision operands.

The PowerPC architecture follows these guidelines:

• Double-precision arithmetic instructions can have operands of either or both
precisions.

By incrementing LSB of Z
Infinitely precise value
By truncating after LSB

Z2 Z1 0 Z2 Z1

Z Z
Negative values Positive values

Z1/Z2
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-21

• Single-precision arithmetic instructions require all operands to be single-pre-
cision.

• Double-precision arithmetic instructions produce double-precision values.
• Single-precision arithmetic instructions produce single-precision values.

For arithmetic instructions, conversions from double- to single-precision must be
done explicitly by software, while conversions from single- to double-precision are
done implicitly.

Although the double-precision format specifies an 11-bit exponent, exponent arith-
metic uses two additional bit positions to avoid potential transient overflow condi-
tions. An extra bit is required when denormalized double-precision numbers are
prenormalized. A second bit is required to permit computation of the adjusted ex-
ponent value in the following cases when the corresponding exception enable bit
is one:

• Underflow during multiplication using a denormalized factor.
• Overflow during division using a denormalized divisor.

3.4.1 Execution Model for IEEE Operations

The following description uses 64-bit arithmetic as an example. Thirty-two-bit arith-
metic is similar except that the fraction field is a 23-bit field and the single-precision
guard, round, and sticky bits (described in this section) are logically adjacent to the
23-bit FRACTION (or mantissa) field.

The bits and fields for the IEEE 64-bit execution model are defined as follows:

• The S bit is the sign bit.
• The C bit is the carry bit that captures the carry out of the significand.
• The L bit is the leading unit bit of the significand which receives the implicit bit

from the operands.
• The FRACTION is a 52-bit field that accepts the fraction (mantissa) of the op-

erands.
• The guard (G), round (R), and sticky (X) bits are extensions to the low-order

bits of the accumulator. The G and R bits are required for post normalization
of the result. The G, R, and X bits are required during rounding to determine
if the intermediate result is equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits by representing the log-
ical OR of all bits that may appear to the low-order side of the R bit, either due
to shifting the accumulator right or other generation of low-order result bits.
The G and R bits participate in the left shifts with zeros being shifted into the
R bit. Table 3-8 shows the relationship among the G, R, and X bits, the inter-
mediate result (IR), the next lower in magnitude representable number (NL),
and the next higher in magnitude representable number (NH).
 MOTOROLA OPERAND CONVENTIONS RCPU

3-22 Revised 1 February 1999 REFERENCE MANUAL

The significand of the intermediate result is made up of the L bit, the FRACTION,
and the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in
bits L, FRACTION, G, R, and X of the floating-point accumulator.

Before results are stored into an FPR, the significand is rounded if necessary, us-
ing the rounding mode specified by FPSCR[RN]. If rounding causes a carry into C,
the significand is shifted right one position and the exponent is incremented by one.
This may yield an inexact result and possibly exponent overflow. Fraction bits to
the left of the bit position used for rounding are stored into the FPR, and low-order
bit positions, if any, are set to zero.

Four rounding modes are provided which are user-selectable through FPSCR[RN]
as described in 3.3.11 Rounding. For rounding, the conceptual guard, round, and
sticky bits are defined in terms of accumulator bits.

Table 3-9 shows the positions of the guard, round, and sticky bits for double-pre-
cision and single-precision floating-point numbers.

Rounding can be treated as though the significand were shifted right, if required,
until the least significant bit to be retained is in the low-order bit position of the
FRACTION. If any of the guard, round, or sticky bits are non-zero, the result is in-
exact.

Table 3-8 Interpretation of G, R, and X Bits

G R X Interpretation

0 0 0 IR is exact

0 0 1

IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL and NH

1 0 1

IR closer to NH1 1 0

1 1 1

Table 3-9 Location of the Guard, Round and Sticky Bits

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 26–52 G,R,X
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-23

Z1 and Z2, defined in 3.3.11 Rounding, can be used to approximate the result in
the target format when one of the following rules is used:

• Round to nearest
— Guard bit = 0: The result is truncated. (Result exact (GRX = 000) or closest

to next lower value in magnitude (GRX = 001, 010, or 011)
— Guard bit = 1: Depends on round and sticky bits:

• Case a: If the round or sticky bit is one (inclusive), the result is increment-
ed. (result closest to next higher value in magnitude (GRX = 101, 110, or
111))

• Case b: If the round and sticky bits are zero (i.e., the result is midway be-
tween the closest representable values), the result is rounded to an even
value. That is, if the low-order bit of the result is one, the result is incre-
mented. If the low-order bit of the result is zero, the result is truncated.

• If during the round to nearest process, truncation of the unrounded number
produces the maximum magnitude for the specified precision, the following
action is taken:
— Guard bit = 1: Store infinity with the sign of the unrounded result.
— Guard bit = 0: Store the truncated (maximum magnitude) value.

• Round toward zero — Choose the smaller in magnitude of Z1 or Z2. If the
guard, round, or sticky bit is non-zero, the result is inexact.

• Round toward +infinity
Choose Z1.

• Round toward –infinity
Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction
is a floating round to single-precision or single-precision arithmetic instruction, the
intermediate result either is normalized or is placed in correct denormalized form
before the result is potentially rounded.

3.4.2 Execution Model for Multiply-Add Type Instructions

The PowerPC architecture makes use of a special form of instruction that performs
up to three operations in one instruction (a multiply, an add, and a negate). With
this added capability is the special feature of being able to produce a more exact
intermediate result as an input to the rounder. The 32-bit arithmetic is similar ex-
cept that the fraction field is smaller.

NOTE
The rounding occurs only after add; therefore, the computation of the
sum and product together are infinitely precise before the final result
is rounded to a representable format.

The first part of the operation is a multiply. The multiply has two 53-bit significands
as inputs, which are assumed to be prenormalized, and produces a result conform-
ing to the above model. If there is a carry out of the significand (into the C bit), the
significand is shifted right one position, placing the L bit into the most significant bit
of the FRACTION and placing the C bit into the L bit. All 106 bits (L bit plus the frac-
 MOTOROLA OPERAND CONVENTIONS RCPU

3-24 Revised 1 February 1999 REFERENCE MANUAL

tion) of the product take part in the add operation. If the exponents of the two inputs
to the adder are not equal, the significand of the operand with the smaller exponent
is aligned (shifted) to the right by an amount added to that exponent to make it
equal to the other input’s exponent. Zeros are shifted into the left of the significand
as it is aligned and bits shifted out of bit 105 of the significand are ORed into the X'
bit. The add operation also produces a result conforming to the above model with
the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the
X' bit, participating in the shift. The normalized result provides an intermediate re-
sult as input to the rounder that conforms to the model described in 3.4.1 Execu-
tion Model for IEEE Operations, where:

• The guard bit is bit 53 of the intermediate result.
• The round bit is bit 54 of the intermediate result.
• The sticky bit is the OR of all remaining bits to the right of bit 55, inclusive.

If the instruction is floating negative multiply-add or floating negative multiply-sub-
tract, the final result is negated.

Status bits are set to reflect the result of the entire operation: for example, no status
is recorded for the result of the multiplication part of the operation.

3.4.3 Non-IEEE Operation

The RCPU depends on a software envelope to fully implement the IEEE-754 float-
ing-point specification. Even when all exceptions are disabled (i.e., when exception
enable bits in the FPSCR are cleared), tiny results and denormalized operands
cause FPU exceptions that invoke a software routine to deliver (with hardware as-
sistance) the correct IEEE result.

To accelerate time-critical operations and make them more deterministic, the
RCPU provides a non-IEEE mode of operation. In this mode, whenever a tiny result
is detected and floating-point underflow exception is disabled (FPSCR[UE] = 0),
the hardware delivers a correctly signed zero instead of invoking the floating-point
assist exception handler.

Non-IEEE mode is entered by setting the NI (non-IEEE enable) bit in the FPSCR.

Denormalized numbers are never generated in non-IEEE mode. Therefore, when
denormalized operands are detected, they are treated exactly as they are in IEEE
mode. Refer to 6.11.10 Floating-Point Assist Exception (0x00E00) for more in-
formation.

The hardware never asserts the FPSCRXX (inexact) bit on an underflow condition;
it is done as a part of the floating-point assist interrupt handler. Therefore, in non-
IEEE mode, FPSCRXX cannot be depended upon to be a complete accumulation
of all inexact conditions.
RCPU OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-25

3.4.4 Working Without the Software Envelope

Even when the processor is operating in non-IEEE mode, the software envelope
may be invoked when denormalized numbers are used as the input to the calcula-
tion or when an enabled IEEE exception is detected. To ensure that the software
envelope is never invoked, the user needs to do the following:

• Set the NI bit in the FPSCR to enable non-IEEE mode.
• Disable all floating-point exceptions.
• Avoid using denormalized numbers as inputs to floating-point calculations.
 MOTOROLA OPERAND CONVENTIONS RCPU

3-26 Revised 1 February 1999 REFERENCE MANUAL

SECTION 4
ADDRESSING MODES AND INSTRUCTION SET SUMMARY

This section describes instructions and address modes supported by the RCPU.
These instructions are divided into the following categories:

• Integer instructions — These include computational and logical instructions.
• Floating-point instructions — These include floating-point computational in-

structions, as well as instructions that affect the floating-point status and con-
trol register.

• Load/store instructions — These include integer and floating-point load and
store instructions.

• Flow control instruction — These include branching instructions, condition
register logical instructions, trap instructions, and other instructions that affect
the instruction flow.

• Processor control instruction — These instructions are used to read from and
write to the condition register (CR), machine state register (MSR), and spe-
cial-purpose registers (SPRs), and to read from the time base register (TBU
or TBL).

• Memory synchronization instructions — These instructions are used for syn-
chronizing memory.

• Memory control instructions — These instructions provide control of the I-
cache.

Notice that this grouping of instructions does not necessarily indicate the execution
unit that processes a particular instruction or group of instructions. This information
is provided in SECTION 9 INSTRUCTION SET.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point oper-
ands. The PowerPC architecture uses instructions that are four bytes long and
word-aligned. It provides for byte, half-word, and word operand fetches and stores
between memory and a set of 32 general-purpose registers (GPRs). It also pro-
vides for word and double-word operand fetches and stores between memory and
a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not modify memory. To use a memory oper-
and in a computation and then modify the same or another memory location, the
memory contents must be loaded into a register, modified, and then written back
to the target location.

4.1 Memory Addressing

A program references memory using the effective (logical) address computed by
the processor when it executes a load, store, branch, or cache instruction, and
when it fetches the next sequential instruction.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-1

4.1.1 Memory Operands
Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point oper-
ands. The address of a memory operand is the address of its lowest-numbered
byte. Operand length is implicit for each instruction. The PowerPC architecture
supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian; see 3.2 Byte Ordering for more information.

The operand of a single-register memory access instruction has a natural align-
ment boundary equal to the operand length. In other words, the “natural” address
of an operand is an integral multiple of the operand length. A memory operand is
said to be aligned if it is aligned at its natural boundary; otherwise it is misaligned.
For a detailed discussion of memory operands, see SECTION 3 OPERAND CON-
VENTIONS.

4.1.2 Addressing Modes and Effective Address Calculation
A program references memory using the effective address (EA) computed by the
processor when it executes a memory access or branch instruction, or when it
fetches the next sequential instruction.

The effective address is the 32-bit address computed by the processor when exe-
cuting a memory access or branch instruction or when fetching the next sequential
instruction. For a memory access instruction, if the sum of the effective address
and the operand length exceeds the maximum effective address, the storage op-
erand is considered to wrap around from the maximum effective address to effec-
tive address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit
unsigned binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode. The d operand is added to the
contents of the GPR specified by the rA operand to generate the effective ad-
dress.

• Register indirect with index mode. The contents of the GPR specified by rB
operand are added to the contents of the GPR specified by the rA operand to
generate the effective address.

• Register indirect mode. The contents of the GPR specified by the rA operand
are used as the effective address.

Branch instructions have three categories of effective address generation:

• Immediate addressing. The BD or LI operands are sign extended with the two
low-order bits cleared to zero to generate the branch effective address.

• Link register indirect. The contents of the link register with the two low-order
bits cleared to zero are used as the branch effective address.

• Counter register indirect. The contents of the counter register with the two low-
order bits cleared to zero are used as the branch effective address.

Branch instructions can optionally load the link register with the next sequential in-
struction address (current instruction address + 4).
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-2 Revised 1 February 1999 REFERENCE MANUAL

4.2 Classes of Instructions
PowerPC instructions belong to one of three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruc-
tion that is specific to 64-bit implementations is considered defined for 64-bit imple-
mentations but illegal for 32-bit implementations such as the RCPU.

The class is determined by examining the primary opcode and the extended op-
code, if any. If the opcode, or combination of opcode and extended opcode, is not
that of a defined instruction or a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now il-
legal may become defined (by being added to the architecture) or reserved (by be-
ing assigned to one of the special purposes). Likewise, reserved instructions may
become defined.

4.2.1 Definition of Boundedly Undefined
The results of executing a given instruction are said to be boundedly undefined if
they could have been achieved by executing an arbitrary sequence of instructions,
starting in the state the machine was in before executing the given instruction.
Boundedly undefined results for a given instruction may vary between implemen-
tations and between execution attempts on the same implementation.

4.2.2 Defined Instruction Class
Defined instructions include all the instructions defined in the PowerPC UISA, VEA,
and OEA. Defined instructions can be required or optional. The RCPU supports the
following defined instructions:

• All 32-bit PowerPC UISA required instructions
• The following PowerPC VEA instructions: eieio, icbi, isync, and mftb
• The following PowerPC OEA instructions: mfmsr, mfspr, mtmsr, mtspr, rfi,

and sc.
• The following optional instruction: stfiwx

A defined instruction may have an instruction form that is invalid if one or more op-
erands, excluding opcodes, are coded incorrectly in a manner that can be deduced
by examining only the instruction encoding (primary and extended opcodes). For
example, an invalid form results when a reserved bit (shown as “0” in the instruction
descriptions in SECTION 9 INSTRUCTION SET) is set to one.

Attempting to execute an invalid form of a defined instruction either invokes the
software emulation instruction error handler or yields boundedly undefined results.
Where not otherwise noted in the individual instruction descriptions in SECTION 9
INSTRUCTION SET for individual instruction descriptions, attempting to execute
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-3

an instruction in which a reserved bit is set to one yields the same result as execut-
ing the instruction with the reserved bit cleared to zero.

Attempting to execute a defined PowerPC instruction, including an optional instruc-
tion, that is not implemented in hardware causes the RCPU to take the implemen-
tation dependent software emulation exception.

NOTE
Other PowerPC implementations invoke the program exception han-
dler in this case. Refer to 6.11.11 Software Emulation Exception
(0x01000) for additional information.

4.2.3 Illegal Instruction Class

Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC architecture. These op-
codes are available for future extensions of the PowerPC architecture; that is,
future versions of the PowerPC architecture may define any of these instruc-
tions to perform new functions.

• Instructions that are implemented in the PowerPC architecture but are not im-
plemented in a specific PowerPC implementation. For example, instructions
that can be executed on 64-bit PowerPC processors are considered illegal for
32-bit processors.

• All unused extended opcodes are illegal.
• An instruction consisting entirely of zeros is guaranteed to be an illegal instruc-

tion.

An attempt to execute an illegal instruction invokes the software emulation error
handler. Notice that in other PowerPC implementations, the program exception
handler may be invoked in this case.

4.2.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purpos-
es not defined by the PowerPC architecture. Attempting to execute an unimple-
mented reserved instruction causes the RCPU to take the implementation
dependent software emulation exception.

NOTE
Other PowerPC implementations invoke the program exception han-
dler in this case. Refer to 6.11.11 Software Emulation Exception
(0x01000) for additional information.

4.3 Integer Instructions

This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-4 Revised 1 February 1999 REFERENCE MANUAL

• Integer rotate and shift instructions
• Integer logical instructions

Integer instructions use the content of the GPRs as source operands and place re-
sults into GPRs, into the integer exception register (XER), and into condition reg-
ister fields.

These instructions treat the source operands as signed integers unless the instruc-
tion is explicitly identified as an unsigned operation or an address conversion.

The integer instructions that update the condition register (i.e., those with a mne-
monic ending in a period) set condition register field CR0 (bits [0:3]) to characterize
the result of the operation. These instructions include those with the Rc bit equal to
one and the addic., andi., and andis. integer logical and arithmetic instructions.
The condition register field CR0 is set as if the result were compared algebraically
to zero.

The following integer arithmetic instructions always set XER[CA] to reflect the carry
out of bit 0: addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme,
addze, and subfze. Integer arithmetic instructions with the overflow enable (OE)
bit set cause XER[SO] and XER[OV] to be set to reflect overflow of the 32-bit result.

Unless otherwise noted, when condition register field CR0 and the XER are affect-
ed, they reflect the value placed in the target register.

The RCPU performs best for aligned load and store operations. See 6.11.4 Align-
ment Exception (0x00600) for scenarios that cause an alignment exception.

4.3.1 Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-5

Table 4-1 Integer Arithmetic Instructions

Name Mnemonic Operand
Syntax

Operation

Add
Immediate

addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into register rD.

Add
Immediate
Shifted

addis rD,rA,SIMM The sum (rA|0) + (SIMM || 0x0000) is placed into register rD.

Add add
add.
addo
addo.

rD,rA,rB The sum (rA) + (rB) is placed into register rD.

add Add
add. Add with CR Update. The dot suffix enables the update

of the condition register.
addo Add with Overflow Enabled. The o suffix enables the

overflow bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables

the update of the condition register and enables the
overflow bit (OV) in the XER.

Subtract
from

subf
subf.
subfo
subfo.

rD,rA,rB The sum ¬ (rA) + (rB) +1 is placed into rD.

subf Subtract from
subf. Subtract from with CR Update. The dot suffix enables the

update of the condition register.
subfo Subtract from with Overflow Enabled. The o suffix

enables the overflow. The o suffix enables the overflow
bit (OV) in the XER.

subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Add
Immediate
Carrying

addic rD,rA,SIMM The sum (rA) + SIMM is placed into register rD.

Add
Immediate
Carrying
and Record

addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The condition register is
updated.

Subtract
from
Immediate
Carrying

subfic rD,rA,SIMM The sum ¬ (rA) + SIMM + 1 is placed into register rD.

Add
Carrying

addc
addc.
addco
addco.

rD,rA,rB The sum (rA) + (rB) is placed into register rD.

addc Add Carrying
addc. Add Carrying with CR Update. The dot suffix enables the

update of the condition register.
addco Add Carrying with Overflow Enabled. The o suffix

enables the overflow bit (OV) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-6 Revised 1 February 1999 REFERENCE MANUAL

Subtract
from
Carrying

subfc
subfc.
subfco
subfco.

rD,rA,rB The sum ¬ (rA) + (rB) + 1 is placed into register rD.

subfc Subtract from Carrying
subfc. Subtract from Carrying with CR Update. The dot suffix

enables the update of the condition register.
subfco Subtract from Carrying with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR U p d a t e

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Add
Extended

adde
adde.
addeo
addeo.

rD,rA,rB The sum (rA) + (rB) + XER(CA) is placed into register rD.

adde Add Extended
adde. Add Extended with CR Update. The dot suffix enables the

update of the condition register.
addeo Add Extended with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o.

suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

Subtract
from
Extended

subfe
subfe.
subfeo
subfeo.

rD,rA,rB The sum ¬ (rA) + (rB) + XER(CA) is placed into register rD.

subfe Subtract from Extended
subfe. Subtract from Extended with CR Update. The dot suffix

enables the update of the condition register.
subfeo Subtract from Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update.

The o. suffix enables the update of the condition register
and enables the overflow (OV) bit in the XER.

Add to
Minus One
Extended

addme
addme.
addmeo
addmeo.

rD,rA The sum (rA) + XER(CA) + 0xFFFF FFFF is placed into register rD.

addme Add to Minus One Extended
addme. Add to Minus One Extended with CR U pdate. The dot

suffix enables the update of the condition register.
addmeo Add to Minus One Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow (OV) bit in the XER.

Subtract
from Minus
One
Extended

subfme
subfme.
subfmeo
subfmeo.

rD,rA The sum ¬ (rA) + XER(CA) + 0xFFFF FFFF is placed into register rD.

subfme Subtract from Minus One Extended
subfme. Subtract from Minus One Extended with CR Update. The

dot suffix enables the update of the condition register.
subfmeo Subtract from Minus One Extended with Overflow. The

o suffix enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and

CR Update. The o. suffix enables the update of the
condition register and enables the overflow bit (OV) in the
XER.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-7

Add to Zero
Extended

addze
addze.
addzeo
addzeo.

rD,rA The sum (rA) + XER(CA) is placed into register rD.

addze Add to Zero Extended
addze. Add to Zero Extended with CR Update. The dot suffix

enables the update of the condition register.
addzeo Add to Zero Extended with Overflow. The o suffix enables

the overflow bit (OV) in the XER.
addzeo. Add to Zero Extended with Overflow and C R U p d a t e

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Subtract
from Zero
Extended

subfze
subfze.
subfzeo
subfzeo.

rD,rA The sum ¬ (rA) + XER(CA) is placed into register rD.

subfze Subtract from Zero Extended
subfze. Subtract from Zero Extended with C R Update. The dot

suffix enables the update of the condition register.
subfzeo Subtract from Zero Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow bit (OV) in the XER.

Negate neg
neg.
nego
nego.

rD,rA The sum ¬ (rA) + 1 is placed into register rD.

neg Negate
neg. Negate with CR Update. The dot suffix enables the

update of the condition register.
nego Negate with Overflow. The o suffix enables the overflo

bit (OV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply Low
Immediate

mulli rD,rA,SIMM The low-order 32 bits of the 48-bit product (rA) ∗ SIMM are placed into
register rD. The low-order 32 bits of the product are the correct 32-bit
product. The low-order bits are independent of whether the operands
are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with mulhwx
to calculate a full 64-bit product.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-8 Revised 1 February 1999 REFERENCE MANUAL

Multiply Low mull
mullw.
mullwo
mullwo.

rD,rA,rB The low-order 32 bits of the 64-bit product (rA) ∗ (rB) are placed into
register rD. The low-order 32 bits of the product are the correct 32-bit
product. The low-order bits are independent of whether the operands
are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with mulhwx
to calculate a full 64-bit product. Some implementations may execute
faster if rB contains the operand having the smaller absolute value.

mullw Multiply Low
mullw. Multiply Low with CR Update. The dot suffix enables the

update of the condition register.
mullwo Multiply Low with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply
High Word

mulhw
mulhw.

rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers.
The 64-bit product is formed. The high-order 32 bits of the 64-bit
product are placed into rD.

Both operands and the product are interpreted as signed integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix

enables the update of the condition register.

Multiply
High Word
Unsigned

mulhwu
mulhwu.

rD,rA,rB The contents of rA and of rB are extracted and interpreted as 32-bit
unsigned integers. The 64-bit product is formed. The high-order 32 bits
of the 64-bit product are placed into rD.

Both operands and the product are interpreted as unsigned integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot

suffix enables the update of the condition register.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-9

Divide Word divw
divw.
divwo
divwo.

rD,rA,rB The dividend is the signed value of (rA). The divisor is the signed value
of (rB). The 64-bit quotient is formed. The low-order 32 bits of the 64-
bit quotient are placed into rD. The remainder is not supplied as a
result.

Both operands are interpreted as signed integers. The quotient is the
unique signed integer that satisfies the following:

dividend = (quotient times divisor) + r
where 0 ð r < |divisor| if the dividend is non-negative, and
–|divisor| < r ð 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000 0000 / –1

or

<anything> / 0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CR0 if the instruction
has condition register updating enabled. In these cases, if instruction
overflow is enabled, then XER[OV] is set.

The 32-bit signed remainder of dividing (rA) by (rB) can be computed
as follows, except in the case that (rA) = –231 and (rB) = –1:

divw rD,rA,rB rD = quotient
mull rD,rD,rB rD = quotient∗ divisor
subf rD,rD,rA rD = remainder

divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the

update of the condition register.
divwo Divide Word with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
divwo. Divide Word with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-10 Revised 1 February 1999 REFERENCE MANUAL

See E.2 Simplified Mnemonics for Subtract Instructions for information on sim-
plified mnemonics.

4.3.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of
register rA with either the UIMM operand, the SIMM operand or the contents of reg-
ister rB. Algebraic comparison compares two signed integers. Logical comparison
compares two unsigned numbers. Table 4-2 summarizes the RCPU integer com-
pare instructions.

Divide Word
Unsigned

divwu
divwu.
divwuo
divwuo.

rD,rA,rB The dividend is the value of (rA). The divisor is the value of (rB). The
32-bit quotient is placed into rD. The remainder is not supplied as a
result.

Both operands are interpreted as unsigned integers. The quotient is
the unique unsigned integer that satisfies the following:

dividend = (quotient times divisor) + r

where 0 ð r < divisor.

If an attempt is made to perform the division

<anything> / 0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CR0 if the instruction
has the condition register updating enabled. In these cases, if
instruction overflow is enabled, then XER[OV] is set.

The 32-bit unsigned remainder of dividing (rA) by (rB) can be
computed as follows:

divwu rD,rA,rB rD = quotient
mull rD,rD,rB rD = quotient*divisor
subf rD,rD,rA rD = remainder

divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix

enables the update of the condition register.
divwuo Divide Word Unsigned with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update.

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-11

While the PowerPC architecture specifies that the value in the L field specifies
whether the operands are treated as 32- or 64-bit values, the RCPU ignores the
value in the L field and treats the operands as 32-bit values.

The crfD field can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instruction crfD field, using
one of the CR field symbols (CR0 to CR7) or an explicit field number. Refer to Ta-
ble E-2 for the list of CR field symbols and to E.3 Simplified Mnemonics for Com-
pare Instructions for simplified mnemonics.

4.3.3 Integer Logical Instructions

The logical instructions shown in Table 4–4 perform bit-parallel operations. Logical
instructions with Rc = 1 and instructions andi. and andis. set condition register
field CR0 to characterize the result of the logical operation. These fields are set as
if the sign-extended low-order 32 bits of the result were algebraically compared to
zero. The remaining logical instructions do not modify the condition register. Logi-
cal instructions do not change the SO, OV, or CA bits in the XER.

Table 4-2 Integer Compare Instructions

Name Mnemonic Operand
Syntax

Operation

Compare
Immediate

cmpi crfD,L,rA,SIMM The contents of register rA is compared with the sign-extended
value of the SIMM operand, treating the operands as signed
integers. The result of the comparison is placed into the CR field
specified by operand crfD.

Compare cmp crfD,L,rA,rB The contents of register rA is compared with register rB, treating the
operands as signed integers. The result of the comparison is placed
into the CR field specified by operand crfD.

Compare
Logical
Immediate

cmpli crfD,L,rA,UIMM The contents of register rA is compared with 0x0000 || UIMM,
treating the operands as unsigned integers. The result of the
comparison is placed into the CR field specified by operand crfD.

Compare
Logical

cmpl crfD,L,rA,rB The contents of register rA is compared with register rB, treating the
operands as unsigned integers. The result of the comparison is
placed into the CR field specified by operand crfD.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-12 Revised 1 February 1999 REFERENCE MANUAL

Table 4-3 Integer Logical Instructions

Name Mnemonic Operand
Syntax

Operation

AND
Immediate

andi. rA,rS,UIMM The contents of rS is ANDed with 0x0000 || UIMM and the result is
placed into rA.

AND
Immediate
Shifted

andis. rA,rS,UIMM The contents of rS is ANDed with UIMM || 0x0000 and the result is
placed into rA.

OR
Immediate

ori rA,rS,UIMM The contents of rS is ORed with 0x0000 || UIMM and the result is
placed into rA.

The preferred no-op is ori 0,0,0

OR
Immediate
Shifted

oris rA,rS,UIMM The contents of rS is ORed with UIMM || 0x0000 and the result is
placed into rA.

XOR
Immediate

xori rA,rS,UIMM The contents of rS is XORed with 0x0000 || UIMM and the result is
placed into rA.

XOR
Immediate
Shifted

xoris rA,rS,UIMM The contents of rS is XORed with UIMM || 0x0000 and the result is
placed into rA.

AND and
and.

rA,rS,rB The contents of rS is ANDed with the contents of register rB and the
result is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update

of the condition register.

OR or
or.

rA,rS,rB The contents of rS is ORed with the contents of rB and the result is
placed into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of

the condition register.

XOR xor
xor.

rA,rS,rB The contents of rS is XORed with the contents of rB and the result is
placed into register rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update

of the condition register.

NAND nand
nand.

rA,rS,rB The contents of rS is ANDed with the contents of rB and the one’s
complement of the result is placed into register rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update

of the condition register.

NAND with rS = rB can be used to obtain the one's complement.

NOR nor
nor.

rA,rS,rB The contents of rS is ORed with the contents of rB and the one’s
complement of the result is placed into register rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update

of the condition register.

NOR with rS = rB can be used to obtain the one's complement.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-13

4.3.4 Integer Rotate and Shift Instructions

Rotate and shift instructions provide powerful and general ways to manipulate reg-
ister contents. Table 4-4 shows the types of rotate and shift operations provided by
the RCPU.

Equivalent eqv
eqv.

rA,rS,rB The contents of rS is XORed with the contents of rB and the
complemented result is placed into register rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the

update of the condition register.

AND with
Complement

andc
andc.

rA,rS,rB The contents of rS is ANDed with the complement of the contents of
rB and the result is placed into rA.

andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix

enables the update of the condition register.

OR with
Complement

orc
orc.

rA,rS,rB The contents of rS is ORed with the complement of the contents of rB
and the result is placed into rA.

orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix

enables the update of the condition register.

Extend Sign
Byte

extsb
extsb.

rA,rS The contents of rS[24:31] are placed into rA[24:31]. Bit 24 of rS is
placed into rA[0:23].

extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables

the update of the condition register.

Extend Sign
Half Word

extsh
extsh.

rA,rS The contents of rS[16:31] are placed into rA[16:31]. Bit 16 of rS is
placed into rA[0:15].

extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix

enables the update of the condition register.

Count
Leading
Zeros Word

cntlzw
cntlzw.

rA,rS A count of the number of consecutive zero bits of rS is placed into rA.
This number ranges from 0 to 32, inclusive.

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot

suffix enables the update of the condition register.

When the Count Leading Zeros Word instruction has condition register
updating enabled, the LT field is cleared to zero in CR0.

Table 4-3 Integer Logical Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-14 Revised 1 February 1999 REFERENCE MANUAL

The IU performs rotation operations on data from a GPR and returns the result, or
a portion of the result, to a GPR. Rotation operations rotate a 32-bit quantity left by
a specified number of bit positions. Bits that exit from position 0 enter at position
31. A rotate right operation can be accomplished by specifying a rotation of 32-n
bits, where n is the right rotation amount.

Rotate and shift instructions use a mask generator. The mask is 32 bits long and
consists of 1-bits from a start bit, MB, through and including a stop bit, ME, and 0-
bits elsewhere. The values of MB and ME range from zero to 31. If MB > ME, the
1-bits wrap around from position 31 to position 0. Thus the mask is formed as fol-
lows:

if MB ð ME then

mask[mstart:mstop] = ones
mask[all other bits] = zeros

else
mask[mstart:31] = ones
mask[0:mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in
the following sections.

If condition register updating is enabled, rotate and shift instructions set condition
register field CR0 according to the contents of rA at the completion of the instruc-
tion. Rotate and shift instructions do not change the values of XER[OV] or XER[SO]
bits. Rotate and shift instructions, except algebraic right shifts, do not change the
XER[CA] bit.

Simplified mnemonics allow simpler coding of often-used functions such as clear-

Table 4-4 Rotate and Shift Operations

Operation Description

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this field in the
target register, and clear all other bits of the target register to zero.

Insert Select a left- or right-justified field of n bits in the source register, insert this field starting at bit position
b of the target register, and leave other bits of the target register unchanged. (No simplified mnemonic
is provided for insertion of a left-justified field when operating on double-words; such an insertion
requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to zero (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to zero.

Clear left
and shift
left

Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to
scale a known non-negative array index by the width of an element.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-15

ing the leftmost or rightmost bits of a register, left justifying or right justifying an ar-
bitrary field, and simple rotates and shifts. Some of these are shown as examples
with the rotate instructions. In addition, E.4 Simplified Mnemonics for Rotate and
Shift Instructions provides a list of these mnemonics.

4.3.4.1 Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation
is inserted into the target register under control of a mask (if a mask bit is one the
associated bit of the rotated data is placed into the target register, and if the mask
bit is zero the associated bit in the target register is unchanged), or ANDed with a
mask before being placed into the target register.

Rotate left instructions allow right-rotation of the contents of a register to be per-
formed by a left-rotation of 32 - n, where n is the number of bits by which to rotate
right.

The integer rotate instructions are summarized in Table 4-5.

Table 4-5 Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left
Word
Immediate
then AND
with Mask

rlwinm
rlwinm.

rA,rS,SH,MB,ME The contents of register rS are rotated left by the number of bits
specified by operand SH. A mask is generated having 1-bits from
the bit specified by operand MB through the bit specified by
operand ME and 0-bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with

CR Update. The dot suffix enables the update of the
condition register.

Simplified mnemonics:

extlwi rA,rS,n,brlwinm rA,rS,b,0,n-1
srwi rA,rS,nrlwinm rA,rS,32-n,n,31
clrrwi rA,rS,n rlwinm rA,rS,0,0,31-n

Note: The rlwinm instruction can be used for extracting, clearing
and shifting bit fields using the methods shown below:

To extract an n-bit field that starts at bit position b in register rS,
right-justified into rA (clearing the remaining 32 - n bits of rA), set
SH = b + n, MB = 32 - n, and ME = 31.

To extract an n-bit field that starts at bit position b in rS, left-justified
into rA, set SH = b, MB = 0, and ME = n - 1.

To rotate the contents of a register left (right) by n bits, set SH = n
(32 - n), MB = 0, and ME = 31.

To shift the contents of a register right by n bits, set SH = 32 - n, MB
= n, and ME = 31.

To clear the high-order b bits of a register and then shift the result
left by n bits, set SH = n, MB = b - n and ME = 31 - n.

To clear the low-order n bits of a register, set SH = 0, MB = 0, and
ME = 31 - n.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-16 Revised 1 February 1999 REFERENCE MANUAL

4.3.4.2 Integer Shift Instructions

The instructions in this section perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for
certain rotate instructions. Simplified mnemonics are provided to make coding of

Rotate Left
Word then
AND with
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME The contents of rS are rotated left by the number of bits specified
by rB[27:31]. A mask is generated having 1-bits from the bit
specified by operand MB through the bit specified by operand ME
and 0-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into rA.

rlwinm Rotate Left Word then AND with Mask
rlwinm. Rotate Left Word then AND with Mask with CR

Update. The dot suffix enables the update of the
condition register.

Simplified mnemonics:

rotlw rA,rS,rBrlwnm rA,rS,rB,0,31

Note: The rlwinm instruction can be used to extract and rotate bit
fields using the methods shown below:

To extract an n-bit field that starts at the variable bit position b in the
register specified by operand rS, right-justified into rA (clearing the
remaining 32-n bits of rA), set rB[27:31] = b + n, MB = 32 - n, and
ME = 31.

To extract an n-bit field that starts at variable bit position b in the
register specified by operand rS, left-justified into rA (clearing the
remaining 32 - n bits of rA), set rB[27:31] = b, MB = 0, and ME = n
- 1.

To rotate the contents of the low-order 32 bits of a register left
(right) by variable n bits, set rB[27:31] = n (32 - n), MB = 0, and ME
= 31.

Rotate Left
Word
Immediate
then Mask
Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME The contents of rS are rotated left by the number of bits specified
by operand SH. A mask is generated having 1-bits from the bit
specified by MB through the bit specified by ME and 0-bits
elsewhere. The rotated data is inserted into rA under control of the
generated mask.

rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of the
condition register.

Simplified mnemonic:

inslw rA,rS,n,brlwim rA,rS,32-b,b,b+n-1

Note: The opcode rlwimi can be used to insert a bit field into the
contents of register specified by operand rA using the methods
shown below:

To insert an n-bit field that is left-justified in rS into rA starting at bit
position b, set SH = 32 - b, MB = b, and ME = (b + n) - 1.

To insert an n-bit field that is right-justified in rS into rA starting at
bit position b, set SH =3 2 - (b + n), MB = b, and ME = (b + n) - 1.

Simplified mnemonics are provided for both of these methods.

Table 4-5 Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-17

such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quick-
ly by 2n.

Multiple-precision shifts can be programmed as shown in APPENDIX B MULTI-
PLE-PRECISION SHIFTS.

The integer shift instructions are summarized in Table 4-6.

Table 4-6 Integer Shift Instructions

Name Mnemonic
Operand
Syntax

Operation

Shift Left
Word

slw
slw.

rA,rS,rB The contents of rS are shifted left the number of bits specified by
rB[26:31]. Bits shifted out of position 0 are lost. Zeros are supplied to
the vacated positions on the right. The 32-bit result is placed into rA.

If rB[26] = 1, then rA is filled with zeros.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables

the update of the condition register.

Shift Right
Word

srw
srw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by
rB[26:31]. Zeros are supplied to the vacated positions on the left. The
32-bit result is placed into rA.

If rB[26]=1, then rA is filled with zeros.

srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables

the update of the condition register.

Shift Right
Algebraic
Word
Immediate

srawi
srawi.

rA,rS,SH The contents of rS are shifted right the number of bits specified by
operand SH. Bits shifted out of position 31 are lost. The 32-bit result is
sign extended and placed into rA. XER[CA] is set if rS contains a
negative number and any 1-bits are shifted out of position 31;
otherwise XER(CA) is cleared. An operand SH of zero causes rA to be
loaded with the contents of rS and XER[CA] to be cleared to zero.

srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update.

The dot suffix enables the update of the condition
register.

Shift Right
Algebraic
Word

sraw
sraw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by
rB[26:31]. The 32-bit result is placed into rA. XER[CA] is set to one if
rS contains a negative number and any 1-bits are shifted out of
position 31; otherwise XER[CA] is cleared to zero. An operand (rB) of
zero causes rA to be loaded with the contents of rS, and XER[CA] to
be cleared to zero. If rB[26] = 1, then rA is filled with 32 sign bits (bit
0) from rS. If rB[26] = 0, then rA is filled from the left with sign bits.
Condition register field CR0 is set based on the value written into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of the condition register.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-18 Revised 1 February 1999 REFERENCE MANUAL

4.4 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions

Floating-point loads and stores are discussed in 4.5 Load and Store Instructions.

4.4.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-7.

Table 4-7 Floating-Point Arithmetic Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point Add

fadd
fadd.

frD,frA,frB The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant
significand is not a one the result is normalized. The result is rounded
to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frD.

Floating-point addition is based on exponent comparison and addition
of the two significands. The exponents of the two operands are
compared, and the significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands are then
added algebraically to form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the
computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fadd Floating-Point Add
fadd. Floating-Point Add with CR Update. The dot suffix

enables the update of the condition register.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-19

Floating-
Point Add
Single-
Precision

fadds
fadds.

frD,frA,frB The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant
significand is not a one, the result is normalized. The result is rounded
to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frD.

Floating-point addition is based on exponent comparison and addition
of the two significands. The exponents of the two operands are
compared, and the significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands are then
added algebraically to form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the
computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fadds Floating-Point Single-Precision
fadds. Floating-Point Single-Precision with CR Update. The dot

suffix enables the update of the condition register.

Floating-
Point
Subtract

fsub
fsub.

frD,frA,frB The floating-point operand in register frB is subtracted from the
floating-point operand in register frA. If the most significant bit of the
resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frB
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fsub Floating-Point Subtract
fsub. Floating-Point Subtract with CR Update. The dot suffix

enables the update of the condition register.

Floating-
Point
Subtract
Single-
Precision

fsubs
fsubs.

frD,frA,frB The floating-point operand in register frB is subtracted from the
floating-point operand in register frA. If the most significant bit of the
resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frB
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fsubs Floating-Point Subtract Single-Precision
fsubs. Floating-Point Subtract Single-Precision with CR Update.

The dot suffix enables the update of the condition
register.

Table 4-7 Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-20 Revised 1 February 1999 REFERENCE MANUAL

Floating-
Point
Multiply

fmul
fmul.

frD,frA,frC The floating-point operand in register frA is multiplied by the floating-
point operand in register frC.

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR
and placed into register frD.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmul Floating-Point Multiply
fmul. Floating-Point Multiply with CR Update. The dot suffix

enables the update of the condition register.

Floating-
Point
Multiply
Single-
Precision

fmuls
fmuls.

frD,frA,frC The floating-point operand in register frA is multiplied by the floating-
point operand in register frC.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmuls Floating-Point Multiply Single-Precision
fmuls. Floating-Point Multiply Single-Precision with CR Update.

The dot suffix enables the update of the condition
register.

Floating-
Point Divide

fdiv
fdiv.

frD,frA,frB The floating-point operand in register frA is divided by the floating-
point operand in register frB. No remainder is preserved.

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR
and placed into register frD.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1 and zero divide
exceptions when FPSCR[ZE]=1.

fdiv Floating-Point Divide
fdiv. Floating-Point Divide with CR Update. The dot suffix

enables the update of the condition register.

Table 4-7 Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-21

4.4.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate
rounding operation. The fractional part of the intermediate product is 106 bits wide,
and all 106 bits take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are summarized in Table 4-8.

Floating-
Point Divide
Single-
Precision

fdivs
fdivs.

frD,frA,frB The floating-point operand in register frA is divided by the floating-
point operand in register frB. No remainder is preserved.

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR
and placed into register frD.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1 and zero divide
exceptions when FPSCR[ZE] = 1.

fdivs Floating-Point Divide Single-Precision
fdivs. Floating-Point Divide Single-Precision with CR Update.

The dot suffix enables the update of the condition
register.

Table 4-8 Floating-Point Multiply-Add Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point
Multiply-
Add

fmadd
fmadd.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmadd Floating-Point Multiply-Add
fmadd. Floating-Point Multiply-Add with CR Update. The dot

suffix enables the update of the condition register.

Table 4-7 Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-22 Revised 1 February 1999 REFERENCE MANUAL

Floating-
Point
Multiply-
Add
Single-
Precision

fmadds
fmadds.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmadds Floating-Point Multiply-Add Single-Precision
fmadds. Floating-Point Multiply-Add Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating-
Point
Multiply-
Subtract

fmsub
fmsub.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmsub Floating-Point Multiply-Subtract
fmsub. Floating-Point Multiply-Subtract with CR Update. The

dot suffix enables the update of the condition register.

Floating-
Point
Multiply-
Subtract
Single-
Precision

fmsubs
fmsubs.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmsubs Floating-Point Multiply-Subtract Single-Precision
fmsubs. Floating-Point Multiply-Subtract Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Table 4-8 Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-23

Floating-
Point
Negative
Multiply-
Add

fnmadd
fnmadd.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmadd Floating-Point Negative Multiply-Add
fnmadd. Floating-Point Negative Multiply-Add with CR Update.

The dot suffix enables the update of the condition
register.

Floating-
Point
Negative
Multiply-
Add
Single-
Precision

fnmadds
fnmadds.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmadds Floating-Point Negative Multiply-Add Single-Precision
fnmadds. Floating-Point Negative Multiply-Add Single-Precision

with CR Update. The dot suffix enables the update of the
condition register.

Table 4-8 Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-24 Revised 1 February 1999 REFERENCE MANUAL

4.4.3 Floating-Point Rounding and Conversion Instructions

The floating-point rounding instruction is used to produce a 32-bit single-precision
number from a 64-bit double-precision floating-point number. The floating-point
convert instructions convert 64-bit double-precision floating point numbers to 32-

Floating-
Point
Negative
Multiply-
Subtract

fnmsub
fnmsub.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmsub Floating-Point Negative Multiply-Subtract
fnmsub. Floating-Point Negative Multiply-Subtract with CR

Update. The dot suffix enables the update of the
condition register.

Floating-
Point
Negative
Multiply-
Subtract
Single-
Precision

fnmsubs
fnmsubs.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmsubs Floating-Point Negative Multiply-Subtract Single-
Precision

fnmsubs. Floating-Point Negative Multiply-Subtract Single-
Precision with CR Update. The dot suffix enables the
update of the condition register.

Table 4-8 Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-25

bit signed integer numbers.

Examples of uses of these instructions to perform various conversions can be
found in APPENDIX C FLOATING-POINT MODELS AND CONVERSIONS.

Table 4-9 Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point Round
to Single-
Precision

frsp
frsp.

frD,frB If it is already in single-precision range, the floating-point operand in
register frB is placed into register frD. Otherwise the floating-point
operand in register frB is rounded to single-precision using the
rounding mode specified by FPSCR[RN] and placed into register frD.

The rounding is described fully in APPENDIX C FLOATING-POINT
MODELS AND CONVERSIONS.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

frsp Floating-Point Round to Single-Precision
frsp. Floating-Point Round to Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating-
Point
Convert to
Integer
Word

fctiw
fctiw.

frD,frB The floating-point operand in register frB is converted to a 32-bit
signed integer, using the rounding mode specified by FPSCR[RN],
and placed in frD[32:63]. frD[0:31] are undefined.

If the operand in register frB is greater than 231– 1, frD[32:63] are set
to 0x7FFF FFFF.

If the operand in register frB is less than –231, frD[32:63] are set to
0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT
MODELS AND CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiw Floating-Point Convert to Integer Word
fctiw. Floating-Point Convert to Integer Word with CR Update.

The dot suffix enables the update of the condition
register.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-26 Revised 1 February 1999 REFERENCE MANUAL

4.4.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point reg-
isters and the comparison ignores the sign of zero (that is +0 = –0). The compari-
son can be ordered or unordered. The comparison sets one bit in the designated
CR field and clears the other three bits. The FPCC bits (FPSCR[16:19]) are set in
the same way.

The CR field and the FPCC are interpreted as shown in Table 4–10.

On floating-point compare unordered (fcmpu) and floating-point compare ordered
(fcmpo) instructions with condition register updating enabled, the PowerPC archi-
tecture defines CR1 and the CR field specified by operand crfD as undefined.

The floating-point compare instructions are summarized in Table 4-11.

Floating-
Point
Convert to
Integer
Word with
Round

fctiwz
fctiwz.

frD,frB The floating-point operand in register frB is converted to a 32-bit
signed integer, using the rounding mode Round toward Zero, and
placed in frD[32:63]. frD[0:31] are undefined.

If the operand in frB is greater than 231 –1, frD[32:63] are set to
0x7FFF FFFF.

If the operand in register frB is less than –231, frD[32:63] are set to
0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT
MODELS AND CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiwz Floating-Point Convert to Integer Word with Round
Toward Zero

fctiwz. Floating-Point Convert to Integer Word with Round
Toward Zero with CR Update. The dot suffix enables the
update of the condition register.

Table 4-10 CR Bit Settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

Table 4-9 Floating-Point Rounding and Conversion Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-27

4.4.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point in-
structions executed by a given processor. Executing an FPSCR instruction en-
sures that all floating-point instructions previously initiated by the given processor
appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor
until the FPSCR instruction has completed. In particular:

• All exceptions caused by the previously initiated instructions are recorded in
the FPSCR before the FPSCR instruction is initiated.

• All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the settings
of any FPSCR bits appears to be initiated until the FPSCR instruction has
completed.

Floating-point memory access instructions are not affected.

The floating-point status and control register instructions are summarized in Table
4-12.

Table 4-11 Floating-Point Compare Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point
Compare
Unordered

fcmpu crfD,frA,frB The floating-point operand in register frA is compared to the floating-
point operand in register frB. The result of the compare is placed into
CR field crfD and the FPCC.

If an operand is a NaN, either quiet or signaling, CR field crfD and the
FPCC are set to reflect unordered. If an operand is a Signaling NaN,
VXSNAN is set.

Floating-
Point
Compare
Ordered

fcmpo crfD,frA,frB The floating-point operand in register frA is compared to the floating-
point operand in register frB. The result of the compare is placed into
CR field crfD and the FPCC.

If an operand is a NaN, either quiet or signaling, CR field crfD and the
FPCC are set to reflect unordered. If an operand is a Signaling NaN,
VXSNAN is set, and if invalid operation is disabled (VE = 0) then VXVC
is set. Otherwise, if an operand is a Quiet NaN, VXVC is set.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-28 Revised 1 February 1999 REFERENCE MANUAL

Table 4-12 Floating-Point Status and Control Register Instructions

Name Mnemonic Operand
Syntax

Operation

Move from
FPSCR

mffs
mffs.

frD The contents of the FPSCR are placed into frD[32:63].

mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix

enables the update of the condition register.

Move to
Condition
Register
from FPSCR

mcrfs crfD,crfS The contents of FPSCR field specified by operand crfS are copied to
the CR field specified by operand crfD. All exception bits copied are
cleared to zero in the FPSCR.

Move to
FPSCR Field
Immediate

mtfsfi
mtfsfi.

crfD,IMM The value of the IMM field is placed into FPSCR field crfD. All other
FPSCR fields are unchanged.

mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The

dot suffix enables the update of the condition register.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of IMM[0] and IMM[3] (i.e., even if this instruction causes OX to
change from zero to one, FX is set from IMM[0] and not by the usual
rule that FX is set to one when an exception bit changes from zero to
one). Bits 1 and 2 (FEX and VX) are set according to the usual rule
described in 2.2.3 Floating-Point Status and Control Register
(FPSCR), and not from IMM[1:2].

Move to
FPSCR
Fields

mtfsf
mtfsf.

FM,frB frB[32:63] are placed into the FPSCR under control of the field mask
specified by FM. The field mask identifies the 4-bit fields affected. Let
i be an integer in the range 0-7. If FM = 1 then FPSCR field i (FPSCR
bits 4∗ i through 4∗ i+ 3) is set to the contents of the corresponding field
of the low-order 32 bits of register frB.

mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix

enables the update of the condition register.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of frB[32] and frB[35] (i.e., even if this instruction causes OX to
change from zero to one, FX is set from frB[32] and not by the usual
rule that FX is set to one when an exception bit changes from zero to
one). Bits 1 and 2 (FEX and VX) are set according to the usual rule
described in 2.2.3 Floating-Point Status and Control Register
(FPSCR), and not from frB[33:34].

Move to
FPSCR Bit 0

mtfsb0
mtfsb0.

crbD The bit of the FPSCR specified by operand crbD is cleared to zero.

Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

mtfsb0 Move to FPSCR Bit 0
mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix

enables the update of the condition register.

Move to
FPSCR Bit 1

mtfsb1
mtfsb1.

crbD The bit of the FPSCR specified by operand crbD is set to one.

Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsb1 Move to FPSCR Bit 1
mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix

enables the update of the condition register.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-29

4.5 Load and Store Instructions

The RCPU supports the following types of load and store instructions:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte reversal instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Floating-point move instructions
• Memory synchronization instructions (described in 4.8 Memory Synchroni-

zation Instructions)

4.5.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indi-
rect with immediate index mode, register indirect with index mode or register indi-
rect mode.

4.5.1.1 Register Indirect with Immediate Index Addressing

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a gen-
eral purpose register specified in the instruction (rA operand) to generate the effec-
tive address. A zero in place of the rA operand causes a zero to be added to the
immediate index (d operand). The option to specify rA or zero is shown in the in-
struction descriptions as (rA|0).

Figure 4-1 shows how an effective address is generated when using register indi-
rect with immediate index addressing.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-30 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-1 Register Indirect with Immediate Index Addressing

4.5.1.2 Register Indirect with Index Addressing

Instructions using this addressing mode cause the contents of two general purpose
registers (specified as operands rA and rB) to be added in the generation of the
effective address. A zero in place of the rA operand causes a zero to be added to
the contents of the general-purpose register specified in operand rB. The option to
specify rA or zero is shown in the instruction descriptions as (rA|0).

Figure 4-2 shows how an effective address is generated when using register indi-
rect with index addressing.

No

0 16 17 31

Sign Extension d

0 31

GPR (rA)

0

0 31

GPR (rD/rS)
Store
Loa

Yes

Instruction Encoding:
0 576 1011 15 16 31

Opcode rD/rS rA d

+
0 31

Effective Address

rA = 0?

Memory
Acces

REGIND/IMM
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-31

Figure 4-2 Register Indirect with Index Addressing

4.5.1.3 Register Indirect Addressing

Instructions using this addressing mode use the contents of the general purpose
register specified by the rA operand as the effective address. A zero in the rA op-
erand causes an effective address of zero to be generated. The option to specify
rA or zero is shown in the instruction descriptions as (rA|0).

Figure 4-3 shows how an effective address is generated when using register indi-
rect addressing.

No

0 31

GPR (rA)

0

+

0 31

GPR (rD/rS)
Memory
Acces

Store
Loa

Yes

0 31

GPR (rB)

Instruction Encoding:

rA = 0?

0 31

Effective Address

0 5 6 1011 15 16 20 21 30 31

Opcode rD/rS rA rB Subopcode 0

REGIND/IA
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-32 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-3 Register Indirect Addressing

4.5.2 Integer Load Instructions

For load instructions, the byte, half-word, word, or double-word addressed by EA
is loaded into rD. Many integer load instructions have an update form, in which rA
is updated with the generated effective address. For these forms, if rA ¦ 0 and rA ¦
rD, the effective address is placed into rA and the memory element (byte, half-
word, or word) addressed by EA is loaded into rD.

The PowerPC architecture defines load with update instructions with rA = 0 or rA
= rD as an invalid form. In the RCPU, however, if rA = 0 then the EA is written into
R0. If rA = rD then rA is loaded from memory location MEM(rA, N) where N is de-
termined by the instruction operand size.

Table 4-13 summarizes the RCPU load instructions.

No

Store
Loa

Yes
0 31

0 0 0 0 0•• 0 0 0 0 0

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

rA = 0?

0 31

GPR (rA)

0 31

Effective Address

Opcode rD/rS rA NB Subopcode 0

0 31

GPR (rD/rS)
Memory
Access REGIND ADD
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-33

Table 4-13 Integer Load Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Byte
and Zero

lbz rD,d(rA) The effective address is the sum (rA|0) + d. The byte in memory
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero.

Load Byte
and Zero
Indexed

lbzx rD,rA,rB The effective address is the sum (rA|0) + (rB). The byte in memory
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero.

Load Byte
and Zero
with Update

lbzu rD,d(rA) The effective address (EA) is the sum (rA|0) + d. The byte in memory
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero. The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load Byte
and Zero
with Update
Indexed

lbzux rD,rA,rB The effective address (EA) is the sum (rA|0) + (rB). The byte
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero. The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load
Half Word
and Zero

lhz rD,d(rA) The effective address is the sum (rA|0) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in rD are cleared to zero.

Load
Half Word
and Zero
Indexed

lhzx rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are cleared.

Load
Half Word
and Zero
with Update

lhzu rD,d(rA) The effective address is the sum (rA|0) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in register rD are cleared.

The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA =rD as invalid forms. In the RCPU, however, if rA=0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-34 Revised 1 February 1999 REFERENCE MANUAL

Load
Half Word
and Zero
with Update
Indexed

lhzux rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are cleared. The EA is placed into register
rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load
Half Word
Algebraic

lha rD,d(rA) The effective address is the sum (rA) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in register rD are filled with a copy of bit 0 of the loaded half-word.

Load
Half Word
Algebraic
Indexed

lhax rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are filled with a copy of bit 0 of the loaded
half-word.

Load
Half Word
Algebraic
with Update

lhau rD,d(rA) The effective address is the sum (rA|0) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in register rD are filled with a copy of bit 0 of the loaded half-word.
The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load
Half Word
Algebraic
with Update
Indexed

lhaux rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are filled with a copy of bit 0 of the loaded
half-word. The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load Word
and Zero

lwz rD,d(rA) The effective address is the sum (rA|0) + d. The word in memory
addressed by the EA is loaded into register rD[0:31].

Load Word
and Zero
Indexed

lwzx rD,rA,rB The effective address is the sum (rA|0) + (rB). The word in memory
addressed by the EA is loaded into register rD[0:31].

Load Word
and Zero
with Update

lwzu rD,d(rA) The effective address is the sum (rA|0) + d. The word in memory
addressed by the EA is loaded into register rD[0:31]. The EA is placed
into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Table 4-13 Integer Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-35

4.5.3 Integer Store Instructions

For integer store instructions, the contents of register rS are stored into the byte,
half-word, word or double-word in memory addressed by EA. Many store instruc-
tions have an update form, in which register rA is updated with the effective ad-
dress. For these forms, the following rules apply:

• If rA ¦ 0, the effective address is placed into register rA.
• If rA = 0, the effective address is written into R0. (Although the PowerPC ar-

chitecture defines store with update instructions with rA = 0 as invalid forms,
the RCPU does not.)

• If rS = rA, the contents of register rS are copied to the target memory element,
then the generated EA is placed into rA.

A summary of the RCPU integer store instructions is shown in Table 4-14.

Load Word
and Zero
with Update
Indexed

lwzux rD,rA,rB The effective address is the sum (rA|0) + (rB). The word in memory
addressed by the EA is loaded into register rD[0:31]. The EA is placed
into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Table 4-13 Integer Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-36 Revised 1 February 1999 REFERENCE MANUAL

4.5.4 Integer Load and Store with Byte Reversal Instructions

Table 4-15 describes the integer load and store with byte reversal instructions.

Table 4-14 Integer Store Instructions

Name Mnemonic Operand
Syntax

Operation

Store Byte stb rS,d(rA) The effective address is the sum (rA|0) + d. Register rS[24:31] is
stored into the byte in memory addressed by the EA.

Store Byte
Indexed

stbx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[24:31] is stored into
the byte in memory addressed by the EA.

Store Byte
with Update

stbu rS,d(rA) The effective address is the sum (rA|0) + d. rS[24:31] is stored into the
byte in memory addressed by the EA. The EA is placed into register
rA.

Store Byte
with Update
Indexed

stbux rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[24:31] is stored into
the byte in memory addressed by the EA. The EA is placed into
register rA.

Store
Half Word

sth rS,d(rA) The effective address is the sum (rA|0) + d. rS[16:31] is stored into the
half-word in memory addressed by the EA.

Store
Half Word
Indexed

sthx rS,rA,rB The effective address (EA) is the sum (rA|0) + (rB). rS[16:31] is stored
into the half-word in memory addressed by the EA.

Store
Half Word
with Update

sthu rS,d(rA) The effective address is the sum (rA|0) + d. rS[16:31] is stored into the
half-word in memory addressed by the EA. The EA is placed into
register rA.

Store
Half Word
with Update
Indexed

sthux rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[16:31] is stored into
the half-word in memory addressed by the EA. The EA is placed into
register rA.

Store Word stw rS,d(rA) The effective address is the sum (rA|0) + d. Register rS is stored into
the word in memory addressed by the EA.

Store Word
Indexed

stwx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS is stored into the
word in memory addressed by the EA.

Store Word
with Update

stwu rS,d(rA) The effective address is the sum (rA|0) + d. Register rS is stored into
the word in memory addressed by the EA. The EA is placed into
register rA.

Store Word
with Update
Indexed

stwux rS,rA,rB The effective address is the sum (rA|0) + (rB). Register rS is stored
into the word in memory addressed by the EA. The EA is placed into
register rA.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-37

4.5.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from
the GPRs.

The PowerPC architecture defines the load multiple instruction (lmw) with rA in the
range of registers to be loaded as an invalid form. In the RCPU, however, if rA is
in the range of registers to be loaded, the instruction completes normally, and rA is
loaded from the memory location as follows:

rA ← MEM(EA+(rA–rS)*4, 4)

For integer load and store multiple instructions, the effective address must be a
multiple of four. If not, a system alignment exception is generated.

Table 4-15 Integer Load and Store with Byte Reversal Instructions

Name Mnemonic
Operand
Syntax

Operation

Load
Half Word
Byte-
Reverse
Indexed

lhbrx rD,rA,rB The effective address is the sum (rA|0) + (rB). Bits 0 to 7 of the
half-word in memory addressed by the EA are loaded into
rD[24:31]. Bits 8 to 15 of the half-word in memory addressed by the
EA are loaded into rD[16:23]. The rest of the bits in rD are cleared
to zero.

Load Word
Byte-
Reverse
Indexed

lwbrx rD,rA,rB The effective address is the sum (rA|0)+(rB). Bits 0–7 of the word
in memory addressed by the EA are loaded into rD[24:31]. Bits 8
to 15 of the word in memory addressed by the EA are loaded into
rD[16:23]. Bits 16 to 23 of the word in memory addressed by the
EA are loaded into rD[8:15]. Bits 24 to 31 of the word in memory
addressed by the EA are loaded into rD[0:7].

Store
Half Word
Byte-
Reverse
Indexed

sthbrx rS,rA,rB The effective address is the sum (rA|0)+(rB). rS[24:31] are stored
into bits 0 to 7 of the half-word in memory addressed by the EA.
rS[16:23] are stored into bits 8 to 15 of the half-word in memory
addressed by the EA.

Store Word
Byte-
Reverse
Indexed

stwbrx rS,rA,rB The effective address is the sum (rA|0)+(rB). rS[24:31] are stored
into bits 0 to 7 of the word in memory addressed by EA. Register
rS[16:23] are stored into bits 8 to 15 of the word in memory
addressed by the EA. Register rS[8:15] are stored into bits 16 to
23 of the word in memory addressed by the EA. rS[0:7] are stored
into bits 24 to 31 of the word in memory addressed by the EA.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-38 Revised 1 February 1999 REFERENCE MANUAL

4.5.6 Integer Move String Instructions

The integer move string instructions allow movement of data from memory to reg-
isters or from registers to memory without concern for alignment. These instruc-
tions can be used for a short move between arbitrary memory locations or to initiate
a long move between misaligned memory fields.

Load/store string indexed instructions of zero length have no effect, except that
load string indexed instructions of zero length may set register rD to an undefined
value.

The PowerPC architecture defines the load string instructions with rA in the range
of registers to be loaded as an invalid form. In the RCPU, however, if rA is in the
range of registers to be loaded, the instruction completes normally, and rA is load-
ed from memory.

Table 4-16 Integer Load and Store Multiple Instructions

Name Mnemonic Operand
Syntax

Operation

Load
Multiple
Word

lmw rD,d(rA) The effective address is the sum (rA|0)+d.

n = 32 –rD.

n consecutive words starting at EA are loaded into GPRs rD through
31. If the EA is not a multiple of four the alignment exception handler
is invoked.

Store
Multiple
Word

stmw rS,d(rA) The effective address is the sum (rA|0)+d.

n = (32 –rS).

n consecutive words starting at the EA are stored from GPRs rS
through 31.

If the EA is not a multiple of four the alignment exception handler is
invoked.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-39

Table 4-17 Integer Move String Instructions

Name Mnemonic
Operand
Syntax

Operation

Load String
Word
Immediate

lswi rD,rA,NB The EA is (rA|0).

Let n = NB if NB¦0, n = 32 if NB = 0; n is the number of bytes to load.
Let nr = (n/4); nr is the number of registers to receive data.

n consecutive bytes starting at the EA are loaded into GPRs rD
through rD + nr - 1. Bytes are loaded left to right in each register. The
sequence of registers wraps around to r0 if required. If the four bytes
of register rD + nr - 1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared to zero.

The PowerPC architecture defines the load string instructions with rA
in the range of registers to be loaded as an invalid form. In the RCPU,
however, if rA is in the range of registers to be loaded, the instruction
completes normally, and rA is loaded from memory.

Load String
Word
Indexed

lswx rD,rA,rB The EA is the sum (rA|0)+(rB).

Let n = XER[25:31]; n is the number of bytes to load.

Let nr = CEIL(n/4); nr is the number of registers to receive data.

If n>0, n consecutive bytes starting at the EA are loaded into registers
rD through rD+nr-1.

Bytes are loaded left to right in each register. The sequence of
registers wraps around to r0 if required. If the four bytes of register
rD + nr - 1 are only partially filled, the unfilled low-order byte(s) of that
register are cleared to zero.

If n = 0, the contents of register rD is undefined.

The PowerPC architecture defines the load string instructions with rA
in the range of registers to be loaded as an invalid form. In the RCPU,
however, if rA is in the range of registers to be loaded, the instruction
completes normally, and rA is loaded from memory.

Store String
Word
Immediate

stswi rS,rA,NB The EA is (rA|0).

Let n = NB if NB¦0, n = 32 if NB = 0; n is the number of bytes to store.

Let nr = CEIL(n/4); nr is the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through r0 if required.

Store String
Word
Indexed

stswx rS,rA,rB The effective address is the sum (rA|0)+(rB).

Let n = XER[25:31]; n is the number of bytes to store.

Let nr = CEIL(n/4); nr is the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through r0 if required.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-40 Revised 1 February 1999 REFERENCE MANUAL

4.5.7 Floating-Point Load and Store Address Generation

Floating point load and store operations generate effective addresses using the
register indirect with immediate index mode and register indirect with index mode,
the details of which are described below.

4.5.7.1 Register Indirect with Immediate Index Addressing

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a gen-
eral purpose register specified in the instruction (rA operand) to generate the effec-
tive address. A zero in the rA operand causes a zero to be added to the immediate
index (d operand). This is shown in the instruction descriptions as (rA|0).

Figure 4-4 shows how an effective address is generated when using register indi-
rect with immediate index addressing.

Figure 4-4 Register Indirect with Immediate Index Addressing

4.5.7.2 Register Indirect with Index Addressing

Instructions using this addressing mode add the contents of two general-purpose
registers (specified in operands rA and rB) to generate the effective address. A
zero in the rA operand causes a zero to be added to the contents of general-pur-
pose register specified in operand rB. This is shown in the instruction descriptions
as (rA|0).

Figure 4-5 shows how an effective address is generated when using register indi-
rect with index addressing.

No

0 16 17 31

Sign Extension d

0

+

Store
Loa

Yes

Instruction Encoding:
0 5 6 10 11 15 16 31

Opcode frD/frS rA d

0 31

Effective Address

rA = 0

Memory
Access

0 63

FPR (frD/frS)

0 31

GPR (rA)

REGIND/IMM IN ADD
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-41

Figure 4-5 Register Indirect with Index Addressing

4.5.8 Floating-Point Load Instructions

There are two basic forms of floating-point load instruction: single-precision and
double-precision formats. Because the FPRs support only floating-point, double-
precision format, single-precision floating-point load instructions convert single-
precision data to double-precision format before loading the operands into the tar-
get FPR. This conversion is described in 4.5.8.1 Double-Precision Conversion
for Floating-Point Load Instructions. Table 4-18 provides a summary of the
floating-point load instructions.

Table 4-18 Floating-Point Load Instructions

Name Mnemonic
Operand
Syntax

Operation

Load
Floating-
Point
Single-
Precision

lfs frD,d(rA) The effective address is the sum (rA|0)+d.

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into register frD.

Load
Floating-
Point
Single-
Precision
Indexed

lfsx frD,rA,rB The effective address is the sum (rA|0)+(rB).

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-
point double-precision and placed into register frD.

No

0 31

GPR (rA)

0

+

0 63

FPR (frD/frS)
Memory
Acces

Store
Loa

Yes

0 31

GPR (rB)

0 31

Effective Address

Instruction Encoding:
0 5 6 1011 15 16 20 21 30 31

rA = 0?

Opcode frD/frS rA rB Subopcode 0

REG IND/IN ADD
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-42 Revised 1 February 1999 REFERENCE MANUAL

4.5.8.1 Double-Precision Conversion for Floating-Point Load Instructions

The steps for converting from single- to double-precision and loading are as fol-
lows:

WORD[0:31] is the floating-point, single-precision operand accessed from
memory.

Load
Floating-
Point
Single-
Precision
with Update

lfsu frD,d(rA) The effective address is the sum (rA|0)+d.

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision (see 4.5.8.1 Double-Precision Conversion for
Floating-Point Load Instructions) and placed into register frD.

The EA is placed into the register specified by rA.

Load
Floating-
Point
Single-
Precision
with Update
Indexed

lfsux frD,rA,rB The effective address is the sum (rA|0)+(rB).

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision (see 4.5.8.1 Double-Precision Conversion for
Floating-Point Load Instructions) and placed into register frD.

The EA is placed into the register specified by rA.

Load
Floating-
Point
Double-
Precision

lfd frD,d(rA) The effective address is the sum (rA|0)+d.

The double-word in memory addressed by the EA is placed into
register frD.

Load
Floating-
Point
Double-
Precision
Indexed

lfdx frD,rA,rB The effective address is the sum (rA|0)+(rB).

The double-word in memory addressed by the EA is placed into
register frD.

Load
Floating-
Point
Double-
Precision
with Update

lfdu frD,d(rA) The effective address is the sum (rA|0)+d.

The double-word in memory addressed by the EA is placed into
register frD.

The EA is placed into the register specified by rA.

Load
Floating-
Point
Double-
Precision
with Update
Indexed

lfdux frD,rA,rB The effective address is the sum (rA|0)+(rB).

The double-word in memory addressed by the EA is placed into
register frD.

The EA is placed into the register specified by rA.

Table 4-18 Floating-Point Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-43

Normalized Operand

If WORD[1:8] >0 and WORD[1:8]<255
frD[0:1] < WORD[0:1]
frD[2] < ¬WORD[1]
frD[3] < ¬WORD[1]
frD[4]< ¬WORD[1]
frD[5:63] < WORD[2:31] || 290b0

Denormalized Operand

If WORD[1:8] =0 and WORD[9:31] ¦0
sign < WORD[0]
exp < -126
frac[0:52] < 0b0 || WORD[9:31] || 20b0
normalize the operand

Do while frac 0 =0
frac < frac[1:52] || 0b0
exp < exp - 1

End
frD[0] < sign
frD[1:11] < exp + 1023
frD[12:63] < frac[1:52]

Infinity / QNaN / SNaN / Zero

If WORD[1:8] =255 or WORD[1:31] =0
frD[1:1] < WORD[0:1]
frD[2] < WORD[1]
frD[3] < WORD[1]
frD[4] < WORD[1]
frD[5:63] < WORD[2:31] || 290b0

For double-precision floating-point load instructions, no conversion is required as
the data from memory is copied directly into the FPRs.

Many floating-point load instructions have an update form in which register rA is
updated with the EA. For these forms, the effective address is placed into register
rA and the memory element (word or double-word) addressed by the EA is loaded
into the floating-point register specified by operand frD.

4.5.8.2 Floating-Point Load Single Operands

If the operand falls in the range of a single denormalized number, the floating-point
assist exception handler is invoked. Refer to 6.11.10 Floating-Point Assist Ex-
ception (0x00E00) for additional information.

4.5.9 Floating-Point Store Instructions

There are two basic forms of the floating-point store instruction: single- and double-
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-44 Revised 1 February 1999 REFERENCE MANUAL

precision. Because the FPRs support only floating-point, double-precision format,
single-precision floating-point store instructions convert double-precision data to
single-precision format before storing the operands. The conversion steps are de-
scribed in 4.5.9.1 Double-Precision Conversion for Floating-Point Store In-
structions. Table 4-19 is a summary of the floating-point store instructions.

Table 4-19 Floating-Point Store Instructions

Name Mnemonic Operand
Syntax

Operation

Store
Floating-
Point
Single-
Precision

stfs frS,d(rA) The EA is the sum (rA|0)+d.

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

Store
Floating-
Point
Single-
Precision
Indexed

stfsx frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

Store
Floating-
Point
Single-
Precision
with Update

stfsu frS,d(rA) The EA is the sum (rA|0)+d.

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

The EA is placed into the register specified by operand rA.

Store
Floating-
Point
Single-
Precision
with Update
Indexed

stfsux frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

The EA is placed into the register specified by operand rA.

Store
Floating-
Point
Double-
Precision

stfd frS,d(rA) The effective address is the sum (rA|0)+d.

The contents of register frS is stored into the double-word in memory
addressed by the EA.

Store
Floating-
Point
Double-
Precision
Indexed

stfdx frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is stored into the double-word in memory
addressed by the EA.

Store
Floating-
Point
Double-
Precision
with Update

stfdu frS,d(rA) The effective address is the sum (rA|0)+d.

The contents of register frS is stored into the double-word in memory
addressed by the EA.

The EA is placed into register rA.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-45

4.5.9.1 Double-Precision Conversion for Floating-Point Store Instructions

The steps for converting single- to double-precision for floating-point store instruc-
tions are as follows:

Let WORD[0:31] be the word written in memory.

No Denormalization Required

If frS[1:11] > 896 or frS[1:63] = 0
WORD[0:1] < frS[0:1]
WORD[2:31]< frS[5:34]

Denormalization Required

If 874 ð frS[1:11] ð 896
sign < frS[0]
exp < frS[1:11] - 1023
frac < 0b1 || frS[12:63]
Denormalize operand

Do while exp < -126
frac <0 b0 || frac[0:62]
exp < exp + 1

End
WORD0 < sign
WORD[1:8] < 0x00
WORD[9:31] < frac[1:23]

Store
Floating-
Point
Double-
Precision
with Update
Indexed

stfdux frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is stored into the double-word in memory
addressed by EA.

The EA is placed into register rA.

Store
Floating-
Point as
Integer
Word

stfiwx frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of the low-order 32 bits of register frS are stored, without
conversion, into the word in memory addressed by EA.

Table 4-19 Floating-Point Store Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-46 Revised 1 February 1999 REFERENCE MANUAL

For double-precision floating-point store instructions, no conversion is required as
the data from the FPRs is copied directly into memory. Many floating-point store
instructions have an update form, in which register rA is updated with the effective
address. For these forms, if operand rA ¦ 0, the effective address is placed into reg-
ister rA.

Floating-point store instructions are listed in Table 4-19. Recall that rA, rB, and rD
denote GPRs, while frA, frB, frC, frS and frD denote FPRs.

4.5.9.2 Floating-Point Store-Single Operands

If the operand falls in the range of a single denormalized number, the floating-point
assist exception handler is invoked.

If the operand is zero, it is converted to the correct signed zero in single-precision
format.

If the operand is between the range of single denormalized and double denormal-
ized, it is considered a programming error. The hardware handles this case as if
the operand were single denormalized.

If the operand falls in the range of double denormalized numbers, it is considered
a programming error. The hardware handles this case as if the operand were zero.

The following check is done on the stored operand in order to determine whether
it is a denormalized single-precision operand and invoke the floating-point assist
exception handler:

(FRS[1:11]) ≠ 0 AND FRS[1:11] ð 896

Refer to 6.11.10 Floating-Point Assist Exception (0x00E00) for a complete de-
scription of handling denormalized floating-point numbers.

4.5.10 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to an-
other with data modifications as described for each instruction. These instructions
do not modify the FPSCR. The condition register update option in these instruc-
tions controls the placing of result status into condition register field CR1. If the con-
dition register update option is enabled, then CR1 is set, otherwise CR1 is
unchanged. Floating-point move instructions are listed in Table 4-20.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-47

4.6 Flow Control Instructions

Branch instructions are executed by the BPU. Some of these instructions can redi-
rect instruction execution conditionally based on the value of bits in the condition
register. When the branch processor encounters one of these instructions, it scans
the instructions being processed by the various execution units to determine
whether an instruction in progress may affect the particular condition register bit. If
no interlock is found, the branch can be resolved immediately by checking the bit
in the condition register and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of
the branch is predicted using static branch prediction as described in Table 4-21.
The interlock is monitored while instructions are fetched for the predicted branch.
When the interlock is cleared, the branch processor determines whether the pre-
diction was correct based on the value of the condition register bit. If the prediction
is correct, the branch is considered completed and instruction fetching continues.
If the prediction is incorrect, the prefetched instructions are purged, and instruction
fetching continues along the alternate path.

When the branch instructions contain immediate addressing operands, the target
addresses can be computed sufficiently ahead of the branch instruction that in-
structions can be prefetched along the target path. If the branch instructions use
the link and count registers, instructions along the target path can be prefetched if
the link or count register is loaded sufficiently ahead of the branch instruction.

Table 4-20 Floating-Point Move Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point Move
Register

fmr
fmr.

frD,frB The contents of register frB is placed into frD.

fmr Floating-Point Move Register
fmr. Floating-Point Move Register with CR Update. The dot

suffix enables the update of the condition register.

Floating-
Point
Negate

fneg
fneg.

frD,frB The contents of register frB with bit 0 inverted is placed into register
frD.

fneg Floating-Point Negate
fneg. Floating-Point Negate with CR Update. The dot suffix

enables the update of the condition register.

Floating-
Point
Absolute
Value

fabs
fabs.

frD,frB The contents of frB with bit 0 cleared to zero is placed into frD.

fabs Floating-Point Absolute Value
fabs. Floating-Point Absolute Value with CR Update. The dot

suffix enables the update of the condition register.

Floating-
Point
Negative
Absolute
Value

fnabs
fnabs.

frD,frB The contents of frB with bit 0 set to one is placed into frD.

fnabs Floating-Point Negative Absolute Value
fnabs. Floating-Point Negative Absolute Value with CR Update.

The dot suffix enables the update of the condition
register.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-48 Revised 1 February 1999 REFERENCE MANUAL

Branching can be conditional or unconditional, and the return address can option-
ally be provided. If the return address is to be provided, the effective address of the
instruction following the branch instruction is placed in the link register after the
branch target address has been computed. This is done regardless of whether the
branch is taken.

4.6.1 Branch Instruction Address Calculation

Branch instructions can change the sequence of instruction execution. Instruction
addresses are always assumed to be on word boundaries; therefore the processor
ignores the two low-order bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction ad-
dress using the following addressing modes:

• Branch relative
• Branch to absolute address
• Branch conditional to relative address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

4.6.1.1 Branch Relative Address Mode

Instructions that use branch relative addressing generate the next instruction ad-
dress by sign extending and appending 0b00 to the immediate displacement oper-
and (LI) and adding the resultant value to the current instruction address. Branches
using this address mode have the absolute addressing option disabled (AA, bit 30
in the instruction encoding, equals zero). If the link register update option is en-
abled (LK, bit 31 in the instruction encoding, equals one), the effective address of
the instruction following the branch instruction is placed in the link register.

Figure 4-6 shows how the branch target address is generated when using the
branch relative addressing mode.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-49

Figure 4-6 Branch Relative Addressing

4.6.1.2 Branch Conditional Relative Address Mode

If the branch conditions are met, instructions that use the branch conditional rela-
tive address mode generate the next instruction address by sign extending and ap-
pending 0b00 to the immediate displacement operand (BD) and adding the
resultant value to the current instruction address. Branches using this address
mode have the absolute addressing option disabled (AA, bit 30 in the instruction
encoding, equals zero). If the link register update option is enabled (LK, bit 31 in
the instruction encoding, equals one), the effective address of the instruction fol-
lowing the branch instruction is placed in the link register.

Figure 4-7 shows how the branch target address is generated when using the
branch conditional relative addressing mode.

0 5 6 29 30 31

0x12 LI AA LK

0 31

Branch Target Address

Instruction Encoding:

+
0 31

Current Instruction Address

0 5 6 29 30 31

LI 0 0Sign Extensio

BR ADDR
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-50 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-7 Branch Conditional Relative Addressing

4.6.1.3 Branch to Absolute Address Mode

Instructions that use branch to absolute address mode generate the next instruc-
tion address by sign extending and appending 0b00 to the LI operand. Branches
using this address mode have the absolute addressing option enabled (AA, bit 30
in the instruction encoding, equals one). If the link register update option is enabled
(LK, bit 31 in the instruction encoding, equals one), the effective address of the in-
struction following the branch instruction is placed in the link register.

Figure 4-8 shows how the branch target address is generated when using the
branch to absolute address mode.

Figure 4-8 Branch to Absolute Addressing

0 5 6 1011 15 16 30 31

0x10 BO BI BD AA LK

Yes

0 31

Branch Target Address

Instruction Encoding:

No

+
0 31

Current Instruction Address

0 31

Next Sequential Instruction Address

0 16 17 29 30 31

Sign Extension BD 0 0

Condition
True?

BR COND REL ADDR

0 5 6 29 30 31

0x12 LI AA LK

0 5 6 29 30 31

0 29 30 31

Branch Target Address

Instruction Encoding:

LI 0 0Sign Extensio

0 0
BR TO ABS
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-51

4.6.1.4 Branch Conditional to Absolute Address Mode

If the branch conditions are met, instructions that use the branch conditional to ab-
solute address mode generate the next instruction address by sign extending and
appending 0b00 to the BD operand. Branches using this address mode have the
absolute addressing option enabled (AA, bit 30 in the instruction encoding, equals
one). If the link register update option is enabled (LK, bit 31 in the instruction en-
coding, equals one), the effective address of the instruction following the branch
instruction is placed in the link register.

Figure 4-9 shows how the branch target address is generated when using the
branch conditional to absolute address mode.

Figure 4-9 Branch Conditional to Absolute Addressing

4.6.1.5 Branch Conditional to Link Register Address Mode

If the branch conditions are met, the branch conditional to link register instruction
generates the next instruction address by fetching the contents of the link register
and clearing the two low order bits to zero. If the link register update option is en-
abled (LK, bit 31 in the instruction encoding, equals one), the effective address of
the instruction following the branch instruction is placed in the link register.

Figure 4-10 shows how the branch target address is generated when using the
branch conditional to link register address mode.

0 5 6 1011 15 16 29 30 31

0x10 BO BI BD AA LK

0 16 17 29 30 31

0 29 30 31

Branch Target Address

Instruction Encoding:

No
0 31

Next Sequential Instruction Address

Sign Extension BD 0 0

Condition
True?

Yes

0 0
BR COND TO ABS
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-52 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-10 Branch Conditional to Link Register Addressing

4.6.1.6 Branch Conditional to Count Register

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count regis-
ter and clearing the two low order bits to zero. If the link register update option is
enabled (LK, bit 31 in the instruction encoding, equals one), the effective address
of the instruction following the branch instruction is placed in the link register.

Figure 4-11 shows how the branch target address is generated when using the
branch conditional to count register address mode.

0 5 6 10 11 15 16 20 21 30 31

Condition
True?

0 0

30 31

LR

0 29

0 31

Branch Target Address

Instruction Encoding:

No
0 31

Next Sequential Instruction Address

Yes

0x13 BO BI 0 0 0 0 0 0x10 LK

||

BR COND TO LR ADDR
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-53

Figure 4-11 Branch Conditional to Count Register Addressing

4.6.2 Conditional Branch Control

For branch conditional instructions, the BO and BI operands specify the conditions
under which the branch is taken.

4.6.2.1 BO Operand and Branch Prediction

The encodings for the BO operand are shown in Table 4-21.

0 0

30 31

CTR

0 29

0 31

Branch Target Address

Instruction Encoding:

Condition
True?

No

Yes

0 31

Next Sequential Instruction Address

0 5 6 1011 15 16 20 21 30 31

0x13 BO BI 00000 0x210 LK

||

BR COND TO COUNT REG
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-54 Revised 1 February 1999 REFERENCE MANUAL

The first four bits of the BO operand specify how the branch is affected by or affects
the condition and count registers. The fifth bit, shown in Table 4-21 as having the
value y, is used for branch prediction. The branch always encoding of the BO op-
erand does not have a y bit.

Clearing the y bit to zero indicates that the following behavior is likely:

• For bcx with a negative value in the displacement operand, the branch is tak-
en.

• In all other cases (bcx with a non-negative value in the displacement operand,
bclrx, or bcctrx), the branch is not taken.

Setting the y bit to one reverses the preceding indications.

Note that branch prediction occurs for branches to the LR or CTR only if the target
address is ready.

The sign of the displacement operand is used as described above even if the target
is an absolute address. The default value for the y bit should be zero, and should
only be set to one if software has determined that the prediction corresponding to
y = one is more likely to be correct than the prediction corresponding to y = zero.
Software that does not compute branch predictions should set the y bit to zero.

For all three of the branch conditional instructions, the branch should be predicted
to be taken if the value of the following expression is one, and to fall through if the
value is zero.

((BO[0] & BO[2]) | S) ⊕ BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is

Table 4-21 BO Operand Encodings

BO1

NOTES:
1. The z indicates a bit that must be zero; otherwise, the instruction form is invalid. The y bit provides a hint

about whether a conditional branch is likely to be taken.

Description

0000y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ¦ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-55

the sign bit of the displacement operand if the instruction has a displacement op-
erand and is zero if the operand is reserved. BO[4] is the y bit, or zero for the
branch always encoding of the BO operand. (Advantage is taken of the fact that,
for bclrx and bcctrx, bit 16 of the instruction is part of a reserved operand and
therefore must be zero.)

4.6.2.2 BI Operand

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits
in the CR represents the condition to test.

4.6.2.3 Simplified Mnemonics for Conditional Branches

To provide a simplified mnemonic for every possible combination of BO and BI
fields would require 210 = 1024 mnemonics, most of which would be only margin-
ally useful. The abbreviated set found in E.5 Simplified Mnemonics for Branch
Instructions is intended to cover the most useful cases. Unusual cases can be
coded using a basic branch conditional mnemonic (bc, bclr, bcctr) with the condi-
tion to be tested specified as a numeric operand.

4.6.3 Branch Instructions

Table 4-22 describes the RCPU branch instructions.

Table 4-22 Branch Instructions

Name Mnemonic Operand
Syntax

Operation

Branch b
ba
bl
bla

imm_addr b Branch. Branch to the address computed as the sum of
the immediate address and the address of the current
instruction.

ba Branch Absolute. Branch to the absolute address
specified.

bl Branch then Link. Branch to the address computed as the
sum of the immediate address and the address of the
current instruction. The instruction address following this
instruction is placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute
address specified. The instruction address following this
instruction is placed into the link register (LR).
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-56 Revised 1 February 1999 REFERENCE MANUAL

4.6.4 Condition Register Logical Instructions

Similar to the system call (sc) instruction, condition register logical instructions,
shown in Table 4-23, and the move condition register field (mcrf) instruction are
defined as flow control instructions, although they are executed by the IU.

Note that if the link register update option (LR) is enabled for any of these instruc-
tions, the PowerPC architecture defines these forms of the instructions as invalid.

Branch
Conditional

bc
bca
bcl
bcla

BO,BI,
target_addr

The BI operand specifies the bit in the condition register (CR) to be
used as the condition of the branch. The BO operand is used as de-
scribed in Table 4-21.
bc Branch Conditional. Branch conditionally to the address

computed as the sum of the immediate address and the
address of the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address
and the address of the current instruction. The instruction
address following this instruction is placed into the link
register.

bcla Branch Conditional Absolute then Link. Branch
conditionally to the absolute address specified. The
instruction address following this instruction is placed into
the link register.

Branch
Conditional
to Link
Register

bclr
bclrl

BO,BI The BI operand specifies the bit in the condition register to be used as
the condition of the branch. The BO operand is used as described in
Table 5–21.

bclr Branch Conditional to Link Register. Branch conditionally
to the address in the link register.

bclrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the link register.
The instruction address following this instruction is then
placed into the link register.

Branch
Conditional
to Count
Register

bcctr
bcctrl

BO,BI The BI operand specifies the bit in the condition register to be used as
the condition of the branch. The BO operand is used as described in
Table 5–21.

bcctr Branch Conditional to Count Register. Branch
conditionally to the address specified in the count
register.

bcctrl Branch Conditional to Count Register then Link. Branch
conditionally to the address specified in the count
register. The instruction address following this instruction
is placed into the link register.

Note: If the “decrement and test CTR” option is specified (BO[2]=0),
the instruction form is invalid.

Table 4-22 Branch Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-57

Refer to E.6 Simplified Mnemonics for Condition Register Logical Instruc-
tions for simplified mnemonics.

4.6.5 System Linkage Instructions

This section describes the system linkage instructions (see Table 5–29). The sys-
tem call (sc) instruction permits a program to call on the system to perform a ser-
vice and the system to return from performing a service or from processing an
exception.

Table 4-23 Condition Register Logical Instructions

Name Mnemonic Operand
Syntax

Operation

Condition
Register AND

crand crbD,crbA,crbB The bit in the condition register specified by crbA is ANDed
with the bit in the condition register specified by crbB. The
result is placed into the condition register bit specified by crbD.

Condition
Register OR

cror crbD,crbA,crbB The bit in the condition register specified by crbA is ORed with
the bit in the condition register specified by crbB. The result is
placed into the condition register bit specified by crbD.

Condition
Register XOR

crxor crbD,crbA,crbB The bit in the condition register specified by crbA is XORed
with the bit in the condition register specified by crbB. The
result is placed into the condition register bit specified by crbD.

Condition
Register
NAND

crnand crbD,crbA,crbB The bit in the condition register specified by crbA is ANDed
with the bit in the condition register specified by crbB. The
complemented result is placed into the condition register bit
specified by crbD.

Condition
Register NOR

crnor crbD,crbA,crbB The bit in the condition register specified by crbA is ORed with
the bit in the condition register specified by crbB. The
complemented result is placed into the condition register bit
specified by crbD.

Condition
Register
Equivalent

creqv crbD,crbA,
crbB

The bit in the condition register specified by crbA is XORed
with the bit in the condition register specified by crbB. The
complemented result is placed into the condition register bit
specified by crbD.

Condition
Register AND
with
Complement

crandc crbD,crbA,
crbB

The bit in the condition register specified by crbA is ANDed
with the complement of the bit in the condition register specified
by crbB and the result is placed into the condition register bit
specified by crbD.

Condition
Register OR
with
Complement

crorc crbD,crbA,
crbB

The bit in the condition register specified by crbA is ORed with
the complement of the bit in the condition register specified by
crbB and the result is placed into the condition register bit
specified by crbD.

Move
Condition
Register Field

mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition
register fields are changed.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-58 Revised 1 February 1999 REFERENCE MANUAL

4.6.6 Simplified Mnemonics for Branch and Flow Control Instructions

To simplify assembly language programming, a set of simplified mnemonics and
symbols is provided for the most frequently used forms of branch conditional, trap,
and certain other instructions; for more information, see APPENDIX E SIMPLI-
FIED MNEMONICS.

Mnemonics are provided so that branch conditional instructions can be coded with
the condition as part of the instruction mnemonic rather than as a numeric operand.
Some of these are shown as examples with the branch instructions.

PowerPC-compliant assemblers provide the mnemonics and symbols listed here
and possibly others.

4.6.7 Trap Instructions

The trap instructions shown in Table 4-25 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system
trap handler is invoked. If the tested conditions are not met, instruction execution
continues normally.

Table 4-24 System Linkage Instruct i o n

Name Mnemonic Operand
Syntax

Operand Syntax

System Call sc — When executed, the effective address of the instruction following the
sc instruction is placed into SRR0. MSR[16:31] are placed into
SRR1[16:31], and SRR1[0:15] are set to undefined values. Then a
system call exception is generated.

The exception causes the next instruction to be fetched from offset
0xC00 from the base physical address indicated by the new setting of
MSR[IP]. Refer to 6.11.8 System Call Exception (0x00C00) for more
information.

This instruction is context synchronizing.

Return from
Interrupt

rfi — SRR1[16:31] are placed into MSR[16:31], then the next instruction is
fetched, under control of the new MSR value, from the address
SRR0[0:29] || 0b00.

This is a supervisor-level, context-synchronizing instruction.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-59

The trap instructions evaluate a trap condition as follows:

The contents of register rA is compared with either the sign-extended SIMM field
or with the contents of register rB, depending on the trap instruction. The compar-
ison results in five conditions which are ANDed with operand TO. If the result is not
zero, the trap exception handler is invoked. These conditions are provided in Table
4-26.

A standard set of codes has been adopted for the most common combinations of
trap conditions. Refer to E.7 Simplified Mnemonics for Trap Instructions for a
description of these codes and of simplified mnemonics employing them.

4.7 Processor Control Instructions

Processor control instructions are used to read from and write to the machine state
register (MSR), condition register (CR), and special purpose registers (SPRs).

4.7.1 Move to/from Machine State Register and Condition Register Instructions

Table 4-27 summarizes the instructions for reading from or writing to the machine
state register and the condition register.

Table 4-25 Trap Instructions

Name Mnemonic Operand
Syntax

Operand Syntax

Trap Word
Immediate

twi TO,rA,SIMM The contents of rA is compared with the sign-extended SIMM oper-
and. If any bit in the TO operand is set to one and its corresponding
condition is met by the result of the comparison, then the system trap
handler is invoked.

Trap Word tw TO,rA,rB The contents of rA is compared with the contents of rB. If any bit in the
TO operand is set to one and its corresponding condition is met by the
result of the comparison, then the system trap handler is invoked.

Table 4-26 TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than

1 Greater than

2 Equal

3 Logically less than

4 Logically greater than
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-60 Revised 1 February 1999 REFERENCE MANUAL

4.7.2 Move to/from Special Purpose Register Instructions

Simplified mnemonics are provided for the mtspr and mfspr instructions so they
can be coded with the SPR name as part of the mnemonic rather than as a numeric
operand. Some of these are shown as examples with the two instructions. (See Ta-
ble 4-28.) Refer to E.8 Simplified Mnemonics for Special-Purpose Registers
for a complete list of these mnemonics.

Table 4-27 Move to/from Machine State Register/Condition Register Instructions

Name Mnemonic Operand
Syntax

Operation

Move to
Condition
Register
Fields

mtcrf CR ,rS The contents of rS are placed into the condition register under control
of the field mask specified by operand CRM. The field mask identifies
the 4-bit fields affected. Let i be an integer in the range 0-7. If CRM(i)
= 1, then CR field i (CR bits 4*i through 4*i+3) is set to the contents of
the corresponding field of rS.

Move to
Condition
Register
from XER

mcrxr crfD The contents of XER[0:3] are copied into the condition register field
designated by crfD. All other fields of the condition register remain
unchanged. XER[0:3] is cleared to zero.

Move from
Condition
Register

mfcr rD The contents of the condition register are placed into rD.

Move to
Machine
State
Register

mtmsr rS The contents of rS are placed into the MSR.

This instruction is a supervisor-level instruction and is context
synchronizing.

Move from
Machine
State
Register

mfmsr rD The contents of the MSR are placed into rD. This is a supervisor-level
instruction.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-61

For mtspr and mfspr instructions, the SPR number coded in assembly language
does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-
order five bits appearing in bits [16:20] of the instruction and the low-order five bits
in bits [11:15].

Table 4-29 summarizes SPR encodings to which the RCPU permits user-level ac-
cess.

Table 4-30 summarizes SPR encodings that the RCPU permits at the supervisor
level.

Table 4-28 Move to/from Special Purpose Register Instructions

Name Mnemonic Operand
Syntax

Operation

Move to
Special
Purpose
Register

mtspr SPR,rS The SPR field denotes a special purpose register, encoded as shown
in Table 4-29 and Table 4-30 below. The contents of rS are placed
into the designated SPR.

Simplified mnemonic examples:

mtxer rA mtspr 1,rA
mtlr rA mtspr 8,rA
mtctr rA mtspr 9,rA

Move from
Special
Purpose
Register

mfspr rD,SPR The SPR field denotes a special purpose register, encoded as shown
in Table 4-29 and Table 4-30 below. The contents of the designated
SPR are placed into rD.

Simplified mnemonic examples:

mfxer rA mfspr rA,1
mflr rA mfspr rA,8
mfctr rA mfspr rA,9

Table 4-29 User-Level SPR Encod i n g

Decimal
Value in rD SPR[0:4] SPR[5:9]

Register
Name

Description

1 0b00001 00000 XER Integer exception register

8 0b01000 00000 LR Link register

9 0b01001 00000 CTR Count register

268 0b01100 01000 TBL Time base — lower (read only)

269 0b01101 01000 TBU Time base — upper (read only)
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-62 Revised 1 February 1999 REFERENCE MANUAL

Table 4-31 summarizes SPR encodings that the RCPU permits in debug mode, or
in supervisor mode when debug mode is not enabled out of reset.

Table 4-30 Supervisor-Level SPR Encodings

Decimal
Value in rD1

NOTES:
1. If the SPR field contains any value other than one of the values shown in Table 4-30, the instruction form

is invalid. For an invalid instruction form in which SPR[0]=1, either a privileged instruction type program ex-
ception or software emulation exception is generated if the instruction is executed by a user-level program.
(Refer to the discussion of these two exception types in SECTION 6 EXCEPTIONS for more information.)
If the instruction is executed by a supervisor-level program, the software emulation exception handler is in-
voked.
SPR[0] = 1 if and only if writing the register is supervisor-level. Execution of this instruction specifying a
defined and supervisor-level register when MSR[PR] = 1 results in a privileged instruction type program ex-
ception.

SPR[0:4] SPR[5:9] Register
Name

Description

18 0b10010 00000 DSISR DAE/source instruction service register

19 0b10011 00000 DAR Data address register

22 0b10110 00000 DEC Decrementer register

26 0b11010 00000 SRR0 Save and restore register 0

27 0b11011 00000 SRR1 Save and restore register 1

80 0b10000 00010 EIE External interrupt enable (write only)

81 0b10001 00010 EID External interrupt disable (write only)

82 0b10010 00010 NRI Non-recoverable exception

272 0b10000 01000 SPRG0 SPR general 0

273 0b10001 01000 SPRG1 SPR general 1

274 0b10010 01000 SPRG2 SPR general 2

275 0b10011 01000 SPRG3 SPR general 3

284 0b11100 01000 TBL2

2. The PowerPC architecture defines the encodings as TBRs, although it is the same as the SPR encodings.
Moving to the time base is performed by the mtspr instruction, and moving from the time base is performed
by the mftb instruction.

Time base — lower (write only)

285 0b11101 01000 TBU2 Time base — upper (write only)

287 0b11111 01000 PVR Processor version register (read only)

560 0b10000 10001 ICCST I-Cache Control and Status Register

561 0b10001 10001 ICADR I-cache address register

562 0b10010 10001 ICDAT I-cache data port

1022 0b11110 11111 FPECR Floating-point exception cause register
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-63

4.7.3 Move from Time Base Instruction

The mftb instruction is used to read from the time base register. The instruction is
permitted at the user or supervisor privilege level.

Simplified mnemonics for the mftb instruction allow it to be coded with the TBR
name as part of the mnemonic. Refer to E.8 Simplified Mnemonics for Special-
Purpose Registers for details. Notice that the simplified mnemonics for move from
time base and move from time base upper are variants of the mftb instruction rath-
er than of mfspr. The mftb instruction serves as both a basic and simplified mne-
monic. Assemblers recognize an mftb mnemonic with two operands as the basic
form and an mftb mnemonic with one operand as the simplified form.

Table 4-31 Development Support SPR Encodings

Decimal
Value in rD

SPR[0:4] SPR[5:9] Register
Name

Description

144 0b10000 00010 CMPA Comparator A Value Register

145 0b10001 00010 CMPB Comparator B Value Register

146 0b10010 00010 CMPC Comparator C Value Register

147 0b10011 00010 CMPD Comparator D Value Register

148 0b10100 00010 ECR Exception Cause Register

149 0b10101 00010 DER Debug Enable Register

150 0b10110 00010 COUNTA Breakpoint Counter A Value and Control

151 0b10111 00010 COUNTB Breakpoint Counter B Value and Control

152 0b11000 00010 CMPE Comparator E Value Register

153 0b11001 00010 CMPF Comparator F Value Register

154 0b11010 00010 CMPG Comparator G Value Register

155 0b11011 00010 CMPH Comparator H Value Register

156 0b11100 00010 LCTRL1 L-Bus Support Comparators Control 1

157 0b11101 00010 LCTRL2 L-Bus Support Comparators Control 2

158 0b11110 00010 ICTRL I-Bus Support Control

159 0b11111 00010 BAR Breakpoint Address Register

630 0b10110 10011 DPDR Development Port Data Register
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-64 Revised 1 February 1999 REFERENCE MANUAL

Table 4-33 summarizes the time base (TBL/TBU) register encodings to which user-
level access read access (using the mftb instruction) is permitted.

Writing to the time base is permitted at the supervisor privilege level only and is ac-
complished with the mtspr instruction (see 4.7.2 Move to/from Special Purpose
Register Instructions) or the mttb simplified mnemonic (see E.8 Simplified Mne-
monics for Special-Purpose Registers).

4.8 Memory Synchronization Instructions

Memory synchronization instructions can control the order in which memory oper-
ations are completed with respect to asynchronous events and the order in which
memory operations are seen by other processors and by other mechanisms that
access memory.

The synchronize (sync) instruction delays execution of subsequent instructions
until all previous instructions have completed (i.e., all internal pipeline stages and
instruction buffers have emptied), all previous memory accesses are performed
globally, and the sync or eieio operation is broadcast onto the external bus inter-
face. This set of conditions is referred to as execution serialization (or simply seri-
alization).

The enforce in-order execution of I/O (eieio) instruction serializes load/store in-
structions. No load or store instruction following eieio is issued until all loads and
stores preceding eieio have completed execution.

The instruction synchronize (isync) instruction causes the RCPU to halt instruction
fetch until all instructions currently in the processor have completed execution, i.e.,
all issued instructions as well as the pre-fetched instructions waiting to be issued.
This condition is referred to as fetch serialization.

Table 4-32 Move from Time Base Instruction

Name Mnemonic Operand
Syntax

Operation

Move from
Time Base

mftb rD,TBR The TBR field denotes either the time base lower (TBL) or time base
upper (TBU), encoded as shown in Table 4-33. The contents of the
designated register are copied to rD.

Table 4-33 User-Level TBR Encod i n g

Decimal
Value in rD

SPR[0:4] SPR[5:9] Register
Name

Description

268 0b01100 01000 TBL Time base lower (read only)

269 0b01101 01000 TBU Time base upper (read only)
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-65

The proper use of the load word and reserve indexed (lwarx) and store word con-
ditional indexed (stwcx.) instructions allows programmers to emulate common
semaphore operations such as “test and set”, “compare and swap”, “exchange
memory”, and “fetch and add”. Examples of these semaphore operations can be
found in APPENDIX D SYNCHRONIZATION PROGRAMMING EXAMPLES. The
lwarx instruction must be paired with an stwcx. instruction with the same effective
address used for both instructions of the pair. The reservation granularity is 32
bytes.

The concept behind the use of the lwarx and stwcx. instructions is that a
processor may load a semaphore from memory, compute a result based on the
value of the semaphore, and conditionally store it back to the same location. The
conditional store is performed based on the existence of a reservation established
by the preceding lwarx. If the reservation exists when the store is executed, the
store is performed and a bit is set to one in the condition register. If the reservation
does not exist when the store is executed, the target memory location is not modi-
fied and a bit is set to zero in the condition register.

The lwarx and stwcx. primitives allow software to read a semaphore, compute a
result based on the value of the semaphore, store the new value back into the
semaphore location only if that location has not been modified since it was first
read, and determine if the store was successful. If the store was successful, the
sequence of instructions from the read of the semaphore to the store that updated
the semaphore appear to have been executed atomically (that is, no other proces-
sor or mechanism modified the semaphore location between the read and the up-
date), thus providing the equivalent of a real atomic operation. However, other
processors may have read from the location during this operation.

The lwarx and stwcx. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned lwarx or stwcx. instruction,
because there is no correct way to define the address associated with the reserva-
tion.

In general, the lwarx and stwcx. instructions should be used only in system pro-
grams, which can be invoked by application programs as needed.

At most one reservation exists at a time on a given processor. The address asso-
ciated with the reservation can be changed by a subsequent lwarx instruction. The
conditional store is performed based on the existence of a reservation established
by the preceding lwarx regardless of whether the address generated by the lwarx
matches that generated by the stwcx. A reservation held by the processor is
cleared by any of the following:

• execution of an stwcx. instruction to any address
• execution of an sc instruction
• execution of an instruction that causes an exception
• occurrence of an asynchronous exception
• attempt by some other device to modify a location in the reservation granular-

ity (32 bytes)
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-66 Revised 1 February 1999 REFERENCE MANUAL

When an lwarx instruction is executed, the load/store unit issues a cycle to the
load/store bus with a special attribute.

In case of an external memory access, this attribute causes the external bus inter-
face (EBI) to set a storage reservation on the cycle address. The EBI must either
snoop the external bus or receive some indication from external snoop logic in case
the storage reservation is broken by some other processor accessing the same lo-
cation. When an stwcx. instruction to external memory is executed, the EBI checks
if the reservation was lost. If so, the cycle is blocked from going to the external bus,
and the EBI notifies the LSU that the stwcx. instruction did not complete.

The RCPU memory synchronization instructions are summarized in Table 4-34.

Table 4-34 Memory Synchronization Instructions

Name Mnemonic Operand
Syntax

Operation

Enforce In-
Order
Execution of
I/O

eieio — The eieio instruction provides an ordering function for the effects of
load and store instructions executed by a given processor. Executing
an eieio instruction ensures that all memory accesses previously
initiated by the given processor are complete with respect to main
memory before allowing any memory accesses subsequently initiated
by the given processor to access main memory.

Instruction
Synchronize

isync — This instruction causes instruction fetch to be halted until all
instructions currently in the processor have completed execution, i.e.,
all issued instructions as well as the pre-fetched instructions waiting to
be issued.

This instruction has no effect on other processors or on their caches.

Load Word
and
Reserve
Indexed

lwarx rD,rA,rB The effective address is the sum (rA|0) + (rB). The word in memory
addressed by the EA is loaded into register rD.

This instruction creates a reservation for use by an stwcx. instruction.
An address computed from the EA is associated with the reservation,
and replaces any address previously associated with the reservation.

The EA must be a multiple of four. If it is not, the alignment exception
handler is invoked.

Store Word
Conditional
Indexed

stwcx. rS,rA,rB The effective address is the sum (rA|0) + (rB).

If a reservation exists, register rS is stored into the word in memory
addressed by the EA and the reservation is cleared.

If a reservation does not exist, the instruction completes without
altering memory.

The EQ bit in the condition register field CR0 is modified to reflect
whether the store operation was performed (i.e., whether a reservation
existed when the stwcx. instruction began execution). If the store was
completed successfully, the EQ bit is set to one.

The EA must be a multiple of four; otherwise, the alignment exception
handler is invoked.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-67

4.9 Memory Control Instructions

This section describes memory control instructions. In the RCPU, only one such
instruction is supported: Instruction cache block invalidate (icbi).

4.10 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provid-
ed for some of the most frequently used instructions such as no-op, load immedi-
ate, load address, move register, and complement register). PowerPC compliant
assemblers provide the simplified mnemonics listed in E.9 Recommended Sim-
plified Mnemonics. Programs written to be portable across the various assem-
blers for the PowerPC architecture should not assume the existence of mnemonics
not defined in this manual.

For a complete list of simplified mnemonics, see APPENDIX E SIMPLIFIED MNE-
MONICS.

Synchronize sync — Executing a sync instruction ensures that all instructions previously
initiated by the given processor appear to have completed before any
subsequent instructions are initiated by the given processor. When the
sync instruction completes, all memory accesses initiated by the
given processor prior to the sync will have been performed with
respect to all other mechanisms that access memory. The sync
instruction can be used to ensure that the results of all stores into a
data structure, performed in a critical section of a program, are seen
by other processors before the data structure is seen as unlocked.

Table 4-35 Instruction Cache Management Instruction

Name Mnemonic
Operand
Syntax Operation

Instruction
Cache
Block
Invalidate

icbi rA,rB The effective address is the sum (rA|0) + (rB).

This instruction causes any subsequent fetch request for an
instruction in the block to not find the block in the cache and to be sent
to storage. The instruction causes the target block in the instruction
cache of the executing processor to be marked invalid. If the target
block is not accessible to the program for loads, the system data
storage error handler may be invoked.

This is a supervisor-level instruction.

Table 4-34 Memory Synchronization Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-68 Revised 1 February 1999 REFERENCE MANUAL

SECTION 5
INSTRUCTION CACHE

The instruction cache (I-cache) is a 4-Kbyte, 2-way set associative cache. The
cache is organized into 128 sets, with two lines per set and four words per line.
Cache lines are aligned on 4-word boundaries in memory.

A cache access cycle begins with an instruction request from the CPU instruction
unit. In case of a cache hit, the instruction is delivered to the instruction unit. In case
of a cache miss, the cache initiates a burst read cycle (four beats per burst, one
word per beat) on the instruction bus (I-bus) with the address of the requested in-
struction. The first word received from the bus is the requested instruction. The
cache forwards this instruction to the instruction unit as soon as it is received from
the I-bus. A cache line is then selected to receive the data that will be coming from
the bus. A least-recently-used (LRU) replacement algorithm is used to select a line
when no empty lines are available.

Each cache line can be used as an SRAM, allowing the application to lock critical
code segments that need fast and deterministic execution time.

Cache coherency in a multiprocessor environment is maintained by software and
supported by a fast hardware invalidation capability.

5.1 Instruction Cache Organization

Figure 5-1 illustrates the I-cache organization.
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-1

Figure 5-1 Instruction Cache Organization

Figure 5-2 illustrates the data path of the I-cache.

WAY0

28 292721200

WORD SELECT

21

BIDIRECTIONAL MUX 2 ➝ 1

21

128

HIT0

HIT

128

�
�
�
�

����
����
����
����INSTRUCTION POINTER

7

. .

. .

. .

. .

SET0
SET1

SET127
SET126

COMP

TAG0 W0 W1 W2 W3

V
A

LI
D

 B
IT

LO
C

K
 B

IT
TAG1 W0 W1 W2 W3

TAG127 W0 W1 W2 W3
TAG126 W0 W1 W2 W3

. .
 .

. .
 .

. .
 .

. .
 .

L
R
U

A
R
R
A
Y

. .

. .

. .

. .

21

128
COMP

HIT1

TO LINE BUFFER/
FROM BURST BUFFER

2

W2 TAG0 W0 W1 W2 W3

WAY1

TAG1 W0 W1 W2 W3

TAG127 W0 W1 W2 W3
TAG126 W0 W1 W2 W3

. .
 .

. .
 .

. .
 .

. .
 .

V
A

LI
D

 B
IT

LO
C

K
 B

IT

W2

INST CACHE ORG
 MOTOROLA INSTRUCTION CACHE RCPU

5-2 Revised 1 February 1999 REFERENCE MANUAL

Figure 5-2 Instruction Cache Data Path

5.2 Programming Model

Table 5-1 lists the special purpose registers (SPRs) that control the operation of
the I-cache.

These registers are privileged; attempting to access them when the CPU is oper-
ating at the user privilege level results in a program interrupt.

5.2.1 I-Cache Control and Status Register (ICCST)

The ICCST contains control bits for enabling the I-cache and executing I-cache
commands and status bits to indicate error conditions.

Table 5-1 Instruction Cache Programming Model

SPR Number
(Decimal)

Name Description

560 ICCST I-cache control and status register

561 ICAD I-cache address register

562 ICDAT I-cache data port (read only)

128

128

128

INSTRUCTION
I-BUS

DATA
TO CPU

4-KBYTE

ARRAY

CACHE

SET

DECODER

ADDR[21:27]

4-WORD

BUFFER

LINE

4-WORD

BURST

BUFFER

128

128

STREAM

HIT

MUX

2➝ 1

32

128

WORD

SELECT

MUX

4➝ 1
32

128

DATA

BYPASS

MUX
2➝ 1

32

ADDR[28:29]

IC DATA PATH
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-3

ICCST — I-Cache Control and Status Register SPR 560

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IEN RESERVED CMD RESERVED CCER
1

CCER
2

CCER
3

RESERVED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5-2 ICCST Bit Settings

Bits Mnemonic Description

0 IEN I-cache enable status bit. This bit is a read-only bit. Any attempt to write it is ignored

0 = I-cache is disabled
1 = I-cache is enabled

[1:3] — Reserved

[4:6] CMD I-Cache Command

000 = No command
001 = Cache enable
010 = Cache disable
011 = Load & lock
100 = Unlock line
101 = Unlock all
110 = Invalidate all
111 = Reserved

[7:9] — Reserved

10 CCER1 I-Cache Error Type 1 (sticky bit)

0 = No error
1 = Error

11 CCER2 I-Cache Error Type 2 (sticky bit)

0 = No error
1 = Error

12 CCER3 I-Cache Error Type 3 (sticky bit)

0 = No error
1 = Error

[13:31] — Reserved
 MOTOROLA INSTRUCTION CACHE RCPU

5-4 Revised 1 February 1999 REFERENCE MANUAL

5.2.2 I-Cache Address Register (ICADR)

Writing to the ICADR assigns the address that will be used by subsequent I-cache
commands that are programmed in the ICCST.

5.2.3 I-Cache Data Register (ICDAT)

The ICDAT register contains the data received when the I-cache tag array is read.

5.3 Instruction Cache Operation
On an instruction fetch, bits 21 to 27 of the instruction’s address are used as an
index into the cache to retrieve the tags and data of one set. The tags from both
accessed lines are then compared to bits 0 to 20 of the instruction’s address. If a
match is found and the matched entry is valid, then the access is a cache hit.

If neither tag matches or if the matched tag is not valid, the access is a cache miss.

The I-cache includes one burst buffer that holds the last line received from the bus,
and one line buffer that holds the last line received from the cache array. If the re-
quested data is found in one of these buffers, the access is considered a cache hit.

ICADR — I-Cache Address Register SPR 561

0 31

ADR

RESET: UNDEFINED

Table 5-3 ICADR Bit Settings

Bits Mnemonic Description

[0:31] ADR The address to be used in the command programmed in the control and status
register

ICDAT — I-Cache Data Register SPR 562

0 31

DAT

RESET: UNDEFINED

Table 5-4 ICDAT Bit Settings

Bits Mnemonic Description

[0:31] DAT The data received when reading information from the I-cache
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-5

To minimize power consumption, the I-cache attempts to make use of data stored
in one of its internal buffers. Using a special indication from the CPU, it is also pos-
sible, in some cases, to detect that the requested data is in one of the buffers early
enough so the cache array is not activated at all.

5.3.1 Cache Hit

On a cache hit, bits 28 to 29 of the instruction’s address are used to select one word
from the cache line whose tag matched. In the same clock cycle, the instruction is
transferred to the instruction unit of the processor.

5.3.2 Cache Miss

On a cache miss, the address of the missed instruction is driven on the I-bus with
a four-word burst transfer read request. A cache line is then selected to receive the
data that will be coming from the bus. The selection algorithm gives first priority to
invalid lines. If neither of the two candidate lines in the selected set are invalid, then
the least recently used line is selected for replacement. Locked lines are never re-
placed.

The transfer begins with the word requested by the instruction unit (critical word
first), followed by any remaining words of the line, then by any remaining words at
the beginning of the line (wrap around). As the missed instruction is received from
the bus, it is immediately delivered to the instruction unit and also written to the
burst buffer.

As subsequent instructions are received from the bus they are also written into the
burst buffer and, if needed, delivered to the instruction unit (stream hit) either di-
rectly from the bus or from the burst buffer. When the entire line resides in the burst
buffer, it is written to the cache array if the cache array is not busy with an instruc-
tion unit request.

If a bus error is encountered on the access to the requested instruction, a machine
check exception is taken. If a bus error occurs on any access to other words in the
line, the burst buffer is marked invalid and the line is not written to the array. If no
bus error is encountered, the burst buffer is marked valid and eventually is written
to the array.

Together with the missed word, an indication may arrive from the I-bus that the
memory device is non-cacheable. If such an indication is received, the line is writ-
ten only to the burst buffer and not to the cache. Instructions stored in the burst
buffer that originated in a cache-inhibited memory region are used only once before
being refetched. Refer to 5.4.8 Cache Inhibit for more information.

5.3.3 Instruction Fetch on a Predicted Path

The processor implements branch prediction to allow branches to issue as early as
possible. This mechanism allows instruction pre-fetch to continue while an unre-
solved branch is being computed and the condition is being evaluated. Instructions
fetched following unresolved branches are said to be fetched on a predicted path.
 MOTOROLA INSTRUCTION CACHE RCPU

5-6 Revised 1 February 1999 REFERENCE MANUAL

These instructions may be discarded later if it turns out that the machine has fol-
lowed the wrong path.

To minimize power consumption, the I-cache does not initiate a miss sequence in
most cases when the instruction is inside a predicted path. The I-cache evaluates
fetch requests to determine whether they are inside a predicted path. If a hit is de-
tected, the requested data is delivered to the processor. However, on a cache
miss, in most cases the cache-miss sequence is not initiated until the processor fin-
ishes the branch evaluation.

5.4 Cache Commands

The instruction cache supports the PowerPC instruction cache block invalidate
(icbi) instruction together with some additional commands that help control the
cache and debug the information stored in it. The additional commands are imple-
mented using the three special purpose control registers ICCST, ICADR, and IC-
DAT.

Most of the commands are executed immediately after the control register is written
and cannot generate any errors. When these commands are executed, there is no
need to check the error status in the ICCST.

The load & lock command may take longer and may generate errors. When exe-
cuting this command, the user needs to insert an isync instruction immediately af-
ter the I-cache command and check the error status in the ICCST after the isync
instruction. The error type bits in the ICCST are sticky, allowing the user to perform
a series of I-cache commands before checking the termination status. These bits
are set by hardware and cleared by software.

Only commands that are not executed immediately need to be followed by an
isync instruction for the hardware to perform them correctly. However, all com-
mands need to be followed by isync in order to make sure all fetches of instruc-
tions that follow the I-cache command in the program stream are affected by the I-
cache command.

Because the ICCST is a supervisor-level register, cache commands that require
setting bits in this register are accessible only at the supervisor privilege level
(MSR[PR] = 0). Attempting to write this register at the user privilege level results in
a program exception.

The CPU icbi instruction (discussed below) can be performed at the user privilege
level.

5.4.1 Instruction Cache Block Invalidate

The PowerPC instruction cache block invalidate (icbi) instruction invalidates the
cache block indicated by the effective address in the instruction. The RCPU imple-
ments this instruction as if it pertains only to the on-chip instruction cache. This in-
struction does not broadcast on the external bus, and the RCPU does not snoop
this instruction if broadcast by other masters.
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-7

This command is not privileged and has no error cases that the user needs to
check.

The I-cache performs this instruction in one clock cycle. In order to calculate the
latency of this instruction accurately, bus latency should be taken into account.

5.4.2 Invalidate All

To invalidate the whole cache, set the invalidate all command in the ICCST. This
command has no error cases that the user needs to check.

When the command is invoked, if MSR[PR] = 0, all valid lines in the cache, except
lines that are locked, are made invalid. As a result of this command, the LRU of all
lines points to an unlocked way or to way zero if both lines are not locked. This last
feature is useful in order to initialize the I-cache out of reset.

The I-cache performs this instruction in one clock cycle. In order to calculate the
latency of this instruction accurately, bus latency should be taken into account.

5.4.3 Load and Lock

The load & lock operation is used to lock critical code segments in the cache. The
load & lock operation is performed on a single cache line. After a line is locked it
operates as a regular instruction SRAM; it will not be replaced during future misses
and will not be affected by invalidate commands.

The following sequence loads and locks one line:

1. Read error type bits in the ICCST in order to clear them
2. Write the address of the line to be locked to the ICADR
3. Set the load & lock command in the ICCST
4. Issue the isync instruction
5. Return to step 2 to load and lock more lines
6. Read the error type bits in the ICCST to determine whether the operation

completed properly

After the load & lock command is written to the ICCST, the cache checks if the line
containing the byte addressed by the ICADR is in the cache. If it is, the line is
locked and the command terminates with no exception. If the line is not in the
cache a regular miss sequence is initiated. After the whole line is placed in the
cache the line is locked.

The user needs to check the error type bits in the ICCST to determine if the oper-
ation completed properly or not. The load & lock command can generate two er-
rors:

• Type 1 — bus error in one of the cycles that fetches the line
• Type 2 — no place to lock. It is the responsibility of the user to make sure that

there is at least one unlocked way in the appropriate set.
 MOTOROLA INSTRUCTION CACHE RCPU

5-8 Revised 1 February 1999 REFERENCE MANUAL

5.4.4 Unlock Line

The unlock line operation is used to unlock locked cache lines. The unlock line
operation is performed on a single cache line. If the line is found in the cache
(cache hit), it is unlocked and starts to operate as a regular valid cache line. If the
line is not found in the cache (cache miss), no operation is performed, and the com-
mand terminates with no exception.

The following sequence unlocks one cache line:

1. Write the address of the line to be unlocked to the ICADR
2. Set the unlock line command in the ICCST

This command has no error cases that the user needs to check.

The I-cache performs this instruction in one clock cycle. To calculate the latency of
this instruction accurately, bus latency should be taken into account.

5.4.5 Unlock All

The unlock all operation is used to unlock the whole cache. This operation is per-
formed on all cache lines. If a line is locked it is unlocked and starts to operate as
a regular valid cache line. If a line is not locked or if it is invalid no operation is per-
formed.

In order to unlock the whole cache set the unlock all command in the ICCST.

This command has no error cases that the user needs to check.

The I-cache performs this instruction in one clock cycle. To calculate the latency of
this instruction accurately, bus latency should be taken into account.

5.4.6 Cache Enable

To enable the cache, set the cache enable command in the ICCST. This operation
can be performed only at the supervisor privilege level. The cache enable com-
mand has no error cases that the user needs to check.

5.4.7 Cache Disable

To disable the cache, set the cache disable command in the ICCST. This opera-
tion can be performed only at the supervisor privilege level. The cache disable
command has no error cases that the user needs to check.

5.4.8 Cache Inhibit

A memory region can be programmed in the chip select logic to be cache inhibited.
When an instruction is fetched from a cache-inhibited region, the full line is brought
to the internal burst buffer. Instructions stored in the burst buffer that originated
from a cache-inhibited region may be sent to the processor no more than once be-
fore being re-fetched.
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-9

When changing a memory region (by writing to the appropriate chip-select regis-
ters) from a cache-enabled to a cache-inhibited region, the user must do the fol-
lowing:

1. Unlock all locked lines containing code that originated in this memory region
2. Invalidate all lines containing code that originated in this memory region
3. Execute an isync instruction

If these steps are not followed, code from a cache-inhibited region could be left in-
side the cache, and a reference to a cache-inhibited region could result in a cache
hit. When a reference to a cache-inhibited region results in a cache hit, the data is
delivered to the processor from the cache, not from memory.

When the FREEZE signal is asserted, indicating that the processor is under debug,
all fetches from the cache are treated as if they were from cache-inhibited regions.

5.4.9 Cache Read

The user can read all data stored in the I-cache, including the data stored in the
tags array.

To read the data that is stored in the I-cache,

1. Write the address of the data to be read to the ICADR. Note that it is also
possible to read this register for debugging purposes.

2. Read the ICDAT

So that all parts of the I-cache can be accessed, the ICADR is divided into the fol-
lowing fields:

When the data array is read from, the 32 bits of the word selected by the ICADR
are placed in the target general-purpose register.

When the tag array is read, the 21 bits of the tag selected by the ICADR, along with
additional information, are placed in the target general-purpose register. Table 5-
6 illustrates the bits layout of the I-cache data register when a tag is read.

Table 5-5 ICADR Bits Function for the Cache Read Command

[0:17] 18 19 20 [21:27] [28:29] [30:31]

Reserved 0 = tag
1 = data

0 = way 0
1 = way 1

Reserved Set select Word select
(used only for

data array)

Reserved
 MOTOROLA INSTRUCTION CACHE RCPU

5-10 Revised 1 February 1999 REFERENCE MANUAL

5.5 I-Cache and On-Chip Memories with Zero Wait States

On-chip memories on the I-bus are considered to be cache-inhibited memory re-
gions.

Performing a load & lock with such an on-chip memory is not advised. In most cas-
es the instruction will still be fetched from the on-chip memory, even though it is
also present in the I-cache.

5.6 Cache Coherency

Cache coherency in a multi-processor environment is maintained by software and
supported by the invalidation mechanisms described in 5.4 Cache Commands. All
instruction storage is considered to be in “coherency not required” mode.

5.7 Updating Code and Attributes of Memory Regions

When updating code or when changing the attributes of memory regions (by writing
to chip-select registers), the user must perform the following actions:

1. Update code or change memory region programming in the chip-select
logic.

2. Execute the sync instruction to ensure the update or change operation fin-
ished.

3. Unlock all locked lines containing code that was updated.
4. Invalidate all lines containing code that was updated.
5. Execute the isync instruction.

5.8 Reset Sequence

To simplify system debugging, the I-cache is forced to be disabled only during reset
(ICCST[EN] = 0). This feature enables the user to investigate the exact state of the
I-cache prior to the event that asserted the reset.

In order to ensure proper operation of the I-cache after reset, the following actions
must be performed:

1. unlock all
2. invalidate all
3. cache enable

Table 5-6 ICDAT Layout During a Tag Read

[0:20] 21 22 23 24 [25:31]

Tag value Reserved 0 = not valid
1 = valid

0 = not locked
1 = locked

LRU bit Reserved
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-11

5.9 Debugging Support

The processor can be debugged either in debug mode or by a software monitor
debugger. In both cases the processor asserts the internal FREEZE signal. For a
detailed description of RCPU debugging support, refer to SECTION 8
DEVELOPMENT SUPPORT.

When FREEZE is asserted, the I-cache treats all misses as if they were from
cache-inhibited regions. That is, the misses are loaded only to the burst buffer and
the cache state therefore remains exactly the same (assuming the debug routine
is not in the I-cache). Notice that when FREEZE is asserted, cache hits are still
read from the array, and therefore the LRU bits are updated.

5.9.1 Running a Debug Routine from the I-Cache

It may be desirable, in some cases, to be able to run a debug routine from the I-
cache (e.g., for performance reasons). The following steps could be used to run the
debug routine from the I-cache:

1. Save both ways of the sets that are needed for the debug routine by reading
the tag value, LRU bit value, valid bit value, and lock bit value.

2. Unlock the locked ways in the selected sets.
3. Use load & lock to load and lock the debug routine into the I-cache (load &

lock operates the same when FREEZE is asserted).
4. Run the debug routine. All accesses to it will result in hits.

After the debug routine is finished, the old state of the I-cache can be restored by
following these steps:

1. Unlock and invalidate all the sets that are used by the debug routine (both
ways).

2. Use load & lock to restore the old sets.
3. Unlock the ways that were not locked before.
4. In order to restore the old state of the LRU, make sure the last access (load

& lock or unlock) is performed the MRU way (not the LRU way).

5.9.2 Instruction Fetch from the Development Port

When the processor is in debug mode, all instructions are fetched from the devel-
opment port, regardless of the address generated by the processor. The I-cache is
therefore bypassed in debug mode.
 MOTOROLA INSTRUCTION CACHE RCPU

5-12 Revised 1 February 1999 REFERENCE MANUAL

SECTION 6
EXCEPTIONS

The PowerPC exception mechanism allows the processor to change to supervisor
state as a result of external signals, errors, or unusual conditions arising in the ex-
ecution of instructions. When exceptions occur, information about the state of the
processor is saved to certain registers, and the processor begins execution at an
address predetermined for each exception. Processing of exceptions occurs in su-
pervisor mode.

Although multiple exception conditions can map to a single exception vector, the
specific condition can be determined by examining a register associated with the
exception — for example, the DAE/source instruction service register (DSISR) and
the floating-point status and control register (FPSCR). Additionally, specific excep-
tion conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order;
therefore, while exception conditions may be recognized out of order, they are han-
dled strictly in order. When an instruction-caused exception is recognized, any un-
executed instructions that appear earlier in the instruction stream are required to
complete before the exception is taken. An instruction is said to have “completed”
when the results of that instruction’s execution have been committed to the appro-
priate registers (i.e., following the writeback stage). If a single instruction encoun-
ters multiple exception conditions, those exceptions are taken and handled
sequentially.

Asynchronous exceptions (exceptions not associated with a specific instruction)
are recognized when they occur, but are not handled until all completed instruc-
tions have retired and the instruction remaining at the head of the history buffer is
ready to retire.

In many cases, after an exception handler handles an exception, there is an at-
tempt to execute the instruction that caused the exception. Instruction execution
continues until the next exception condition is encountered. This method of recog-
nizing and handling exception conditions sequentially guarantees that the machine
state is recoverable and processing can resume without losing instruction results.

Exception handlers should save the information saved in SRR0 and SRR1 soon
after the exception is taken to prevent this information from being lost due to an-
other exception being taken. The information should be saved before enabling any
exception that is automatically disabled when an exception is taken.

NOTE
If debug mode is enabled and the appropriate bit in the debug enable
register (DER) is set, recognition of an exception results in debug-
mode processing rather than normal exception processing. Refer to
SECTION 8 DEVELOPMENT SUPPORT for details.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-1

6.1 Exception Classes
Exception classes are shown in Table 6-1. These classes are described in the fol-
lowing paragraphs.

6.1.1 Ordered and Unordered Exceptions
An exception is said to be ordered if, when it is taken, it is guaranteed that no pro-
gram state is lost (provided proper procedures are followed in the exception han-
dlers). In the RCPU implementation of the PowerPC architecture, all exceptions
are ordered except for the following:

• Reset
• Machine check
• Non-maskable internal (instruction and data) breakpoints
• Non-maskable external breakpoints

Unordered exceptions may be reported at any time and are not guaranteed to pre-
serve program state information. The processor can never recover from a reset ex-
ception. It can recover from other unordered exceptions in most cases. However,
if an unordered exception occurs during the servicing of a previous exception, the
machine state information in SRR0 and SRR1 (and, in some cases, the DAR and
DSISR) may not be recoverable; the processor may be in the process of saving or
restoring these registers.

To determine whether the machine state is recoverable, the user can read the RI
(recoverable exception) bit in SRR1. Refer to 6.5 Recovery from Exceptions for
details.

6.1.2 Synchronous, Precise Exceptions
Synchronous exceptions are caused by instructions. They are said to be either pre-
cise or imprecise. In the RCPU implementation of the PowerPC architecture, all
synchronous exceptions are precise.

When a precise exception occurs, the processor backs the machine up to the in-

Table 6-1 RCPU Exception Classes

Type Exception

Asynchronous, unordered (non-maskable) System reset
Non-maskable data or instruction breakpoint

Non-maskable external breakpoint

Asynchronous, ordered (maskable) External interrupt
Decrementer

Maskable external breakpoint

Synchronous (precise), ordered Instruction-caused exceptions
(except machine check)

Synchronous (precise), unordered Machine check
 MOTOROLA EXCEPTIONS RCPU

6-2 Revised 1 February 1999 REFERENCE MANUAL

struction causing the exception. This ensures that the machine is in its correct ar-
chitecturally-defined state. The following conditions exist at the point a precise
exception occurs:

1. Architecturally, no instruction following the faulting instruction in the code
stream has begun execution.

2. All instructions preceding the faulting instruction appear to have completed
with respect to the executing processor.

3. SRR0 addresses either the instruction causing the exception or the imme-
diately following instruction. Which instruction is addressed can be deter-
mined from the exception type and the status bits.

4. Depending on the type of exception, the instruction causing the exception
may not have begun execution, may have partially completed, or may have
completed execution. Refer to Table 6-2 for details.

The precise exception model can simplify and speed up exception processing be-
cause software does not have to save the machine’s internal pipeline states, un-
wind the pipelines, and cleanly terminate the faulting instruction, nor does it have
to reverse the process to resume execution of the faulting instruction stream.

NOTE
In the RCPU implementation of the PowerPC architecture, the ma-
chine-check exception is synchronous, (i.e., it is assigned to the in-
struction that caused it). In other PowerPC implementations, this
exception may be asynchronous.

Table 6-2 shows which precise exceptions are taken before the excepting instruc-
tion is executed, which are taken after, and which are taken after the instruction is
partially executed.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-3

6.1.3 Asynchronous Exceptions
Asynchronous exceptions are not caused by instructions and are thus not synchro-
nized to internal processor events. When an asynchronous exception occurs, the
following conditions exist at the exception point:

• SRR0 addresses the instruction that would have completed if the exception
had not occurred.

• An exception is generated such that all instructions preceding the instruction
addressed by SRR0 appear to have completed with respect to the executing
processor.

Asynchronous exceptions can be either ordered or unordered, depending on
whether they are maskable.

Maskable exceptions are considered ordered because, if proper software proce-
dures are followed, they are never recognized while the processor is saving or re-
storing the machine state during a previous exception. Thus, the processor can
always recover from one of these exceptions.

Asynchronous, non-maskable exceptions can occur while other exceptions are be-
ing processed. If one of these exceptions occurs immediately after another excep-
tion, the state information saved by the first exception may be overwritten when the
second exception occurs. These exceptions are thus considered unordered. For
additional information, refer to 6.5.2 Recovery from Unordered Exceptions.

Table 6-2 Handling of Precise Exceptions

Exception Type Instruction Type Before/After Contents of SRR0

Machine check Any Before Faulting instruction

Alignment Multiple Partially Faulting instruction

Others Before

Floating-point enabled Move to MSR, rfi After Next instruction to execute

Floating-point enabled Move to FPSCR After Faulting instruction

Privileged instruction,
trap, floating-point

unavailable

Multiple Before Faulting instruction

System call sc After Next instruction to execute

Trace Any After Next instruction to execute

Debug I-breakpoint Any Before Faulting instruction

Debug L-breakpoint Load/store After Faulting instruction + 4

Software emulation NA Before Faulting instruction

Floating-point assist Floating point Before Faulting instruction
 MOTOROLA EXCEPTIONS RCPU

6-4 Revised 1 February 1999 REFERENCE MANUAL

6.1.3.1 Asynchronous, Maskable Exceptions
The RCPU supports the following asynchronous, maskable exceptions: external
interrupts, decrementer interrupts, and maskable internal and external breakpoint
exceptions.

External and decrementer interrupts are masked by the external interrupt enable
(EE) bit in the MSR. When MSR[EE] = 0, these exception conditions are latched
and are not recognized until MSR[EE] is set. MSR[EE] is cleared automatically
when an exception is taken to delay recognition of external and decrementer inter-
rupts.

Maskable internal or external breakpoint exceptions are recognized only when the
RI (recoverable exception) bit in the MSR = 1. This ensures that (with proper soft-
ware safeguards) the processor can always recover from one of these exceptions.

Refer to SECTION 8 DEVELOPMENT SUPPORT for details on maskable and
non-maskable internal and external breakpoints.

6.1.3.2 Asynchronous, Non-Maskable Exceptions
Asynchronous, non-maskable exceptions include reset and non-maskable internal
and external breakpoint exceptions. These exceptions have the highest priority
and can occur while other exceptions are being processed. Because these excep-
tions are non-maskable, they are never delayed; therefore, if an asynchronous,
non-maskable exception occurs immediately after another exception, the state in-
formation saved by the first exception may be overwritten when the second excep-
tion occurs.

For additional information, refer to 6.5.2 Recovery from Unordered Exceptions.
Refer to SECTION 8 DEVELOPMENT SUPPORT for details on maskable and
non-maskable internal and external breakpoints.

6.2 Exception Vector Table
The setting of the exception prefix (IP) bit in the MSR determines how exceptions
are vectored. If the bit is cleared, exceptions are vectored to the physical address
0x0000 0000 plus the vector offset; if IP is set, exceptions are vectored to the phys-
ical address 0xFFF0 0000 plus the vector offset. Table 6-3 shows the exception
vector offset of the first instruction of the exception handler routine for each excep-
tion type.

NOTE
The exception vectors shown in Table 6-3, up to and including the
floating-point assist exception (vector offset 0x00E00), are defined
by the PowerPC architecture. Exception vectors beginning with offset
0x01000 (software emulation exception in the RCPU) are reserved in
the PowerPC architecture for implementation-specific exceptions.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-5

Table 6-3 Exception Vectors and Conditions

Exception
Type

Vector Offset Causing Conditions

Reserved 0x00000 Reserved

System reset 0x00100 A reset exception results when the RESET input to the processor is asserted.

Machine check 0x00200 A machine check exception results when the TEA signal is asserted internally or
externally.

— 0x00300 Reserved. (In the PowerPC architecture, this exception vector is reserved for
data access exceptions.)

— 0x00400 Reserved. (In the PowerPC architecture, this exception vector is reserved for
instruction access exceptions.)

External
interrupt

0x00500 An external interrupt occurs when the RCPU IRQ input signal is asserted.

Alignment 0x00600 An alignment exception is caused when the processor cannot perform a memory
access for one of the following reasons:
• The operand of a floating-point load or store is not word-aligned.
• The operand of a load- or store-multiple instruction is not word-aligned.
• The operand of lwarx or stwcx. is not word-aligned.
• In little-endian mode, an operand is not properly aligned.
• In little-endian mode, the processor attempts to execute a multiple or string

instruction.

Program 0x00700 A program exception is caused by one of the following exception conditions:
• Floating-point enabled exception — A floating-point enabled program

exception condition is generated when the following condition is met as a
result of a move to FPSCR instruction, move to MSR instruction, or return
from interrupt instruction:

 (MSR[FE0] | MSR[FE1]) & FPSCR[FEX] = 1.
• Privileged instruction — A privileged instruction type program exception is

generated when the execution of a privileged instruction is attempted and
the MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0]=1 and
MSR[PR]=1.

• Trap — A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

0x00800 A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled, MSR[FP]=0.

Decrementer 0x00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register changes from zero to one.

Reserved 0x00A00 —

Reserved 0x00B00 —

System call 0x00C00 A system call exception occurs when a system call (sc) instruction is executed.

Trace 0x00D00 A trace exception occurs if MSR[SE] = 1 and any instruction other than rfi is
successfully completed, or if MSR[BE] = 1 and a branch is completed.
 MOTOROLA EXCEPTIONS RCPU

6-6 Revised 1 February 1999 REFERENCE MANUAL

6.3 Precise Exception Model Implementation
In order to achieve maximum performance, the RCPU processes many pieces of
the instruction stream concurrently. Instructions execute in parallel and may com-
plete out of order. The processor is designed to ensure that this out of order oper-
ation never has an effect different from that specified by the program. This
requirement is most difficult to ensure when an exception occurs after instructions
that logically follow the faulting instruction have already completed. When an ex-
ception occurs, the machine state becomes visible to other processes and there-
fore must be in its correct architecturally specified condition. The processor takes
care of this in hardware by automatically backing the machine up to the instruction
that caused the interrupt. The processor is therefore said to implement a precise
exception model.

To enable the processor to recover from an exception, a history buffer is used. This
buffer is a FIFO queue which records relevant machine state at the time of each
instruction issue. Instructions are placed on the tail of the queue when they are is-
sued and percolate to the head of the queue while they are in execution. Instruc-
tions remain in the queue until they complete execution (i.e., have completed the
writeback stage) and all preceding instructions have completed as well. In this way,
when an exception occurs, the machine state necessary to recover the architectur-
al state is available. As instructions complete execution, they are retired from the
queue, and the buffer storage is reclaimed for new instructions entering the queue.

Floating-point
assist

0x00E00 A floating-point assist exception occurs in the following cases:
• When the following condition is true (except in the cases mentioned above

for program exceptions):
(MSR[FE0] | MSR[FE1]) &FPSCR[FEX] = 1

• When a tiny result is detected and the floating-point underflow exception is
disabled (FPSCR[UE] = 0)

• In some cases when at least one of the source operands is denormalized.

Software
emulation

0x01000 An implementation-dependent software emulation exception occurs when an
attempt is made to execute an unimplemented instruction, or to execute a mtspr
or mfspr instruction that specifies an unimplemented register.

Data
breakpoint

0x01C00 An implementation-dependent data breakpoint exception occurs when an
internal breakpoint match occurs on the load/store bus.

Instruction
breakpoint

0x01D00 An implementation-dependent instruction breakpoint exception occurs when an
internal breakpoint match occurs on the instruction bus.

Maskable
external

breakpoint

0x01E00 An implementation-dependent maskable external breakpoint occurs when an
external device or on-chip peripheral generates a maskable breakpoint.

Non-maskable
external

breakpoint

0x01F00 An implementation-dependent non-maskable external breakpoint occurs when
an external breakpoint is input to the serial interface of the development port.

Table 6-3 Exception Vectors and Conditions (Continued)

Exception
Type

Vector Offset Causing Conditions
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-7

Figure 6-1 History Buffer Queue

An exception can be detected at any time during instruction execution and is re-
corded in the history buffer when the instruction finishes execution. The exception
is not recognized until the faulting instruction reaches the head of the history
queue. When the exception is recognized, exception processing begins. The
queue is reversed, and the machine is restored to its state at the time the instruc-
tion was issued. Machine state is restored at a maximum rate of two floating-point
and two integer instructions per clock cycle.

To correctly restore the architectural state, the history buffer must record the value
of the destination before the instruction is executed. The destination of a store in-
struction, however, is in memory. It is not practical for the processor to always read
memory before writing it. Therefore, stores issue immediately to store buffers, but
do not update memory until all previous instructions have completed execution
without exception, i.e., until the store has reached the head of the history buffer.

The history buffer has enough storage to hold a total of six instructions. Of these,
a maximum of four can be integer instructions (including integer load or store in-
structions), and a maximum of three can be floating-point instructions (including
floating-point loads or stores). If the buffer includes an instruction with long latency,
it is possible (if a data dependency does not occur first) for issued instructions to
fill up the history buffer. If so, instruction issue halts until the long-latency operation
retires (along with any instructions following it that are ready to retire). Instructions
that can cause the history buffer to fill up include floating-point arithmetic instruc-
tions, integer divide instructions, and instructions that affect or use resources ex-
ternal to the processor (e.g., load/store instructions).

6.4 Implementation of Asynchronous Exceptions
When an enabled asynchronous exception is detected, the processor attempts to
retire as many instructions as possible. That is, all instructions that have completed
the writeback stage without generating exceptions are allowed to retire, provided
all instructions ahead of them in the history buffer have also completed the write-
back stage without generating exceptions.

ISSUED

HISTORY BUFFER QUEUE

QUEUE
HEAD

QUEUE
TAIL

RETIRED

COMPLETED INSTRUCTIONS
WRITE BACK

INSTRUCTIONS INSTRUCTIONS

HIST BUF Q BLOCK
 MOTOROLA EXCEPTIONS RCPU

6-8 Revised 1 February 1999 REFERENCE MANUAL

The asynchronous exception is then assigned to the instruction at the head of the
history buffer, which has not yet completed (otherwise, it would have been retired).
If this instruction is one of the following, it is allowed to complete execution and re-
tire:

• mtspr, mtmsr, or rfi instruction
• Memory reference that is already on the bus (other than a load or store multi-

ple or string instruction)
• Cache control instruction.

In this case, the exception is assigned to the next instruction in the history buffer.
Notice that if the instruction at the head of the history buffer generates an exception
before it retires, that exception is treated before the asynchronous exception.

If the instruction is not one of those listed above, it and all subsequent instructions
are flushed from the buffer as if they were never executed at all.

6.5 Recovery from Exceptions
The processor should always be able to recover from an ordered exception. Pro-
vided no machine state information is lost, the processor can recover from unor-
dered exceptions, except reset, as well.

6.5.1 Recovery from Ordered Exceptions
The RCPU can always recover from an ordered exception, provided the exception-
handling software follows proper procedures. Exception handlers must ensure that
no exception-generating instruction is executed during the prologue (before appro-
priate registers are saved) or epilogue (between restore of these registers and the
execution of the rfi instruction). Registers that need to be saved are the machine
status save/restore registers (SRR0 and SRR1) and, for certain exceptions, the
DAR (data address register) and DSISR (data storage interrupt status register).

Hardware automatically clears MSR[EE] during exception processing in order to
disable external and decrementer interrupts. If desired, the user can set this bit at
the end of the exception handler prologue, after saving the machine state. In this
case, the user must clear the bit (along with the RI bit) before the start of the ex-
ception handler epilog. Refer to 6.5.3 Commands to Alter MSR[EE] and MSR[RI]
for instructions on altering these bits.

6.5.2 Recovery from Unordered Exceptions
Unless it is in the process of saving or restoring machine state, the processor can
recover from the following unordered exceptions:

• Machine check
• Non-maskable external breakpoint
• Non-maskable internal instruction or data breakpoint

The RI bit (recoverable exception) in the MSR and its shadow in SRR1 enable an
exception handler to determine whether the processor can recover from an excep-
tion. During exception processing, the RI bit in the MSR is copied to SRR1; the bit
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-9

in the MSR is then cleared. Each exception handler should set the RI bit in the MSR
(using the mtmsr instruction) at the end of its prologue, after saving the program
state (SRR0, SRR1, and, in some cases, DSISR and DAR). At the start of its epi-
logue (before saving the machine state), each exception handler should clear the
RI bit in the MSR.

In this way, the exception handler for an unordered exception can read the RI bit
in SRR1 to determine whether the processor can recover from the exception. If the
exception occurs while the machine state is being saved or restored during the pro-
cessing of a previous exception, the RI bit in SRR1 will be cleared, indicating that
the processor cannot recover from the exception. If the exception occurs at any
other time, the RI bit in SRR1 will be set, indicating the processor can recover from
the exception.

In critical code sections where MSR[EE] is negated but SRR0 and SRR1 are not
busy, MSR[RI] should be left asserted. In these cases if an exception occurs,the
processor can be restarted.

6.5.3 Commands to Alter MSR[EE] and MSR[RI]
The processor includes special commands to facilitate the software manipulation
of the MSR[RI] and MSR[EE] bits. These commands are executed by issuing the
mtspr instruction with one of the pseudo-SPRs shown in Table 6-4. Writing any
data to one of these locations performs the operation specified in the table. A read
(mfspr) of any of these locations is treated as an unimplemented instruction, re-
sulting in a software emulation exception.

6.6 Exception Order and Priority
When multiple conditions that can cause an exception are present, the highest-pri-
ority exception is taken. Exceptions are roughly prioritized by exception class, as
follows:

Table 6-4 Manipulating EE and RI Bits

SPR #
(Decimal)

Mnemonic MSR[EE] MSR[RI] Use

80 EIE 1 1 External Interrupt Enable:
• End of exception handler’s prologue, to enable nested

external interrupts;
• End of critical code segment in which external interrupts

were disabled

81 EID 0 1 External Interrupt Disable, but other interrupts are
recoverable:
• End of exception handler’s prologue, to keep external

nested interrupts disabled;
• Start of critical code segment in which external interrupts

are disabled

82 NRI 0 0 Non-Recoverable Interrupt:
• Start of exception handler’s epilogue
 MOTOROLA EXCEPTIONS RCPU

6-10 Revised 1 February 1999 REFERENCE MANUAL

1. Asynchronous, non-maskable exceptions have priority over all other excep-
tions. These exceptions cannot be delayed and do not wait for the comple-
tion of any precise exception handling.

2. Synchronous exceptions are caused by instructions and are handled in
strict program order.

3. Asynchronous, maskable exceptions (external interrupt, decrementer ex-
ceptions, and maskable breakpoint exceptions) are delayed until exceptions
caused by the instruction at the head of the history buffer (after instructions
that have already completed have retired) are taken.

 The exceptions are listed in Table 6-5 in order of highest to lowest priority.

Table 6-5 Exception Priorities

Class Priority Exception

Asynchronous,
non-maskable

1 Non-maskable external breakpoint — This exception has the highest priority and is
taken immediately, regardless of other pending exceptions or whether the machine
state is recoverable.

2 Reset —The reset exception has the second-highest priority and is taken
immediately, regardless of other pending exceptions (except for the non-maskable
external breakpoint exception) or whether the machine state is recoverable.

Synchronous 3 Instruction dependent — When an instruction causes an exception, the exception
mechanism waits for any instructions prior to the exception instruction in the
instruction stream to execute. Any exceptions caused by these instructions are
handled first. It then generates the appropriate exception if no higher priority
exception exists when the exception is to be generated.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-11

6.7 Ordering of Synchronous, Precise Exceptions
Synchronous exceptions are handled in strict program order, even though instruc-
tions can execute and exceptions can be detected out of order. Therefore, before
the RCPU processes an instruction-caused exception, it executes all instructions
and handles any resulting exceptions that appear earlier in the instruction stream.

Only one synchronous, precise exception can be reported at a time. If single in-
structions generate multiple exception conditions, the processor handles the ex-
ception it encounters first; then the execution of the excepting instruction continues
until the next excepting condition is encountered. Table 6-6 lists the order in which
synchronous exceptions are detected.

Asynchronous,
maskable

4 Peripheral or external maskable breakpoint request — When this exception type
occurs, the processor retires as many instructions as possible (i.e., all instructions
that have completed the writeback stage without generating an instruction, provided
all instructions ahead of it in the history buffer have also completed the writeback
stage without generating an exception). Then, depending on the instruction
currently at the head of the history buffer, the processor either flushes the history
buffer or allows the instruction at the head of the buffer to retire before generating
an exception. Refer to 6.4 Implementation of Asynchronous Exceptions.

5 External interrupt — When this exception type occurs, the processor retires as
many instructions as possible (i.e., all instructions that have completed the
writeback stage without generating an instruction, provided all instructions ahead of
it in the history buffer have also completed the writeback stage without generating
an exception). Then, depending on the instruction currently at the head of the
history buffer, the processor either flushes the history buffer or allows the instruction
at the head of the buffer to retire before generating an exception (provided a higher
priority exception does not exist). Refer to 6.4 Implementation of Asynchronous
Exceptions. This exception is delayed if MSR[EE] is cleared.

6 Decrementer — This exception is the lowest priority exception. When this exception
type occurs, the processor retires as many instructions as possible (i.e., all
instructions that have completed the writeback stage without generating an
instruction, provided all instructions ahead of it in the history buffer have also
completed the writeback stage without generating an exception). Then, depending
on the instruction currently at the head of the history buffer, the processor either
flushes the history buffer or allows the instruction at the head of the buffer to retire
before generating an exception (provided a higher priority exception does not exist).
Refer to 6.4 Implementation of Asynchronous Exceptions. This exception is
delayed if MSR[EE] is cleared.

Table 6-5 Exception Priorities (Continued)

Class Priority Exception
 MOTOROLA EXCEPTIONS RCPU

6-12 Revised 1 February 1999 REFERENCE MANUAL

6.8 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRR0
and SRR1, to save the contents of the machine state register and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, SRR0 is set to point to the instruction at which instruc-
tion processing should resume when the exception handler returns control to the
interrupted process. All instructions in the program flow preceding this one will
have completed, and no subsequent instruction will have completed. The address
may be of the instruction that caused the exception or of the next one (as in the
case of a system call exception, for example). The instruction addressed can be
determined from the exception type and status bits.

SRR1 is a 32-bit register used to save machine status (the contents of the MSR)
on exceptions and to restore machine status when rfi is executed.

The data address register (DAR) is a 32-bit register used by alignment exceptions
to identify the address of a memory element.

Table 6-6 Detection Order of Synchronous Exceptions

Order of
Detection

Exception Type

1 Trace1

NOTES:
1. The trace mechanism is implemented by letting one instruction complete as if no trace

were enabled and then trapping the second instruction. Trace has the highest priority
of exceptions associated with this second instruction.

2 Machine check during instruction fetch

3 I-bus breakpoint

4 Software emulation exception

5 Floating-point unavailable

62

2. All of these cases are mutually exclusive for any one instruction.

Privileged instruction

Alignment exception

Floating-point enabled exception

System call

Trap

7 Floating-point assist exception detected by floating-point unit, or by
load/store unit during a store

8 Machine check during load or store

9 Floating-point assist exception detected by load/store unit during a
load

10 L-bus breakpoint
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-13

When an exception occurs, SRR1[0:15] are loaded with exception-specific infor-
mation and bits SRR1[16:31] are loaded with the corresponding bits of the MSR.
The machine state register is shown below.

*Reset value of this bit on value of internal data bus configuration word at reset. Refer to the System Interface Unit
Reference Manual (SIURM/AD).

Table 6-7 shows the bit definitions for the MSR.

MSR — Machine State Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED ILE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 RI LE

RESET:

0 0 0 U 0 0 0 0 0 * 0 0 0 0 0 0
 MOTOROLA EXCEPTIONS RCPU

6-14 Revised 1 February 1999 REFERENCE MANUAL

Table 6-7 Machine State Register Bit Settings

Bit(s) Name Description

[0:14] — Reserved

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to se-
lect the endian mode for the context established by the exception.

0 Processor runs in big-endian mode during exception processing.
1 Processor runs in little-endian mode during exception processing.

16 EE External interrupt enable

0 The processor delays recognition of external interrupts and decrementer exception condi-
tions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level

0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores and moves. Floating-point enabled program exceptions can still occur and
the FPRs can still be accessed.

1 The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME Machine check enable

0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 Floating-point exception mode 0 (See Table 6-8.)

21 SE Single-step trace enable

0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction. When this bit is set, the processor dispatches instructions in strict pro-
gram order. Successful execution means the instruction caused no other exception. Sin-
gle-step tracing may not be present on all implementations.

22 BE Branch trace enable

23 FE1 Floating-point exception mode 1 (See Table 6-8.)

24 — Reserved

25 IP Exception prefix. The setting of this bit determines the location of the exception vector table.

0 Exceptions are vectored to the physical address 0x0000 0000 plus vector offset.
1 Exceptions are vectored to the physical address 0xFFF0 0000 plus vector offset.

[26:29] — Reserved

30 RI Recoverable exception

0 Exception is not recoverable.
1 Exception is recoverable.

31 LE Little-endian mode

0 Processor operates in big-endian mode during normal processing.
1 Processor operates in little-endian mode during normal processing.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-15

MSR[16:31] are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered.

6.8.1 Enabling and Disabling Exceptions
When a condition exists that causes an exception to be generated, the processor
must determine whether the exception is enabled for that condition.

• Floating-point enabled exceptions (a type of program exception) can be dis-
abled by clearing both MSR[FE0] and MSR[FE1]. If either or both of these bits
are set, all floating-point exceptions are taken and cause a program excep-
tion. Bits in the FPSCR can enable and disable individual conditions that can
generate floating-point exceptions.

• External and decrementer interrupts are enabled by setting the MSR[EE] bit.
When MSR[EE] = 0, recognition of these exception conditions is delayed.
MSR[EE] is cleared automatically when an exception is taken to delay recog-
nition of conditions causing those exceptions.

• A machine check exception can only occur if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into
checkstop state when a machine-check exception condition occurs.

• System reset and non-maskable external breakpoint exceptions cannot be
masked.

• Internal data and instruction breakpoints are specified as maskable or non-
maskable by the BRKNOMSK bit in LCTRL2.

• Maskable internal (data and instruction) and external breakpoints are recog-
nized only when MSR[RI] = 1.

6.8.2 Steps for Exception Processing
After determining that the exception can be taken (by confirming that any instruc-
tion-caused exceptions occurring earlier in the instruction stream have been han-
dled, and by confirming that the exception is enabled for the exception condition),
the processor does the following:

1. Loads the machine status save/restore register 0 (SRR0) with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Loads SRR1[0:15] with information specific to the exception type.
3. Loads SRR1[16:31] with a copy of MSR[16:31].
4. Sets the MSR as described in Table 6-9. The new values take effect begin-

ning with the fetching of the first instruction of the exception-handler routine
located at the exception vector address.

Table 6-8 Floating-Point Exception Mode Bits

FE[0:1] Mode

00 Floating-point exceptions disabled

01, 10, 11 Floating-point precise mode
 MOTOROLA EXCEPTIONS RCPU

6-16 Revised 1 February 1999 REFERENCE MANUAL

5. Resumes fetching and executing instructions, using the new MSR value, at
a location specific to the exception type. The location is determined by add-
ing the exception’s vector (see Table 6-3) to the base address determined
by MSR[IP]. If IP is cleared, exceptions are vectored beginning at the phys-
ical address 0x0000 0000. If IP is set, exceptions are vectored beginning at
0xFFF0 0000. For a machine check exception that occurs when MSR[ME]
= 0 (machine check exceptions are disabled), the checkstop state is entered
(the machine stops executing instructions).

6. The lwarx and stwx instructions require special handling if a reservation is
still set when an exception occurs.

Table 6-9 shows the MSR bit settings when the processor changes to supervisor
mode.

6.8.3 DAR, DSISR, and BAR Operation
The load/store unit keeps track of all instructions and bus cycles. In case of a bus
error, the data address register (DAR) is loaded with the effective address (EA) of
the cycle. In case of a multi-cycle instruction, the effective address of the first of-
fending cycle is loaded.

The data storage and interrupt status register (DSISR) identifies the cause of the
error in case of an exception caused by a load or a store. The DSISR is loaded with
the instruction information as described in 6.11.4 Alignment Exception
(0x00600).

The breakpoint address register (BAR) indicates the address on which an L-bus
breakpoint occurs. For multi-cycle instructions, the BAR contains the address of
the first cycle associated with the breakpoint. The BAR has a valid value only when
a data breakpoint exception is taken; at all other times its value is boundedly unde-
fined.

Table 6-10 summarizes the values in DAR, BAR, and DSISR following an excep-
tion.

Table 6-9 MSR Setting Due to Excepti o

MSR Bit

Exception Type
EE
16

PR
17

FP
18

ME
19

FE0
20

SE
21

BE
22

FE1
23

IP
25

RI
30

LE
31

Reset 0 0 0 —1

NOTES:
1. — indicates that bit is not altered.

0 0 0 0 †2

2. Depends on value of internal data bus configuration word at reset.

0 0

All others 0 0 0 — 0 0 0 0 — 0 †3

3. Contains value of MSR[ILE] prior to exception.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-17

6.8.4 Returning from Supervisor Mode
The return from interrupt (rfi) instruction performs context synchronization by al-
lowing previously issued instructions to complete before returning to user mode.
Execution of the rfi instruction ensures the following:

• All previous instructions have been retired.
• Previous instructions complete execution in the context (privilege and protec-

tion) under which they were issued.
• The instructions following this instruction execute in the context established

by this instruction.

6.9 Process Switching
The operating system should execute the following when processes are switched:

• The sync instruction, to resolve any data dependencies between the process-
es and to synchronize the use of SPRs.

• The isync instruction, to ensure that undispatched instructions not in the new
process are not used by the new process.

• The stwcx. instruction, to clear any outstanding reservations, which ensures
that an lwarx instruction in the old process is not paired with an stwcx. in the
new process.

Note that if an exception handler is used to emulate an instruction that is not imple-
mented, the exception handler must report in SRR0 the EA computed by the in-
struction being emulated and not one used to emulate the instruction.

6.10 Exception Timing

Table 6-11 illustrates the significant events in exception processing.

Table 6-10 DAR, BAR, and DSISR Values in Exception Processing

Exception Type DAR Value DSISR Value BAR Value

Alignment exception Data EA Instruction information Undefined

L-bus breakpoint exception Unchanged Unchanged Cycle EA

Floating-Point Assist
Exception

Unchanged Unchanged Undefined

Machine-check exception Cycle EA Instruction information Undefined

Implementation-dependent
software emulation exception

Unchanged Unchanged Undefined

Floating-point unavailable
exception

Unchanged Unchanged Undefined

Program exception Unchanged Unchanged Unchanged
 MOTOROLA EXCEPTIONS RCPU

6-18 Revised 1 February 1999 REFERENCE MANUAL

At time-point A the excepting instruction issues and begins execution. During the
interval A-B previously issued instructions are finishing execution. The interval A-
B is equivalent to the time required for all instructions currently in progress to com-
plete, (i.e., the time to serialize the machine).

At time-point B the excepting instruction has reached the head of the history queue,
implying that all instructions preceding it in the code stream have finished execu-
tion without generating any exception. In addition, the excepting instruction itself
has completed execution. At this time the exception is recognized, and exception
processing begins. If at this point the instruction had not generated an exception,
it would have been retired.

During the interval B-D the machine state is being restored. This can take up to
three clock cycles.

At time-point C the processor starts fetching the first instruction of the exception
handler.

By time-point D the state of the machine prior to the issue of the excepting instruc-
tion has been restored. During interval D-E, the machine is saving context informa-
tion in SRR0 and SRR1, disabling interrupts, placing the machine in privileged
mode, and may continue the process of fetching the first instructions of the interrupt
handler from the vector table.

At time-point E the MSR and instruction pointer of the executing process have been
saved and control has been transferred to the exception handler routine.

The interval D-E requires a minimum of one clock cycle. The interval C-E depends
on the memory system. This interval is the time it takes to fetch the first instruction
of the exception handler. For a full history buffer, it is no less then two clocks.

Table 6-11 Exception Latency

Time Fetch Issue Instruction Complete Kill Pipeline

A Faulting instruction
issue

B Instruction complete and all
previous instructions
complete

Kill pipeline

C Start fetch
handler

D ≤ B + 3 clocks

E 1st instruction of
handler issued
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-19

6.11 Exception Definitions
The following paragraphs describe each type of exception supported by the RCPU.

6.11.1 Reset Exception (0x0100)
The reset exception is a non-maskable, asynchronous exception signaled to the
processor by the assertion of the internal reset input signal (RESET). The system
interface unit asserts this signal in response to either the assertion of the external
RESET pin or an internal reset request, such as from the software watchdog timer.
Refer to the System Interface Unit Reference Manual (SIURM/AD) for a description
of sources within the SIU that can cause the RESET input to the processor to be
asserted.

A reset operation should be performed on power-on to appropriately reset the pro-
cessor. The assertion of RESET causes the reset exception to be taken. The phys-
ical address of the handler is 0xFFF0 0100 or 0x0000 0100, depending on the
value of the internal data bus configuration word during reset. Refer to the System
Interface Unit Reference Manual (SIURM/AD) for additional information on the
data bus configuration word and system configuration during reset.

Table 6-12 shows the state of the machine just before it fetches the first instruction
after reset. Registers not listed are not affected by reset.

Table 6-12 Settings Caused by Reset

Register Setting

MSR IP depends on internal data bus configuration word
ME is unchanged
All other bits are cleared

SRR0 Undefined

SRR1 Undefined

FPECR 0x0000 0000

ICTRL 0x0000 0000

LCTRL1 0x0000 0000

LCTRL2 0x0000 0000

COUNTA[16:31] 0x0000 0000

COUNTB[16:31] 0x0000 0000

DMCR 0x0000 0000

DMMR[2,4,28:31] Set to one

ICCST 0x0000 0000

ICADR, ICDAT Undefined
 MOTOROLA EXCEPTIONS RCPU

6-20 Revised 1 February 1999 REFERENCE MANUAL

6.11.2 Machine Check Exception (0x00200)
The processor conditionally initiates a machine-check exception after detecting the
assertion of the TEA signal, indicating the occurrence of a bus error. The TEA sig-
nal can be asserted either externally (by an external device asserting the TEA pin),
or internally by the SIU chip-select logic. The processor receives notification of the
exception from either the I-bus (if the exception is caused during the instruction
phase) or the L-bus (if the exception is caused during the data phase).

Machine check exceptions are unordered. The machine-state exception handler
must read the SRR1[RI] bit to determine whether the processor can recover from
a machine-check exception. For additional information, refer to 6.5.2 Recovery
from Unordered Exceptions.

A machine-check exception is assumed to be caused by one of the following con-
ditions:

• The accessed address does not exist.
• A data error was detected.
• A storage protection violation was detected by chip-select logic (either on-chip

or external).
When a machine-check exception occurs, the processor does one of the following:

• Takes a machine check exception;
• Enters the checkstop state; or
• Enters debug mode.

Which action is taken depends on the value of the MSR[ME] bit, whether or not de-
bug mode was enabled at reset, and (if debug mode is enabled) the values of the
CHSTPE (checkstop enable) and MCIE (machine check enable) bits in the debug
enable register (DER). Table 6-13 summarizes the possibilities.

6.11.2.1 Machine Check Exception Enabled
A machine check exception is taken when MSR[ME] is set and either debug mode
is disabled or DER[MCIE] is cleared. When a machine check exception is taken,
registers are updated as shown in Table 6-14.

Table 6-13 Machine Check Exception Processor Actions

MSR[ME] Debug Mode
Enable

CHSTPE MCIE Action Performed when Exception
Detected

0 0 X X Enter checkstop state

1 0 X X Branch to machine-check exception handler

0 1 0 X Enter checkstop state

0 1 1 X Enter debug mode

1 1 X 0 Branch to machine-check exception handler

1 1 X 1 Enter debug mode
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-21

When a machine check exception is taken, instruction execution resumes at offset
0x00200 from the physical base address indicated by MSR[IP].

6.11.2.2 Checkstop State
The processor enters the checkstop state when a machine check exception oc-
curs, MSR[ME] equals zero, and either debug mode is disabled or DER[CHSTPE]
is cleared. When the processor is in the checkstop state, instruction processing is
suspended and generally cannot be restarted without resetting the processor. The
contents of all latches (except any associated with the bus clock) are frozen within
two cycles upon entering checkstop state so that the state of the processor can be
analyzed.

6.11.2.3 Machine-Check Exceptions and Debug Mode
The processor enters debug mode when a machine check exception occurs, de-
bug mode is enabled, and either MSR[ME] = 0 and DER[CHSTPE] = 1, or
MSR[ME] = 1 and DER[MCIE] = 1. Refer to SECTION 8 DEVELOPMENT SUP-
PORT for more information.

6.11.3 External Interrupt (0x00500)
The interrupt controller in the on-chip peripheral control unit signals an external in-
terrupt by asserting the IRQ input to the processor. The interrupt may be caused
by the assertion of an external IRQ pin, by the periodic interrupt timer, or by an on-
chip peripheral. Refer to System Interface Unit Reference Manual (SIURM/AD) for
more information on the interrupt controller.

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE]

Table 6-14 Register Settings Following a Machine Check Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the interrupt.

SRR1 0 Cleared
1 Set for instruction-fetch related errors, cleared for load-store related errors
[2:15] Cleared
[16:31] Loaded from MSR[16:31].

MSR IP No change
ME Cleared to zero
LE Set to value of ILE bit prior to the exception
Other bits Cleared

DSISR (L-bus case
only)

[15:16] Set to bits [29:30] of the instruction if X-form
Set to 0b00 if D-form

17 Set to bit 25 of the instruction if X-form
Set to bit 5 of the instruction if D-form

[22:31] Set to bits [6:15] of the instruction

DAR (L-bus case
only)

Set to the effective address of the data access that caused the exception.
 MOTOROLA EXCEPTIONS RCPU

6-22 Revised 1 February 1999 REFERENCE MANUAL

bit is cleared when the exception occurs. MSR[EE] is automatically cleared by
hardware to disable external interrupts when any exception is taken.

Upon detecting an external interrupt, the processor assigns it to the instruction at
the head of the history buffer (after retiring all instructions that are ready to retire).
Refer to 6.4 Implementation of Asynchronous Exceptions for more information.

The register settings for the external interrupt exception are shown in Table 6-15.

When an external interrupt is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

6.11.4 Alignment Exception (0x00600)

The following conditions cause an alignment exception:

• The operand of a floating-point load or store instruction is not word-aligned.
• The operand of a load or store multiple instruction is not word-aligned.
• The operand of lwarx or stwcx. is not word-aligned.
• The operand of a load or store instruction is not naturally aligned, and

MSR[LE] = 1 (little-endian mode).
• The processor attempts to execute a multiple or string instruction when

MSR[LE] = 1 (little-endian mode).

Alignment exceptions use the SRR0 and SRR1 to save the machine state and the
DSISR to determine the source of the exception.

The register settings for alignment exceptions are shown in Table 6-16.

Table 6-15 Register Settings Following External Interrupt

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.

SRR1 [0:15] Cleared
[16:31] Loaded from bits [16:31] of the MSR

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-23

When an alignment exception is taken, instruction execution resumes at offset
0x00600 from the physical base address indicated by MSR[IP].

6.11.4.1 Interpretation of the DSISR as Set by an Alignment Exception
For most alignment exceptions, an exception handler may be designed to emulate
the instruction that causes the exception. To do this, it needs the following charac-
teristics of the instruction:

• Load or store
• Length (half word, word, or double word)
• String, multiple, or normal load/store

Table 6-16 Register Settings for Alignment Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 [0:15] Cleared
[16:31] Loaded from MSR[16:31]

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared

DSISR [0:11] Cleared
[12:13] Cleared
14 Cleared
[15:16] For instructions that use register indirect with index addressing,

set to bits [29:30] of the instruction.
For instructions that use register indirect with immediate index
addressing, cleared.

17 For instructions that use register indirect with index addressing,
set to bit 25 of the instruction.
For instructions that use register indirect with immediate index
addressing, set to bit 5 of the instruction.

[18:21] For instructions that use register indirect with index addressing,
set to bits [21:24] of the instruction.
For instructions that use register indirect with immediate index
addressing, set to bits [1:4] of the instruction.

[22:26] Set to bits [6:10] (source or destination) of the instruction.
[27:31] Set to bits [11:15] of the instruction (rA).

Set to either bits [11:15] of the instruction or to any register
number not in the range of registers loaded by a valid for
instruction, for lmw, lswi, and lswx instructions. Otherwise
undefined.

Note that for load or store instructions that use register indirect with index
addressing, the DSISR can be set to the same value that would have resulted
if the corresponding instruction uses register indirect with immediate index
addressing had caused the exception. Similarly, for load or store instructions
that use register indirect with immediate index addressing, DSISR can hold a
value that would have resulted from an instruction that uses register indirect
with index addressing. (If there is no corresponding instruction, no alternative
value can be specified.)
 MOTOROLA EXCEPTIONS RCPU

6-24 Revised 1 February 1999 REFERENCE MANUAL

• Integer or floating-point
• Whether the instruction performs update
• Whether the instruction performs byte reversal

The PowerPC architecture provides this information implicitly, by setting opcode
bits in the DSISR that identify the excepting instruction type. The exception handler
does not need to load the excepting instruction from memory. The mapping for all
exception possibilities is unique except for the few exceptions discussed below.

Table 6-17 shows how the DSISR bits identify the instruction that caused the ex-
ception.

Table 6-17 DSISR[15:21] Settings

DSISR[15:21] Instruction

00 0 0000 lwarx, lwz, reserved
1

00 0 0010 stw

00 0 0100 lhz

00 0 0101 lha

00 0 0110 sth

00 0 0111 lmw

00 0 1000 lfs

00 0 1001 lfd

00 0 1010 stfs

00 0 1011 stfd

00 1 0000 lwzu

00 1 0010 stwu

00 1 0100 lhzu

00 1 0101 lhau

00 1 0110 sthu

00 1 0111 stmw

00 1 1000 lfsu

00 1 1001 lfdu

00 1 1010 stfsu

00 1 1011 stfdu

01 0 1000 lswx

01 0 1001 lswi

01 0 1010 stswx
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-25

6.11.5 Program Exception (0x00700)
A program exception occurs when no higher priority exception exists and one or
more of the following exception conditions, which correspond to bit settings in

01 0 1011 stswi

01 1 0101 lwaux

10 0 0010 stwcx.

10 0 1000 lwbrx

10 0 1010 stwbrx

10 0 1100 lhbrx

10 0 1110 sthbrx

11 0 0000 lwzx

11 0 0010 stwx

11 0 0100 lhzx

11 0 0101 lhax

11 0 0110 sthx

11 0 1000 lfsx

11 0 1001 lfdx

11 0 1010 stfsx

11 0 1011 stfdx

11 1 0000 lwzux

11 1 0010 stwux

11 1 0100 lhzux

11 1 0101 lhaux

11 1 0110 sthux

11 1 1000 lfsux

11 1 1001 lfdux

11 1 1010 stfsux

11 1 1011 stfdux

NOTES:
1. The instructions lwz and lwarx give the same DSISR bits (all zero). But if

lwarx causes an alignment exception, it is an invalid form, so it need not
be emulated in any precise way. It is adequate for the alignment exception
handler to simply emulate the instruction as if it were an lwz. It is important
that the emulator use the address in the DAR, rather than computing it
from rA/rB/D, because lwz and lwarx use different addressing modes.

Table 6-17 DSISR[15:21] Settings (Continued)

DSISR[15:21] Instruction
 MOTOROLA EXCEPTIONS RCPU

6-26 Revised 1 February 1999 REFERENCE MANUAL

SRR1, occur during execution of an instruction:

• System floating-point enabled exception — A system floating-point enabled
exception is generated when the following condition is met as a result of a
move to FPSCR instruction, move to MSR (mtmsr) instruction, or return from
interrupt (rfi) instruction:

(MSR[FE0] | MSR[FE1]) & FPSCR[FEX] = 1.

Notice that in the RCPU implementation of the PowerPC architecture, a pro-
gram interrupt is not generated by a floating-point arithmetic instruction that
results in the condition shown above; a floating-point assist exception is gen-
erated instead.

• Privileged instruction — A privileged instruction type program exception is
generated by any of the following conditions:
— The execution of a privileged instruction (mfmsr, mtmsr, or rfi) is attempt-

ed and the processor is operating at the user privilege level (MSR[PR] =
1).

— The execution of mtspr or mfspr where SPR0 = 1 in the instruction encod-
ing (indicating a supervisor-access register) and MSR[PR] = 1 (indicating
the processor is operating at the user privilege level), provided the SPR
instruction field encoding represents either:
• a valid internal-to-the-processor special-purpose register; or
• an external-to-the-processor special-purpose register (either valid or in-

valid).
— Refer to 7.5 Implementation of Special-Purpose Registers for a discus-

sion of internal- and external-to-the-processor SPRs.
• Trap — A trap type program exception is generated when any of the condi-

tions specified in a trap instruction is met. Trap instructions are described in
SECTION 4 ADDRESSING MODES AND INSTRUCTION SET SUMMARY.

Notice that, in contrast to some other PowerPC processors, the RCPU generates
a software emulation exception, rather than a program exception, when an attempt
is made to execute any unimplemented instruction. This includes all illegal instruc-
tions and optional instructions not implemented in the RCPU.

The register settings are shown in Table 6-18.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-27

When a program exception is taken, instruction execution resumes at offset
0x00700 from the physical base address indicated by MSR[IP].

6.11.6 Floating-Point Unavailable Exception (0x00800)
A floating-point unavailable exception occurs when no higher priority exception ex-
ists, an attempt is made to execute a floating-point instruction (including floating-
point load, store, and move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0).

The register settings for floating-point unavailable exceptions are shown in Table
6-19.

When a floating-point unavailable exception is taken, instruction execution re-
sumes at offset 0x00800 from the physical base address indicated by MSR[IP].

Table 6-18 Register Settings Following Program Exception

Register Setting Description

SRR0 Contains the effective address of the excepting instruction

SRR1 [0:10] Cleared
11 Set for a floating-point enabled program exception; otherwise cleared.
12 Cleared.
13 Set for a privileged instruction program exception; otherwise cleared.
14 Set for a trap program exception; otherwise cleared.
15 Cleared if SRR0 contains the address of the instruction causing the exception, and set if

SRR0 contains the address of a subsequent instruction.
[16:31] Loaded from MSR[16:31].

Note that only one of bits 11, 13, and 14 can be set.

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero

Table 6-19 Register Settings Following a Floating-Point Unavailable Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 [0:15] Cleared
[16:31] Loaded from MSR[16:31]

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared
 MOTOROLA EXCEPTIONS RCPU

6-28 Revised 1 February 1999 REFERENCE MANUAL

6.11.7 Decrementer Exception (0x00900)
A decrementer exception occurs when no higher priority exception exists, the dec-
rementer register has completed decrementing, and MSR[EE] = 1. The decrement-
er exception request is canceled when the exception is handled. The decrementer
register counts down, causing an exception (unless masked) when passing
through zero. The decrementer implementation meets the following requirements:

• Loading a GPR from the decrementer does not affect the decrementer.
• Storing a GPR value to the decrementer replaces the value in the decrementer

with the value in the GPR.
• Whenever bit 0 of the decrementer changes from zero to one, an exception

request is signaled. If multiple decrementer exception requests are received
before the first can be reported, only one exception is reported. The occur-
rence of a decrementer exception cancels the request.

• If the decrementer is altered by software and if bit 0 is changed from zero to
one, an interrupt request is signaled.

The register settings for the decrementer exception are shown in Table 6-20.

When a decrementer exception is taken, instruction execution resumes at offset
0x00900 from the physical base address indicated by MSR[IP].

6.11.8 System Call Exception (0x00C00)
A system call exception occurs when a system call instruction is executed. The ef-
fective address of the instruction following the sc instruction is placed into SRR0.
MSR[16:31] are placed into SRR1[16:31], and SRR1[0:15] are set to undefined
values. Then a system call exception is generated.

The system call instruction is context synchronizing. That is, when a system call
exception occurs, instruction dispatch is halted and the following synchronization
is performed:

1. The exception mechanism waits for all instructions in execution to complete
to a point where they report all exceptions they will cause.

2. The processor ensures that all instructions in execution complete in the con-
text in which they began execution.

Table 6-20 Register Settings Following a Decrementer Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 [0:15] Cleared
[16:31] Loaded from MSR[16:31]

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-29

3. Instructions dispatched after the exception is processed are fetched and ex-
ecuted in the context established by the exception mechanism.

Register settings are shown in Table 6-22.

When a system call exception is taken, instruction execution resumes at offset
0x00C00 from the physical base address indicated by MSR[IP].

6.11.9 Trace Exception (0x00D00)
A trace exception occurs if MSR[SE] = 1 and any instruction other than rfi is suc-
cessfully completed, or if MSR[BE] = 1 and a branch is completed. Notice that the
trace exception does not occur after an instruction that causes an exception.

A monitor or debugger software needs to change the vectors of other possible ex-
ception addresses in order to single-step such instructions. If this is not desirable,
other debugging features can be used. Refer to SECTION 8 DEVELOPMENT
SUPPORT for more information.

Register settings are shown in Table 6-22.

When a trace exception is taken, execution resumes at offset 0x00D00 from the
base address indicated by MSR[IP].

Table 6-21 Register Settings Following a System Call Exception

Register Setting Description

SRR0 Set to the effective address of the instruction following the System Call instruction

SRR1 [0:15] Undefined
[16:31] Loaded from MSR[16:31]

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero

Table 6-22 Register Settings Following a Trace Exception

Register Setting Description

SRR0 Set to the effective address of the instruction following the executed instruction

SRR1 [0:15] Cleared to zero
[16:31] Loaded from MSR[16:31]

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero
 MOTOROLA EXCEPTIONS RCPU

6-30 Revised 1 February 1999 REFERENCE MANUAL

6.11.10 Floating-Point Assist Exception (0x00E00)
A floating point assist exception occurs in the following cases:

• When the following conditions are true:
— A floating-point enabled exception condition is detected;
— the corresponding floating-point enable bit in the FPSCR (floating point sta-

tus and control register) is set (exception enabled); and
— MSR[FE0] | MSR[FE1] = 1
These conditions are summarized in the following equation:

(MSR[FE0] | MSR[FE1]) &FPSCR[FEX] = 1

Note that when ((MSR[FE0] | MSR[FE1]) &FPSCR[FEX]) is set as a result of
move to FPSCR, move to MSR or rfi, a program exception is generated, rath-
er than a floating-point assist exception.

• When a tiny result is detected and the floating point underflow exception is dis-
abled (FPSCR[UE] = 0)

• In some cases when at least one of the source operands is denormalized (re-
fer to 6.11.10.2 Floating-Point Assist for Denormalized Operands)

The register settings for floating-point assist exceptions are shown in Table 6-22.
In addition, floating-point enabled exceptions affect the FPSCR as shown in Table
6-26.

When a floating-point assist exception is taken, execution resumes at offset
0x00E00 from the base address indicated by MSR[IP].

6.11.10.1 Floating-Point Software Envelope
The floating-point assist software envelope is an exception handler for floating-
point assist exceptions. Use of this exception handler guarantees that results of
floating-point operations are in compliance with IEEE standards.

In most cases, floating-point operations are implemented in hardware in the RCPU.
For cases in which the hardware needs software assistance, the software enve-
lope emulates the instruction using a special synchronized ignore exceptions (SIE)
hardware mode. This mode is useful only for emulating an instruction executed in
the floating-point unit, not an instruction executed by the load/store unit. SIE mode

Table 6-23 Register Settings Following a Floating-Point Assist Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1 [0:15] Cleared to zero
[16:31] Loaded from bits [16:31] of the MSR

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-31

is described in 6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode.

Execution of floating-point instructions is illustrated in Figure 6-2. This process
shows the execution of all floating-point instructions except the floating-point move
to FPSCR type instructions.

Figure 6-2 RCPU Floating-Point Architecture

6.11.10.2 Floating-Point Assist for Denormalized Operands
When a denormalized operand is detected there are some cases in which the pro-
cessor needs the assistance of the software to perform the operation. In these
cases the software envelope is invoked. Table 6-24 summarizes the hardware/
software partitioning in handling denormalized operands in the input stage of the
execution units. The ranges referred to in the table are defined in Figure 6-3.

 USER
PROGRAM

USER EXCEPTION HANDLER

PTEC HARDWARE

(REGULAR OPERATION)

FPSCR

ENABLED

FPSCR

VXIMZ

VXCVI
FPCC

VXSQRT
FI FR
C VXVC

VXZDZ
VXIDI
VXISI

VXSNAN

OX
XX
UX

ZX

VX
FEX
FX

FPSCR

F
P

E
C

R

FI

FR
C
UX
FX

FPCC

SOFTWARE ENVELOPE

IEEE
RESULT

INTERRUPT

IEEE

RESULT

RESULT

RESULT

 FLOATING POINT UNIT
(REGULAR OPERATION)

 FLOATING POINT UNIT

(SIE MODE OPERATION)

RESULTT
R

D
N

A
D

N
B

D
N

C

EXCEPTION

FR FI

CPU FP ARCH
 MOTOROLA EXCEPTIONS RCPU

6-32 Revised 1 February 1999 REFERENCE MANUAL

Figure 6-3 Real Numbers Axis for Denormalized Operands

Table 6-24 Software/Hardware Partitioning in Operands Treatment

Instruction Range B Range C Range D Range E Range F

Load single NA NA Floating-Point
Assist

Hardware NA

Load double Hardware Hardware Hardware Hardware Hardware

Store single Programming
error1

NOTES:
1. The results in all cases of programming errors are boundedly undefined.

Programming
error1

Floating-Point
Assist

Hardware2

2. When used by a single precision instruction, generates correct result only if bits [35:63] of the operand equal
zero, otherwise it is a programming error.

Programming
error

Store double Hardware Hardware Hardware Hardware Hardware

FP arithmetic &
Multiply-add single

Programming
error1

Programming
error1

Hardware2 Hardware2 Programming
error1

FP arithmetic &
Multiply-add double

Floating-Point
Assist

Hardware Hardware Hardware Hardware

Round to single Floating-Point
Assist

Hardware3

3. Since the result is tiny, a floating-point assist exception is taken at the end of instruction execution.

Hardware3 Hardware Hardware

FP compare, FP
move, convert to
integer & FPSCR
instr.

Hardware Hardware Hardware Hardware Hardware

MAX DPMAX SP

+0 2-1074 2-1022 2-150 2-126 2128-1 21024-1

MIN SPMIN DP

DOUBLE SINGLE SINGLE

DOUBLE NORMALIZED

SINGLE PRECISION RANGE

DOUBLE PRECISION RANGE

+•

A B C D E F G

DENORM DENORM NORMALIZED

DENORM OPER REAL NU
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-33

6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode
The software envelope uses SIE mode to emulate instructions executed by the
floating-point unit. (This mode is not used to emulate floating-point instructions
executed by the load/store unit.) In SIE mode the floating-point unit does the
following:

• Re-executes the instruction (without generating a floating-point assist excep-
tion a second time)

• Generates default results in hardware
• Updates the FPSCR
• Updates the floating-point exceptions cause register (FPECR).

The FPECR is a special-purpose register used by the software envelope. It con-
tains four status bits indicating whether the result of the operation is tiny and wheth-
er any of three source operands are denormalized. In addition, it contains one
control bit to enable or disable SIE mode. This register must not be accessed by
user code. Refer to 6.11.10.4 Floating-Point Exception Cause Register for more
information.

If as a result of the operation performed in SIE mode, ((MSR[FE0] | MSR[FEf1]) &
FPSCR[FEX]) is set, a program exception is taken. It is the responsibility of the
software envelope to make sure that when executing an instruction in SIE mode
((MSR[FE0] | MSR[FE1]) = 0).

Except when the result is tiny or when denormalized operands are detected, the
results generated by the hardware in SIE mode are practically all that is needed in
order to complete the operation according to the IEEE standard. Therefore, in most
cases after executing the instruction in SIE mode all that is needed by the software
is to issue rfi. Upon execution of the rfi, the hardware restores the previous value
of the MSR, as it was saved in SRR1. If as a result ((MSR[FE0] | MSR[FE1]) &
FPSCR[FEX]) is set, a program exception is generated.

When the result is tiny and the floating-point underflow exception is disabled
(FPSCR[UE] = 0), the hardware in SIE mode delivers the same result as when the
exception is enabled (FPSCR[UE] = 1), (i.e., rounded mantissa with exponent ad-
justed by adding 192 for single precision or 1536 for double precision). This inter-
mediate result simplifies the task of the emulation routine that finishes the
instruction execution and delivers the correct IEEE result. In this case the software
envelope is responsible for updating the floating-point underflow exception bit
(FPSCR[UX]) as well.

When at least one of the source operands is denormalized and the hardware can
not complete the operation, the destination register value is unchanged. In this
case, the software emulation routine must execute the instruction in software, de-
liver the result to the destination register, and update the FPSCR.

6.11.10.4 Floating-Point Exception Cause Register
The FPECR is a special-purpose register used by the software envelope. It con-
 MOTOROLA EXCEPTIONS RCPU

6-34 Revised 1 February 1999 REFERENCE MANUAL

tains four status bits indicating whether the result of the operation is tiny and wheth-
er any of three source operands are denormalized. In addition, it contains one
control bit to enable or disable SIE mode. This register must not be accessed by
user code.

A listing of FPECR bit settings is shown in Table 6-26.

NOTE
Software must insert a sync instruction before reading the FPECR.

FPECR — Floating-Point Exception Cause Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIE RESERVED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED DNC DNB DNA TR

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6-25 FPECR Bit Settings

Bit(s) Name Description

0 SIE SIE mode control bit

0 Disable SIE mode
1 Enable SIE mode

[1:27] — Reserved

28 DNC Source operand C denormalized status bit

0 Source operand C is not denormalized
1 Source operand C is denormalized

29 DNB Source operand B denormalized status bit

0 Source operand B is not denormalized
1 Source operand B is denormalized

30 DNA Source operand A denormalized status bit

0 Source operand A is not denormalized
1 Source operand A is denormalized

31 TR Floating-point tiny result

0 Floating-point result is not tiny
1 Floating-point result is tiny
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-35

6.11.10.5 Floating-Point Enabled Exceptions
Floating-point exceptions are signaled by condition bits set in the floating-point sta-
tus and control register (FPSCR). They can cause the system floating-point en-
abled exception error handler to be invoked. All floating-point exceptions are
handled precisely. The FPSCR is shown below.

A listing of FPSCR bit settings is shown in Table 6-26.

FPSCR — Floating-Point Status and Control Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FX FEX VX OX UX ZX XX VXS-
NAN

VXISI VXIDI VXZD
Z

VXIMZ VXVC FR FI FPRF
0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FPRF[16:19] 0 VX-
SOFT

VX-
SQRT

VXCVI VE OE UE ZE XE NI RN

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6-26 FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary (FX). Every floating-point instruction implicitly sets FP-
SCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to
change from zero to one. The mcrfs instruction implicitly clears FPSCR[FX] if the FPSCR field
containing FPSCR[FX] is copied. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions can set
or clear FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary (FEX). This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits masked
with their respective enable bits. The mcrfs instruction implicitly clears FPSCR[FEX] if the re-
sult of the logical OR described above becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1
instructions cannot set or clear FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary (VX). This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrfs instruction implicitly clears FPSCR[VX] if the result of the logical OR described above
becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot set or clear FP-
SCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception (OX). This is a sticky bit. See 6.11.10.8 Overflow Exception
Condition.

4 UX Floating-point underflow exception (UX). This is a sticky bit. See 6.11.10.9 Underflow Excep-
tion Condition.
 MOTOROLA EXCEPTIONS RCPU

6-36 Revised 1 February 1999 REFERENCE MANUAL

5 ZX Floating-point zero divide exception (ZX). This is a sticky bit. See 6.11.10.7 Zero Divide Ex-
ception Condition.

6 XX Floating-point inexact exception (XX). This is a sticky bit. See 6.11.10.10 Inexact Exception
Condition.

7 VXSNAN Floating-point invalid operation exception for SNaN (VXSNAN). This is a sticky bit. See
6.11.10.6 Invalid Operation Exception Conditions.

8 VXISI Floating-point invalid operation exception for ×-× (VXISI). This is a sticky bit. See 6.11.10.6 In-
valid Operation Exception Conditions.

9 VXIDI Floating-point invalid operation exception for ×/× (VXIDI). This is a sticky bit. See 6.11.10.6 In-
valid Operation Exception Conditions.

10 VXZDZ Floating-point invalid operation exception for 0/0 (VXZDZ). This is a sticky bit. See 6.11.10.6
Invalid Operation Exception Conditions.

11 VXIMZ Floating-point invalid operation exception for ×*0 (VXIMZ). This is a sticky bit. See 6.11.10.6
Invalid Operation Exception Conditions.

12 VXVC Floating-point invalid operation exception for invalid compare (VXVC). This is a sticky bit. See
6.11.10.6 Invalid Operation Exception Conditions.

13 FR Floating-point fraction rounded (FR). The last floating-point instruction that potentially rounded
the intermediate result incremented the fraction. (See 3.3.11 Rounding.) This bit is not sticky.

14 FI Floating-point fraction inexact (FI). The last floating-point instruction that potentially rounded
the intermediate result produced an inexact fraction or a disabled exponent overflow. (See
3.3.11 Rounding.) This bit is not sticky.

[15:19
]

FPRF Floating-point result flags (FPRF). This field is based on the value placed into the target register
even if that value is undefined. Refer to Table 6-27 for specific bit settings.
15 Floating-point result class descriptor (C). Floating-point instructions other than the

compare instructions may set this bit with the FPCC bits, to indicate the class of
the result.

[16:19] Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Other
floating-point instructions may set the FPCC bits with the C bit, to indicate the class
of the result. Note that in this case the high-order three bits of the FPCC retain their
relational significance indicating that the value is less than, greater than, or equal
to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or?)

20 — Reserved

21 VXSOFT Floating-point invalid operation exception for software request (VXSOFT). This bit can be al-
tered only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. The purpose of VX-
SOFT is to allow software to cause an invalid operation condition for a condition that is not
necessarily associated with the execution of a floating-point instruction. For example, it might
be set by a program that computes a square root if the source operand is negative. This is a
sticky bit. See 6.11.10.6 Invalid Operation Exception Conditions.

22 VXSQRT Floating-point invalid operation exception for invalid square root (VXSQRT). This is a sticky bit.
This guarantees that software can simulate fsqrt and frsqrte, and to provide a consistent in-
terface to handle exceptions caused by square-root operations. See 6.11.10.6 Invalid Opera-
tion Exception Conditions.

Table 6-26 FPSCR Bit Settings (Continued)

Bit(s) Name Description
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-37

Table 6-27 illustrates the floating-point result flags that correspond to FP-
SCR[15:19].

The following conditions cause floating-point assist exceptions when the corre-
sponding enable bit in the FPSCR is set and the FE field in the MSR has a nonzero
value (enabling floating-point exceptions). These conditions may occur during ex-
ecution of floating-point arithmetic instructions. The corresponding status bits in the
FPSCR are indicated in parentheses.

23 VXCVI Floating-point invalid operation exception for invalid integer convert (VXCVI). This is a sticky
bit. See 6.11.10.6 Invalid Operation Exception Conditions.

24 VE Floating-point invalid operation exception enable (VE). See 6.11.10.6 Invalid Operation Ex-
ception Conditions.

25 OE Floating-point overflow exception enable (OE). See 6.11.10.8 Overflow Exception Condition.

26 UE Floating-point underflow exception enable (UE). This bit should not be used to determine
whether denormalization should be performed on floating-point stores. See 6.11.10.9 Under-
flow Exception Condition.

27 ZE Floating-point zero divide exception enable (ZE). See 6.11.10.7 Zero Divide Exception Con-
dition.

28 XE Floating-point inexact exception enable (XE). See 6.11.10.10 Inexact Exception Condition .

29 NI Non-IEEE mode bit. See 3.4.3 Non-IEEE Operation.

[30:31
]

RN Floating-point rounding control (RN). See 3.3.11 Rounding.
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity

Table 6-27 Floating-Point Result Flags in FPSCR

Result Flags
FPSCR[15:19]

C<>=?

Result Value Class

10001 Quiet NaN

01001 –Infinity

01000 –Normalized number

11000 –Denormalized number

10010 –Zero

00010 + Zero

10100 + Denormalized number

00100 +Normalized number

00101 +Infinity

Table 6-26 FPSCR Bit Settings (Continued)

Bit(s) Name Description
 MOTOROLA EXCEPTIONS RCPU

6-38 Revised 1 February 1999 REFERENCE MANUAL

• Invalid floating-point operation exception condition (VX)
— SNaN condition (VXSNAN)
— Infinity–infinity condition (VXISI)
— Infinity/infinity condition (VXIDI)
— Zero/zero condition (VXZDZ)
— Infinity*zero condition (VXIMZ)
— Illegal compare condition (VXVC)
These exception conditions are described in 6.11.10.6 Invalid Operation Ex-
ception Conditions.

• Software request condition (VXSOFT). These exception conditions are de-
scribed in 6.11.10.6 Invalid Operation Exception Conditions.

• Illegal integer convert condition (VXCVI). These exception conditions are de-
scribed in 6.11.10.6 Invalid Operation Exception Conditions.

• Zero divide exception condition (ZX). These exception conditions are de-
scribed in 6.11.10.7 Zero Divide Exception Condition.

• Overflow Exception Condition (OX). These exception conditions are described
in 6.11.10.8 Overflow Exception Condition.

• Underflow Exception Condition (UX). These exception conditions are de-
scribed in 6.11.10.9 Underflow Exception Condition.

• Inexact Exception Condition (XX). These exception conditions are described
in 6.11.10.10 Inexact Exception Condition.

Each floating-point exception condition and each category of illegal floating-point
operation exception condition have a corresponding exception bit in the FPSCR. In
addition, each floating-point exception has a corresponding enable bit in the
FPSCR. The exception bit indicates the occurrence of the corresponding condition.
If a floating-point exception occurs, the corresponding enable bit governs the result
produced by the instruction and, in conjunction with bits FE0 and FE1, whether and
how the system floating-point enabled exception error handler is invoked. (The “en-
abling” specified by the enable bit is of invoking the system error handler, not of
permitting the exception condition to occur. The occurrence of an exception condi-
tion depends only on the instruction and its inputs, not on the setting of any control
bits.)

The floating-point exception summary bit (FX) in the FPSCR is set when any of the
exception condition bits transitions from a zero to a one or when explicitly set by
software. The floating-point enabled exception summary bit (FEX) in the FPSCR is
set when any of the exception condition bits is set and the exception is enabled (en-
able bit is one).

A single instruction may set more than one exception condition bit in the following
cases:

• The inexact exception condition bit may be set with overflow exception condi-
tion.

• The inexact exception condition bit may be set with underflow exception con-
dition.

• The illegal floating-point operation exception condition bit (SNaN) may be set
with illegal floating-point operation exception condition (×*0) for multiply-add
instructions.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-39

• The illegal operation exception condition bit (SNaN) may be set with illegal
floating-point operation exception condition (illegal compare) for compare or-
dered instructions.

• The illegal floating-point operation exception condition bit (SNaN) may be set
with illegal floating-point operation exception condition (illegal integer convert)
for convert to integer instructions.

When an exception occurs, the instruction execution may be suppressed or a result
may be delivered, depending on the exception condition.

Instruction execution is suppressed for the following kinds of exception conditions,
so that there is no possibility that one of the operands is lost:

• Enabled illegal floating-point operation
• Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written
to the destination specified by the instruction causing the exception. The result may
be a different value for the enabled and disabled conditions for some of these ex-
ception conditions. The kinds of exception conditions that deliver a result are the
following:

• Disabled illegal floating-point operation
• Disabled zero divide
• Disabled overflow
• Disabled underflow
• Disabled inexact
• Enabled overflow
• Enabled underflow
• Enabled inexact

Subsequent sections define each of the floating-point exception conditions and
specify the action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps
and trap handlers. In the PowerPC architecture, setting an FPSCR exception en-
able bit causes generation of the result value specified in the IEEE standard for the
trap enabled case — the expectation is that the exception is detected by software,
which will revise the result. An FPSCR exception enable bit of zero causes gener-
ation of the default result value specified for the trap disabled (or no trap occurs or
trap is not implemented) case — the expectation is that the exception will not be
detected by software, which will simply use the default result. The result to be de-
livered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a de-
fault value and not to notify software, is obtained by clearing all FPSCR exception
enable bits and using ignore exceptions mode (see Table 6-8). In this case the sys-
tem floating-point assist error handler is not invoked, even if floating-point excep-
tions occur. If necessary, software can inspect the FPSCR exception bits to
determine whether exceptions have occurred.
 MOTOROLA EXCEPTIONS RCPU

6-40 Revised 1 February 1999 REFERENCE MANUAL

If the program exception handler notifies software that a given exception condition
has occurred, the corresponding FPSCR exception enable bit must be set and a
mode other than ignore exceptions mode must be used. In this case the system
floating-point assist error handler is invoked if an enabled floating-point exception
condition occurs.

Whether the system floating-point enabled exception error handler is invoked if an
enabled floating-point exception occurs is controlled by MSR bits FE0 and FE1 as
shown in Table 6-8. (The system floating-point enabled exception error handler is
never invoked because of a disabled floating-point exception.)

Whenever the system floating-point enabled exception error handler is invoked,
the processor ensures that all instructions logically residing before the excepting
instruction have completed, and no instruction after that instruction has been exe-
cuted.

If exceptions are ignored, an FPSCR instruction can be used to force any excep-
tions caused by instructions initiated before the FPSCR instruction to be recorded
in the FPSCR. A sync instruction can also be used to force exceptions, but is likely
to degrade performance more than an FPSCR instruction.

For the best performance across the widest range of implementations, the follow-
ing guidelines should be considered:

• If the IEEE default results are acceptable to the application, FE0 and FE1
should be cleared (ignore exceptions mode). All FPSCR exception enable bits
should be cleared.

• For even faster operation, non-IEEE can be selected by setting the NI bit in
the FPSCR. To ensure that the software envelope is never invoked, select
non-IEEE mode, disable all floating-point exceptions, and avoid using denor-
malized numbers as input to floating-point calculations. Refer to 3.4.3 Non-
IEEE Operation and 3.4.4 Working Without the Software Envelope for
more information.

• Ignore exceptions mode should not, in general, be used when any FPSCR ex-
ception enable bits are set.

• Precise mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other spe-
cialized applications.

Table 6-28 Floating-Point Exception Mode Bits

FE[0:1] Mode

00 Ignore exceptions mode — Floating-point exceptions do not cause the
floating-point assist error handler to be invoked.

01, 10, 11 Floating-point precise mode — The system floating-point assist error
handler is invoked precisely at the instruction that caused the enabled
exception.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-41

6.11.10.6 Invalid Operation Exception Conditions
An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

• Any operation except load, store, move, select, or mtfsf on a signaling NaN
(SNaN)

• For add or subtract operations, magnitude subtraction of infinities (×-×)
• Division of infinity by infinity (×/×)
• Division of zero by zero (0/0)
• Multiplication of infinity by zero (×*0)
• Ordered comparison involving a NaN (invalid compare)
• Square root or reciprocal square root of a negative, non-zero number (invalid

square root)
• Integer convert involving a number that is too large to be represented in the

format, an infinity, or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a
condition that is not necessarily associated with the execution of a floating-point in-
struction. For example, it might be set by a program that computes a square root if
the source operand is negative. This facilitates the emulation of PowerPC instruc-
tions not implemented in the RCPU.

When an invalid-operation exception occurs, the action to be taken depends on the
setting of the invalid operation exception enable bit of the FPSCR. When invalid op-
eration exception is enabled (FPSCR[VE] = 1) and invalid operation occurs or soft-
ware explicitly requests the exception, the following actions are taken:

• The following status bits are set in the FPSCR:
— VXSNAN (if SNaN)
— VXISI (if ×-×)
— VXIDI (if ×/×)
— VXZDZ (if 0/0)
— VXIMZ (if ×*0)
— VXVC (if invalid comparison)
— VXSOFT (if software request)
— VXCVI (if invalid integer convert)

• If the operation is an arithmetic or convert-to-integer operation,
— the target FPR is unchanged
— FPSCR[FR] and FPSCR[FI] are cleared
— FPSCR[FPRF] is unchanged

• If the operation is a compare,
— the FR, FI, and C bits in the FPSCR are unchanged
— FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception, FPSCR[FR FI FPRF] are as set
by the mtfsfi, mtfsf, or mtfsb1 instruction

When invalid operation exception condition is disabled (FPSCRVE = 0) and invalid
operation occurs or software explicitly requests the exception, the following actions
are taken:
 MOTOROLA EXCEPTIONS RCPU

6-42 Revised 1 February 1999 REFERENCE MANUAL

• The same status bits are set in the FPSCR as when the exception is enabled.
• If the operation is an arithmetic operation,

— the target FPR is set to a quiet NaN
— FPSCR[FR] and FPSCR[FI] are cleared
— FPSCR[FPRF] is set to indicate the class of the result (quiet NaN)

• If the operation is a convert to 32-bit integer operation, the target FPR is set
as follows:
— FRT[0:31] = undefined
— FRT[32:63] = most negative 32-bit integer
— FPSCR[FR] and FPSCR[FI] are cleared
— FPSCR[FPRF] is undefined

• If the operation is a convert to 64-bit integer operation, the target FPR is set
as follows:
— FRT[0:63] = most negative 64-bit integer
— FPSCR[FR] and FPSCR[FI] are cleared
— FPSCR[FPRF] is undefined

• If the operation is a compare,
— The FR, FI, and C bits in the FPSCR are unchanged
— FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception, the FR, FI and FPRF fields in the
FPSCR are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

6.11.10.7 Zero Divide Exception Condition
A zero divide exception condition occurs when a divide instruction is executed with
a zero divisor value and a finite, non-zero dividend value.

When a zero divide exception occurs, the action to be taken depends on the setting
of the zero divide exception condition enable bit of the FPSCR. When the zero di-
vide exception condition is enabled (FPSCR[ZE] = 1) and a zero divide condition
occurs, the following actions are taken:

• Zero divide exception condition bit is set: FPSCR[ZX] = 1
• The target FPR is unchanged
• FPSCR[FR] and FPSCR[FI] are cleared
• FPSCR[FPRF] is unchanged

When zero divide exception condition is disabled (FPSCR[ZE] = 0) and zero divide
occurs, the following actions are taken:

• Zero divide exception condition bit is set: FPSCR[ZX] = 1
• The target FPR is set to a ±infinity, where the sign is determined by the XOR

of the signs of the operands
• FPSCR[FR] and FPSCR[FI] are cleared
• FPSCR[FPRF] is set to indicate the class and sign of the result (±infinity)

6.11.10.8 Overflow Exception Condition
Overflow occurs when the magnitude of what would have been the rounded result
if the exponent range were unbounded exceeds that of the largest finite number of
the specified result precision.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-43

The action to be taken depends on the setting of the overflow exception condition
enable bit of the FPSCR. When the overflow exception condition is enabled (FP-
SCR[OE] = 1) and an exponent overflow condition occurs, the following actions are
taken:

• Overflow exception condition bit is set: FPSCR[OX] = 1.
• For double-precision arithmetic instructions, the exponent of the normalized

intermediate result is adjusted by subtracting 1536.
• For single-precision arithmetic instructions and the floating round to single-

precision instruction, the exponent of the normalized intermediate result is ad-
justed by subtracting 192.

• The adjusted rounded result is placed into the target FPR.
• FPSCR[FPRF] is set to indicate the class and sign of the result (±normal num-

ber).

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an over-
flow condition occurs, the following actions are taken:

• Overflow exception condition bit is set: FPSCR[OX] = 1
• Inexact exception condition bit is set: FPSCR[XX] = 1
• The result is determined by the rounding mode (FPSCR[RN]) and the sign of

the intermediate result as follows:
— Round to nearest

Store ± infinity, where the sign is the sign of the intermediate result
— Round toward zero

Store the format's largest finite number with the sign of the intermediate
result

— Round toward +infinity
For negative overflows, store the format's most negative finite number; for
positive overflows, store +infinity

— Round toward –infinity
For negative overflows, store –infinity; for positive overflows, store the for-
mat's largest finite number

• The result is placed into the target FPR
• FPSCR[FR FI] are cleared
• FPSCR[FPRF] is set to indicate the class and sign of the result (±infinity or

±normal number)

6.11.10.9 Underflow Exception Condition
The underflow exception condition is defined separately for the enabled and dis-
abled states:

• Enabled — Underflow occurs when the intermediate result is tiny.
• Disabled — Underflow occurs when the intermediate result is tiny and there is

loss of accuracy.

A tiny result is detected before rounding, when a non-zero result value computed
as though the exponent range were unbounded would be less in magnitude than
the smallest normalized number.
 MOTOROLA EXCEPTIONS RCPU

6-44 Revised 1 February 1999 REFERENCE MANUAL

If the intermediate result is tiny and the underflow exception condition enable bit is
cleared (FPSCR[UE] = 0), the intermediate result is denormalized.

Loss of accuracy is detected when the delivered result value differs from what
would have been computed were both the exponent range and precision
unbounded.

When an underflow exception occurs, the action to be taken depends on the setting
of the underflow exception condition enable bit of the FPSCR.

When the underflow exception condition is enabled (FPSCR[UE] = 1) and an ex-
ponent underflow condition occurs, the following actions are taken:

• Underflow exception condition bit is set: FPSCR[UX] = 1.
• For double-precision arithmetic and conversion instructions, the exponent of

the normalized intermediate result is adjusted by adding 1536.
• For single-precision arithmetic instructions and the floating round to single-

precision instruction, the exponent of the normalized intermediate result is ad-
justed by adding 192.

• The adjusted rounded result is placed into the target FPR.
• FPSCR[FPRF] is set to indicate the class and sign of the result (±normalized

number).

The FR and FI bits in the FPSCR allow the system floating-point enabled exception
error handler, when invoked because of an underflow exception condition, to sim-
ulate a trap disabled environment. That is, the FR and FI bits allow the system float-
ing-point enabled exception error handler to unround the result, thus allowing the
result to be denormalized.

When the underflow exception condition is disabled (FPSCR[UE] = 0) and an un-
derflow condition occurs, the following actions are taken:

• Underflow exception condition enable bit is set: FPSCR[UX] = 1
• The rounded result is placed into the target FPR
• FPSCR[FPRF] is set to indicate the class and sign of the result

(±denormalized number or ±zero)

6.11.10.10 Inexact Exception Condition
The inexact exception condition occurs when one of two conditions occur during
rounding:

• The rounded result differs from the intermediate result assuming the interme-
diate result exponent range and precision to be unbounded.

• The rounded result overflows and overflow exception condition is disabled.

When the inexact exception condition occurs, regardless of the setting of the inex-
act exception condition enable bit of the FPSCR, the following actions are taken:

• Inexact exception condition enable bit in the FPSCR is set: FPSCR[XX] = 1.
• The rounded or overflowed result is placed into the target FPR.
• FPSCR[FPRF] is set to indicate the class and sign of the result.
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-45

6.11.11 Software Emulation Exception (0x01000)
An implementation-dependent software emulation exception occurs in the follow-
ing cases:

• An attempt is made to execute an instruction that is not implemented in the
RCPU. This includes all illegal and optional instructions. Since an RCPU-
based MCU does not contain a data cache, segment registers, or a translation
lookaside buffer, the following optional PowerPC instructions cause the
RCPU to generate a software emulation exception:
— Data cache instructions (dcbt, dcbtst, dcbz, dcbst, dcbf, dcbi)
— Instructions to access segment registers (mtsr, mfsr, mtsrin, mfsrin)
— Instructions to manage translation lookaside buffers (tlbei, tlbiex, tlbsync,

tlbie, tlbia)
• An attempt is made to execute an mtspr or mfspr instruction that specifies an

unimplemented internal-to-the-processor SPR. (This exception is taken re-
gardless of the value of the SPR0 bit of the instruction. That is, if the SPR0 bit
of the instruction equals one, indicating a privileged register, and the proces-
sor is operating in user mode, this exception is taken rather than a program
exception.)

Refer to 7.5 Implementation of Special-Purpose Registers for an explana-
tion of internal- and external-to-the-processor SPRs.

• An attempt is made to execute a mtspr or mfspr instruction that specifies an
unimplemented external-to-the-processor register, and either SPR0 = 0 or
MSR[PR] = 0 (no program exception condition).

Register settings after a software emulation exception is taken are shown in Table
6-22.
 MOTOROLA EXCEPTIONS RCPU

6-46 Revised 1 February 1999 REFERENCE MANUAL

When a software emulation exception is taken, execution resumes at offset
0x01000 from the base address indicated by MSR[IP].

6.11.12 Data Breakpoint Exception (0x01C00)
An implementation-dependent data (L-bus) breakpoint occurs when an internal
breakpoint match occurs on the load/store bus.

The processor can be programmed to recognize a data breakpoint at all times
(non-masked mode), or only when the MSR[RI] bit is set (masked mode). When
operating in non-masked mode, the processor enters a non-restartable state if it
recognizes an internal breakpoint when MSR[RI] is cleared.

In order to enable the user to use the breakpoint features without adding restric-
tions on the software, the address of the load/store cycle that generated the data
breakpoint is not stored in the DAR (data address register), as with other excep-
tions that occur during loads or stores. Instead, the address of the load/store cycle
that generated the breakpoint is stored in an implementation dependent register
called the breakpoint address register (BAR).

Register settings after a data breakpoint exception is taken are shown in Table 6-
22.

Table 6-29 Register Settings Following a Software Emulation Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1 [0:15] Cleared to zero
[16:31] Loaded from MSR[16:31]

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-47

When a data breakpoint exception is taken, execution resumes at offset 0x01C00
from the base address indicated by MSR[IP].

Refer to SECTION 8 DEVELOPMENT SUPPORT for additional information on
data breakpoints.

6.11.13 Instruction Breakpoint Exception (0x01D00)
An implementation-dependent instruction (I-bus) breakpoint occurs when an inter-
nal breakpoint match occurs on the instruction bus.

The processor can be programmed to recognize a data breakpoint at all times
(non-masked mode), or only when the MSR[RI] bit is set (masked mode). When
operating in non-masked mode, the processor enters a non-restartable state if it
recognizes an internal breakpoint when MSR[RI] is cleared.

Register settings after an instruction breakpoint exception is taken are shown in
Table 6-22.

Table 6-30 Register Settings Following Data Breakpoint Exception

Register Setting Description

SRR0 Set to the effective address of the instruction following the instruction that caused the exception

SRR1 [0:15] Cleared to zero
[16:31] Loaded from bits MSR[16:31]
If development port request is asserted at reset, the value of SRR1 is undefined.

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared

BAR Set to the effective address of the data access as computed by the instruction that caused the
exception.

DSISR,
DAR

No change

Table 6-31 Register Settings Following an Instruction Breakpoint Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1 [0:15] Cleared to zero
[16:31] Loaded fromMSR[16:31]
If development port request is asserted at reset, the value of SRR1 is undefined.

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared
 MOTOROLA EXCEPTIONS RCPU

6-48 Revised 1 February 1999 REFERENCE MANUAL

When an instruction breakpoint exception is taken, execution resumes at offset
0x01D00 from the base address indicated by MSR[IP].

Refer to SECTION 8 DEVELOPMENT SUPPORT for more information on instruc-
tion breakpoint exceptions.

6.11.14 Maskable External Breakpoint Exception (0x01E00)
An implementation-dependent maskable external breakpoint can be generated by
any of the peripherals of the system, including those found on the L-bus, I-bus,
IMB2 and external bus, and also by an external development system. Peripherals
found on the external bus use the serial interface of the development port to assert
the external breakpoint. Breakpoints are generated by the development port from
the associated bits of the trap enable control register.

Maskable external breakpoint exceptions are asynchronous and ordered. The pro-
cessor does not take the exception if the RI (recoverable exception) bit in the MSR
is cleared. Refer to SECTION 8 DEVELOPMENT SUPPORT for more information.

When a maskable external breakpoint exception is taken, execution resumes at
offset 0x01E00 from the base address indicated by MSR[IP].

6.11.15 Non-Maskable External Breakpoint Exception (0x01F00)
An implementation-dependent non-maskable external breakpoint exception is
generated by the development port from the associated bits of the trap enable
mode serial communications.

This exception is asynchronous and unordered. The exception is not referenced to
any particular instruction. The processor stops instruction execution and either be-
gins exception processing or enters debug mode as soon as possible after detect-
ing the breakpoint exception.

The non-maskable external breakpoint exception causes the processor to stop
without regard to the state of the MSR[RI] bit. If the processor is in a non-recover-
able state when the exception occurs, the state of the SRR0, SRR1, DAR, and

Table 6-32 Register Settings Following a
Maskable External Breakpoint Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1 [0:15] Cleared to zero
[16:31] Loaded fromMSR[16:31]
If development port request is asserted at reset, the value of SRR1 is undefined.

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-49

DSISR registers may have been overwritten. In this case, it is not possible to restart
the processor since the restarting address and MSR context are saved in the SRR0
and SRR1 registers.

This exception allows the user to stop the processor in cases in which it would oth-
erwise not stop, but with the penalty that the processor may not be restartable. The
value of the MSR[RI] bit, as saved in the SRR1 register, indicates whether the pro-
cessor stopped in a recoverable state or not.

When a non-maskable external breakpoint exception is taken, execution resumes
at offset 0x01000 from the base address indicated by MSR[IP].

Table 6-33 Register Settings Following a
Non-Maskable External Breakpoint Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that would have been executed next if no exception had
occurred. If the development port request is asserted at reset, the value of SRR0 is undefined.

SRR1 [0:15] Cleared to zero
[16:31] Loaded from bits [16:31] of the MSR
If development port request is asserted at reset, the value of SRR1 is undefined.

MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero
 MOTOROLA EXCEPTIONS RCPU

6-50 Revised 1 February 1999 REFERENCE MANUAL

SECTION 7
INSTRUCTION TIMING

This section describes instruction flow and the basic instruction pipeline in the
RCPU, provides details of execution timing for each execution unit, defines the
concepts of serialization and synchronization, provides timing information for each
RCPU instruction, and provides timing examples for different types of instructions.

7.1 Instruction Flow

The instruction sequencer provides centralized control over data flow between ex-
ecution units and register files. The sequencer implements the basic instruction
pipeline, fetches instructions from the memory system, issues them to available ex-
ecution units, and maintains a state history so it can back the machine up in the
event of an exception.

The instruction sequencer fetches the instructions from the instruction cache into
the instruction pre-fetch queue. The processor uses branch folding (a technique of
removing the branch instructions from the pre-fetch queue) in order to execute
branches in parallel with execution of sequential instructions. Sequential (non-
branch) instructions reaching the top of the instruction queue are issued to the ex-
ecution units. Instructions may be flushed from the instruction queue when an ex-
ternal interrupt is detected, a previous instruction causes an exception, or a branch
prediction turns out to be incorrect.

All instructions, including branches, enter the history buffer along with processor
state information that may be affected by the instruction’s execution. This informa-
tion is used to enable out of order completion of instructions together with precise
exceptions handling. Instructions may be flushed from the machine when an ex-
ception is taken. The instruction queue is always flushed when recovery of the his-
tory buffer takes place. Refer to 6.3 Precise Exception Model Implementation
for additional information.

An instruction retires from the machine after it finishes execution without exception
and all preceding instructions have already retired from the machine.

Figure 7-1 illustrates the instruction flow in the RCPU.
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-1

Figure 7-1 Instruction Flow

7.1.1 Instruction Sequencer Data Path

Figure 7-2 illustrates the instruction sequencer data path.

EXECUTION UNITS

HISTORY BUFFER

INSTRUCTION BRANC
UNIT

ISSUE

RETIRE

FETCH

WRITE BACK

RISCPU INST FLOW

QUEUE
PRE-FETCH
 MOTOROLA INSTRUCTION TIMING RCPU

7-2 Revised 1 February 1999 REFERENCE MANUAL

Figure 7-2 Instruction Sequencer Data Path

7.1.2 Instruction Issue

The sequencer attempts to issue a sequential (non-branch) instruction on each
clock, if possible. In order for an instruction to be issued, the execution unit must
be available and it must determine that the required source data is available and
that no other instruction still in execution targets the same destination register. The
sequencer broadcasts the presence of the instruction on the instruction bus, and
each execution unit decodes the instruction. The execution unit responsible for ex-
ecuting the instruction determines whether the operands and target registers are
free and informs the sequencer that it accepts the instruction for execution.

7.1.3 Basic Instruction Pipeline

The RCPU instruction pipeline has four stages:

INSTRUCTION ADDRESS GENERATOR

CC UNIT

32

32

R
E

A
D

 W
R

IT
E

 B
U

S
S

E
S

BRANCH

INSTRUCTION BUFFER

32

INSTRUCTION
PREFETCH

QUEUE

INSTRUCTION MEMORY SYSTEM

EXECUTION UNITS AND REGISTERS FILES

CONDITION
EVALUATION

RCPU INST SE
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-3

1. The dispatch stage is implemented using a distributed mechanism. The
central dispatch unit broadcasts the instruction to all units. In addition,
scoreboard information (regarding data dependencies) is broadcast to each
execution unit. Each execution unit decodes the instruction. If the instruction
is not implemented, a program exception is taken. If the instruction is legal
and no data dependency is found, the instruction is accepted by the appro-
priate execution unit, and the data found in the destination register is copied
to the history buffer. If a data dependency exists, the machine is stalled until
the dependency is resolved.

2. In the execute stage, each execution unit that has an executable instruction
executes the instruction (perhaps over multiple cycles).

3. In the writeback stage, the execution unit writes the result to the destination
register and reports to the history buffer that the instruction is completed.

4. In the retirement stage, the history buffer retires instructions in architectural
order. An instruction retires from the machine if it completes execution with
no exceptions and if all instructions preceding it in the instruction stream
have finished execution with no exceptions. As many as six instructions can
be retired in one clock.

The history buffer maintains the correct architectural machine state. An exception
is taken only when the instruction is ready to be retired from the machine (i.e., after
all previously-issued instructions have already been retired from the machine).
When an exception is taken, all instructions following the excepting instruction are
canceled, (i.e., the values of the affected destination registers are restored using
the values saved in the history buffer during the dispatch stage).

Figure 7-3 illustrates the basic instruction pipeline timing.
 MOTOROLA INSTRUCTION TIMING RCPU

7-4 Revised 1 February 1999 REFERENCE MANUAL

Figure 7-3 Basic Instruction Pipeline

7.2 Execution Unit Timing Details

The following sections describe instruction timing considerations within each
RCPU execution unit.

7.2.1 Integer Unit (IU)

The integer unit executes all integer processor instructions, except the integer stor-
age access instructions, which are implemented by the load/store unit. The IU con-
sists of two execution units:

• The IMUL-IDIV executes the integer multiply and divide instructions.
• The ALU-BFU unit executes all integer logic, add, and subtract instructions,

and bit-field instructions.

All instructions executed by the ALU-BFU, except for integer trap instructions, have
a latency of one clock cycle. Instructions executed by the IMUL-IDIV unit have la-
tencies of more than one clock cycle. The IMUL-IDIV unit is pipelined for multiply
instructions, but not for divide instructions. Therefore, the instruction sequencer
can issue one instruction to the IU each clock cycle, except when an integer divide
instruction is preceded or followed by an integer divide or multiply instruction.

I1 I2

I1

I1

I1

I1

LOAD

I1

STORE

I1

I1

����������������������� ������� ���������������������������������� �����������������������������������

I3
�

��������
��������������

I2

I2

I2

���
������

�������� ������FETCH

DECODE

READ AND EXECUTE

WRITEBACK (TO DEST REG)

L ADDRESS DRIVE

L DATA

LOAD WRITEBACK

BRANCH DECODE

BRANCH EXECUTE

����������������������� ������� ���������������������������������� �����������������������������������

RCPU INST PL
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-5

7.2.1.1 Update of the XER During Divide Instructions

Integer divide instructions have a relatively long latency. However, these instruc-
tions can update XER[OV], the overflow bit in the integer exception register, after
one cycle. Data dependency on the XER is therefore limited to one cycle although
the latency of an integer divide instruction can be up to eleven clock cycles.

7.2.2 Floating Point Unit (FPU)

The floating-point unit contains a double-precision multiply array, the floating-point
status and control register (FPSCR), and the FPRs. The multiply-add array allows
the processor to efficiently implement floating-point operations such as multiply,
multiply-add, and divide.

The RCPU depends on a software envelope to fully implement the IEEE floating-
point specification. Overflows, underflows, NaNs, and denormalized numbers
cause floating-point assist exceptions that invoke a software routine to deliver (with
hardware assistance) the correct IEEE result. Refer to 6.11.10 Floating-Point As-
sist Exception (0x00E00) for additional information.

To accelerate time-critical operations and make them more deterministic, the
RCPU provides a mode of operation that avoids invoking the software envelope
and attempts to deliver results in hardware that are adequate for most applications,
if not in strict conformance with IEEE standards. In this mode, denormalized num-
bers, NaNs, and IEEE invalid operations are treated as legitimate, returning default
results rather than causing floating-point assist exceptions.

7.2.3 Load/Store Unit (LSU)

The load-store unit handles all data transfer between the integer and floating-point
register files and the chip-internal load/store bus (L-bus). The load/store unit is im-
plemented as an independent execution unit so that stalls in the memory pipeline
do not cause the master instruction pipeline to stall (unless there is a data depen-
dency). The unit is fully pipelined so that memory instructions of any size may be
issued on back-to-back cycles.

There is a 32-bit wide data path between the load/store unit and the integer register
file and a 64-bit wide data path between the load/store unit and the floating-point
register file.

Single-word accesses to on-chip data RAM require one clock cycle, resulting in two
clock cycles latency. Double-word accesses require two clock cycles, resulting in
three clock cycles latency. Since the L-bus is 32 bits wide, double-word transfers
require two bus accesses.

The LSU interfaces with the external bus interface for all instructions that access
memory. Addresses are formed by adding the source one register operand speci-
fied by the instruction (or zero) to either a source two register operand or to a 16-
bit, immediate value embedded in the instruction.
 MOTOROLA INSTRUCTION TIMING RCPU

7-6 Revised 1 February 1999 REFERENCE MANUAL

7.2.3.1 Load/Store Instruction Issue

When a load or store instruction is encountered, the LSU checks the scoreboard to
determine if all the operands are available. These operands include:

• Address registers operands
• Source data register operands (for store instructions)
• Destination data register operands (for load instructions)
• Destination address register operands (for load/store with update instructions)

If all operands are available, the LSU takes the instruction and enables the se-
quencer to issue a new instruction. Using a dedicated interface, the LSU notifies
the IU to calculate the effective address.

All load and store instructions are executed and terminated in order. If there are no
prior instructions waiting in the address queue, the load or store instruction is is-
sued to the L-bus as soon as the instruction is taken. Otherwise, if there are still
prior instructions whose address are still to be issued to the L-bus, the instruction
is inserted into the address queue, and data (for store instructions) is inserted into
the respective store data queue. Note that for load/store with update instructions,
the destination address register is written back on the following clock cycle, regard-
less of the state of the address queue.

A new store instruction is not issued to the L-bus until all prior instructions have ter-
minated without an exception. This is done in order to implement the PowerPC pre-
cise exception model. In case of a load instruction followed by a store instruction,
a delay of one clock cycle is inserted between the termination of the load bus cycle
and the issuing of the store cycle.

7.2.3.2 Load/Store Synchronizing Instructions

For certain LSU instructions, the instruction is not taken (as defined in the glossary)
until all previous instructions have terminated. These instructions are:

• Load/Store Multiple instructions — lmw, stmw
• Storage Synchronization instructions — lwarx, stwcx, sync
• String instructions — lswi, lswx, stswi, stswx
• Move to internal special registers and move to external-to-processor special

purpose registers

Issuing of further instructions is stalled until the following load/store instructions ter-
minate:

• Load/Store Multiple insturctions — lmw, stmw
• Storage Synchronization instructions — lwarx, stwcx, sync
• String instructions — lswi, lswx, stswi, stswx

7.2.3.3 Load/Store Instruction Timing Summary

Table 7-1 summarizes the timing of load/store instructions, assuming a parked bus
and zero wait state memory references. The parameter “N” denotes the number of
registers transferred.
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-7

7.2.3.4 Bus Cycles for String Instructions

String instructions are broken into a series of aligned bus accesses. Figure 7-4 il-
lustrates the maximum number of bus cycles needed for string instruction execu-
tion. This is the case where the beginning and end of the string are unaligned.

Figure 7-4 Number of Bus Cycles Needed for String Instruction Execution

7.2.3.5 Stalls During Floating-Point Store Instructions

In the following sequence there is a delay of one clock cycle before the second
floating-point store instruction is executed:

1. Load instruction
2. First floating-point store instruction
3. Second floating-point store instruction

Table 7-1 Load/Store Instructions Timing

Instruction Type Latency Cleared from Load/Store Unit

Internal Memory External
Memory

Internal Memory External
Memory

Fixed-Point Single Target
Register Load
Floating-Point Single-Precision
Load

2 clocks 4 clocks 2 clocks 4 clocks

Fixed-Point Single Target
Register Store
Floating-Point Single-Precision
Store

1 clock 1 clock 2clock 4 clock

Floating-Point Double-Precision
Load1

NOTES:
1. Double-precision load and store instructions are pipelined on the bus.

3 clocks 5 clocks 3 clocks 5 clocks

Floating-Point Double-Precision
Store1

1 clock 1 clock 3 clocks 5 clocks

Load Multiple 1 + N 3 + N + [(N + 1)/3] 1 + N 3 + N + [(N + 1)/3]

0x00 00 01 02 03
0x04 04 05 06 07
0x08 08 09 0a 0b
0x0C 0c 0d 0e 0f
0x10 10 11 12 13
0x14 14 15 16 17

2 bus cycles

word transfers

2 bus cycles
0x18 18 19 1a 1b

3 bus cycles

BUS CYC/STR EX
 MOTOROLA INSTRUCTION TIMING RCPU

7-8 Revised 1 February 1999 REFERENCE MANUAL

If the accesses are to zero-wait-state L-bus memory and the instructions are issued
on consecutive clock cycles, the second floating-point store instruction is stalled for
one clock cycle.

7.2.4 Branch Processing Unit (BPU)

The sequencer maintains a prefetch queue that can hold up to four instructions.
This prefetch queue enables branches to be issued in parallel with sequential in-
structions. In the ideal case, a sequential instruction is issued every clock cycle,
even when branches are present in the code. This feature is possible because of
branch folding, the removal of branch instructions from the pre-fetch queue.

All instructions are fetched into the instruction prefetch queue, but only sequential
instructions are issued to the execution units upon reaching the head of the queue.
(Branches are placed into the instruction prefetch queue to enable watchpoint
marking — refer to SECTION 8 DEVELOPMENT SUPPORT for more information.)
Since branches do not prevent the issue of sequential instructions unless they
come in pairs, the performance impact of entering branches in the instruction
prefetch queue is negligible.

In addition to branch folding, the RCPU implements a branch reservation station
and static branch prediction to allow branches to issue as early as possible. The
reservation station allows a branch instruction to be issued even before its condi-
tion is ready. With the branch issued and out of the way, instruction pre-fetch can
continue while the branch operand is being computed and the condition is being
evaluated. Static branch prediction is used to determine which instruction stream
is pre-fetched while the branch is being resolved. When the branch operand be-
comes available, it is forwarded to the branch unit and the condition is evaluated.

Refer to 4.6.2 Conditional Branch Control for more information on static branch
prediction.

7.3 Serialization

The RCPU has multiple execution units, each of which may be executing different
instructions at the same time. This concurrence is normally transparent to the user
program. In certain circumstances, however (e.g., debugging, I/O control, and
multi-processor synchronization), it may be necessary to force the machine to se-
rialize.

Two types of serialization are defined for the RCPU: execution serialization and
fetch serialization.

7.3.1 Execution Serialization

Execution serialization (also referred to as serialization or execution synchroniza-
tion) causes the issue of subsequent instructions to be halted until all instructions
currently in progress have completed execution, (i.e., all internal pipeline stages
and instruction buffers have emptied and all outstanding memory transactions are
completed).
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-9

An attempt to issue a serializing instruction causes the machine to serialize before
the instruction issues. Notice that only the sync instruction guarantees serialization
across PowerPC implementations.

7.3.2 Fetch Serialization

Fetch serialization (also referred to as “fetch synchronization”) causes instruction
fetch to be halted until all instructions currently in the processor (i.e., all issued in-
structions as well as the pre-fetched instructions waiting to be issued) have com-
pleted execution.

Fetch of an isync instruction causes fetch serialization. This means that no instruc-
tions following isync in the instruction stream are pre-fetched until isync and all
previous instructions have completed execution. In addition, when the SER (seri-
alize mode) bit in the ICTRL is asserted, or when the processor is in debug mode,
all instructions cause fetch serialization.

7.4 Context Synchronization

The system call (sc) and return from interrupt (rfi) instructions are context-synchro-
nizing. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).
• All previous instructions have completed to a point where they can no longer

cause an exception.
• Previous instructions complete execution in the context (privilege and protec-

tion) under which they were issued.
• The instructions following the context-synchronizing instruction execute in the

context established by the instruction.

7.5 Implementation of Special-Purpose Registers
Most special-purpose registers supported by the RCPU are physically implement-
ed within the processor. The following SPRs, however, are physically implemented
outside of the processor (i.e., in another module, such as the system interface unit,
of the microcontroller):

• Instruction cache control registers (ICCST, ICADR, and IDDAT)
• Time base (TB) and decrementer (DEC)
• Development port data register (DPDR)

These registers are read or written with the mtspr and mfspr instructions. The reg-
isters are physically accessed, however, via the internal L-bus or I-bus as appro-
priate.

The following encodings are reserved in the RCPU for SPRs not located within the
processor:
 MOTOROLA INSTRUCTION TIMING RCPU

7-10 Revised 1 February 1999 REFERENCE MANUAL

Many of the encodings in Table 7-2 are not used in the RCPU. If the processor at-
tempts to access to an unimplemented external-to-the-processor SPR, or if an er-
ror occurs during an access of an external-to-the-processor SPR, an implemen-
tation-dependent software emulation exception is taken (rather than a program ex-
ception).

An mtspr instruction to an external-to-the-processor register is not taken until all
preceding instructions have terminated. Refer to 7.6 Instruction Execution Tim-
ing for more information.

7.6 Instruction Execution Timing

Table 7-3 lists the instruction execution timing in terms of latency and blockage of
the appropriate execution unit. Latency refers to the interval from the time an in-
struction begins execution until it produces a result that is available for use by a
subsequent instruction. Blockage refers to the interval from the time an instruction
begins execution until its execution unit is available for a subsequent instruction.
Note that a serializing instruction has the effect of blocking all execution units.

Table 7-2 Encodings of External-to-the-Processor SPRs

SPR Instruction Field Encoding Reserved for

SPR[5:9] SPR[0:4]

100xx xxxxx External-to-the-processor SPRs

100xx x0xxx System interface unit (SIU) route from
L-bus to I-bus/internal SIU registers

100xx x1xxx Peripherals control unit registers

10011 x0xxx SIU internal registers

0xxxx xxxxx DEC or TB, if this encoding appears on the
L-bus

10000 x0xxx Reserved for IBAT

10000 x1xxx Reserved for DBAT

10001 x00xx I-cache registers

10001 x1xxx Reserved for D-cache
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-11

Table 7-3 Instruction Execution Timing

Instructions Latency Blockage Execution
Unit

Serializing
Instruction

Branch Instructions: b, ba, bl, bla, bc,
bca, bcl, bcla, bclr, bclrl, bcctr, bcctl

Taken 2 2 BPU No

Not taken 1 1

sc, rfi Serialize + 2 Serialize + 2 BPU Yes

CR logical instructions: crand, crxor,
cror, crnand, crnor, crandc, creqv,
crorc, mcrf

1 1 BPU No

Fixed-point trap instructions: twi, tw Taken
Serialize + 3

Serialize + 3 ALU/BFU After

Not taken 1 1 No

mtspr to LR, CTR 1 1 BPU No

mtspr to XER, external-to-the-
processor SPRs1

Serialize + 1 Serialize + 1 LSU Refer to Table 7-4

mtspr (to other registers) Serialize + 1 Serialize + 1 BPU Refer to Table 7-4

 mfspr from external-to-the-processor
SPRs1

Serialize +
load latency

Serialize + 1 LSU No

mfspr (from other registers) 1 1 BPU Refer to Table 7-4

mftb, mftbu Serialize +
load latency

Serialize + 1 LSU No

 mtcrf, mtmsr Serialize + 1 Serialize + 1 BPU Yes

mfcr, mfmsr Serialize + 1 Serialize + 1 BPU No

mffs[.] 1 1 FPU No

 mcrxr Serialize + 1 Serialize + 1 LSU, BPU Yes

mcrfs Serialize + 1 Serialize + 1 FPU, BPU Yes

Other move FPSCR:mtfsfi[.], mtfsf[.],
mtfsb0[.], mtfsb1[.]

Serialize + 1 Serialize + 1 FPU Yes

 mcrxr Serialize + 1 Serialize + 1 LSU Yes (Before)

Integer arithmetic: addi, add[o][.],
addis, subf[o][.], addic, subfic,
addic., addc[o][.], adde[o][.],
subfc[o][.], subfe[o][.], addme[o][.],
addze[o][.], subfme[o][.], subfze[o][.],
neg[o][.]

1 1 ALU/BFU No

Integer arithmetic (divide instructions):
divw[o][.], divwu[o][.]

Min 2
Max 112

Min 2
Max 113

IMUL/IDIV No

Integer arithmetic (multiply instructions):
mulli, mull[o][.], mulhw[.], mulhwu[.]

2 1-24 IMUL/IDIV No
 MOTOROLA INSTRUCTION TIMING RCPU

7-12 Revised 1 February 1999 REFERENCE MANUAL

Integer compare: cmpi, cmp, cmpli,
cmpl

1 1 ALU/BFU No

Integer logical: andi., andis., ori, oris,
xori, xoris, and[.], or[.], xor[.], nand[.],
nor[.], eqv[.], andc[.], orc[.], extsb[.],
extsh[.], cntlzw[.]

1 1 ALU/BFU No

Integer rotate and shift: rlwinm[.],
rlwnm[.], rlwimi[.], slw[.], srw[.],
srawi[.], sraw[.]

1 1 ALU/BFU No

Floating point move: fmr[.], fneg[.],
fabs[.], fnabs[.]

1 1 FPU No

Floating point add/subtract: fadd[.],
fadds[.], fsub[.], fsubs[.]

4 4 FPU No

Floating point multiply single: fmuls[.] 4 4 FPU No

Floating point multiply double: fmul[.] 5 5 FPU No

Floating point divide single: fdivs[.] 10 10 FPU No

Floating point divide double: fdiv[.] 17 17 FPU No

Floating point multiply-add single:
fmadds[.], fmsubs[.], fnmadds[.],
fnmsubs[.]

6 6 FPU No

Floating point multiply-add double:
fmadd[.], fmsub[.], fnmadd[.],
fnmsub[.]

7 7 FPU No

Floating round to single-precision:
frsp[.]

2 2 FPU No

Floating convert to integer: fctiw[.],
fctiwz[.]

3 3 FPU No

Floating point compare: fcmpu, fcmpo 1 1 FPU No

Integer load instructions: lbz, lbzu,
lbzx, lbzux, lhz, lhzu, lhzx, lhzux, lha,
lhau, lhax, lhaux, lwz, lwzu, lwzx,
lwzux, lhbrx, lwbrx, lhbrx

25 1 LSU No

Integer store instructions: stb, stbu,
stbx, stbux, sth, sthu, sthx, sthux,
stw, stwu, stwbrx

16 1 LSU No

Integer load and store multiple
instructions: lmw, smw

Serialize + 1
+ Number of
registers

Serialize + 1 +
Number of
registers

LSU Yes

Synchronize: sync Serialize + 1 Serialize + 1 LSU Yes

Order storage access: eieio Load/Store
Serialize + 1

1 LSU No

Table 7-3 Instruction Execution Timing (Continued)

Instructions Latency Blockage Execution
Unit

Serializing
Instruction
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-13

Storage synchronization instructions:
lwarx, stwcx.

Serialize + 2 Serialize + 2 LSU Yes

Floating-point load single instructions:
lfs, lfsu, lfsx, lfsux

2 1 LSU No

Floating-point load double instructions:
lfd, lfdu, lfdx, lfdux

3 1 LSU No

Floating-point store single instructions:
stfs, stfsu, stfsx, stfsux, stfiwx

1 1 LSU No

Floating-point store double instructions:
stfd, stfdu, stfdx, stfdux

1 1 LSU No

String instructions: lswi, lswx, stswi,
stswx

Serialize + 1
+ Number of
words
accessed

Serialize + 1 +
Number of
words
accessed

LSU Yes

Storage control instructions: isync serialize serialize BPU Yes

eieio 1 1 LSU Next load or store is
serialized relative to
all prior load or store

Cache control: icbi 1 1 LSU, I-cache No

NOTES:
1. SPRs that are physically implemented outside of the RCPU are the time base, decrementer, ICCST, ICADR, IC-

DAT, AND DPDR.

2.

Wher :

3. DivisionBlockage = DivisionLatency
4. Blockage of the multiply instruction is dependent on the subsequent instruction

for subsequent multiply instruction the blockage is one clock.
for subsequent divide instruction the blockage is two clocks.

5. Assuming non-speculative aligned access, on chip memory and available bus.
6. Although stores issued to the LSU buffers free the CPU pipeline, next load or store will not actually be performed

on the bus until the bus is free.

Table 7-3 Instruction Execution Timing (Continued)

Instructions Latency Blockage Execution
Unit

Serializing
Instruction

DivisionLatency
NoOverflow 3 34 divisorLength–

4
--+⇒

Overf low 2⇒
=

Overflow
x
0

 or
MaxNegativeNumber

1–
--

 =
 MOTOROLA INSTRUCTION TIMING RCPU

7-14 Revised 1 February 1999 REFERENCE MANUAL

Table 7-4 Control Registers and Serialized Access

SPR Number
(Decimal)

Name Serialize Access

1 XER Write: full serialization
Read: serialization relative to load/store operations

8 LR No

9 CTR No

18 DSISR Write: full serialization
Read: serialization relative to load/store operations

19 DAR Write: full serialization
Read: serialization relative to load/store operations

22 DEC Write

26 SRR0 Write

27 SRR1 Write

80 EIE Write

81 EID Write

82 NRI Write

144 – 147 CMPA – CMPD Fetch serialized on write

148 ECR Fetch serialized on write

149 DER Fetch serialized on write

150 COUNTA Fetch serialized on write

151 COUNTB Fetch serialized on write

152 – 155 CMPE – CMPH Write: fetch serialized
Read: serialized relative to load/store operations

156 LCTRL1 Write: fetch serialized
Read: serialized relative to load/store operations

157 LCTRL2 Write: fetch serialized
Read: serialized relative to load/store operations

158 ICTRL Fetch serialized on write

159 BAR Write: fetch serialized
Read: serialized relative to load/store operations

268 TBL read1 Write — as a store

269 TBU read1 Write — as a store

272 – 275 SPRG0 – SPRG3 Write

284 TBL write2 Write — as a store

285 TBU write2 Write — as a store

287 PVR No (read only register)
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-15

7.7 Instruction Execution Timing Examples

This section contains a number of examples illustrating the operation of the instruc-
tion pipeline. All examples assume an instruction cache hit.

7.7.1 Load from Internal Memory Example

This is an example of a load from an internal memory module with zero wait
states.The subf instruction is dependent on the value loaded by the lwz to r12.
This causes one bubble to occur in the instruction stream. See 7.7.3 Load with
Private Write-Back Bus for an example in which no such dependency exists.

lwz r12,64(r0)

subf r3,r12,r3

addic r4,r14,1

mulli r5,r3,3

addi r4,r0,3

560 ICCST Write — as a store

561 ICAD Write — as a store

562 ICDAT Write — as a store

630 DPDR Read and write

1022 FPECR Write

— MSR Fetch serialized on write

— CR Serialized for mtcrf only

NOTES:
1. Any write (mtspr) to this address results in an implementation-dependent software emulation ex-

ception.
2. Any read (mftb) of this address results in an implementation-dependent software emulation excep-

tion.

Table 7-4 Control Registers and Serialized Access (Continued)

SPR Number
(Decimal)

Name Serialize Access
 MOTOROLA INSTRUCTION TIMING RCPU

7-16 Revised 1 February 1999 REFERENCE MANUAL

Figure 7-5 Load from Internal Memory Example

7.7.2 Write-Back Arbitration Examples

In the first example, the addic is dependent on the mulli result. Since the single
cycle instruction subf has priority on the writeback bus over the mulli, the mulli
write back is delayed one clock and causes a bubble in the execution stream.

mulli r12,r4,3

subf r3,r15,r3

addic r4,r12,1

Figure 7-6 Write-Back Arbitration Example I

In the following example, the addic is dependent on the subf rather then on the
mulli. Although the write back of the mulli is delayed two clocks, there is no bubble
in the execution stream.

LOAD SUB

LOAD

LOAD

LD

LD

LD

SUB

SUB

SUB

MULLI

ADDIC

ADDIC

ADD

BUBBLE

����

����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

ADDIADDICFETCH

DECODE

READ &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

INT MEM LOAD EX

MULLI SUB

MULLI

MULLI

SUB

SUB, MULL

SUB

ADDIC

ADDIC

ADD

���

���

���
���
���
���
���
���
���
���
���
���
���
���
���

BUBBLE

ADDIC

MUL

FETCH

DECODE

READ &EXECUTE

WRITE BACK

WR BK ARB EX 1
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-17

mulli r12,r4,3

subf r3,r15,r3

addic r4,r3,1

Figure 7-7 Write-Back Arbitration Example II

7.7.3 Load with Private Write-Back Bus

In this example, the load and the and write back in the same clock cycle, since they
use the writeback bus during separate ticks.

lwz r12,64(r0)

subf r5,r3,r5

addic r4,r14,1

and r3,r4,r5

or r6,r12,r3

MULLI SUB

MULLI

MULLI

SUB

ADDIC

SUB

MULLI

ADDIC

ADD

����

����

����
����
����
����
����
����
����
����
����
����
����
����

ADDIADDICFETCH

DECODE

READ & EXECUTE

WRITE BACK

WR BK ARB EX 2

SUB,MULL

MUL
 MOTOROLA INSTRUCTION TIMING RCPU

7-18 Revised 1 February 1999 REFERENCE MANUAL

Figure 7-8 Load with Private Write-Back Bus Example

7.7.4 Fastest External Load Example

In this example, the subf is dependent on the value read by the load. It causes
three bubbles in the instruction execution stream.

NOTE
The external clock is shifted 90° relative to the internal clock.

lwz r12,64(r0)

subf r3,r12,r3

addic r4,r14,1

LOAD SUB

LOAD

LOAD

LD

LD

LD

SUB

SUB

SUB

ADDIC

ADDIC

AD

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ADDIC

LOAD

LD

AND ORI

AND

AND

AND

ORI

ORI

ORI

READ &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

E ADDRESS

E DATA

INTERNAL

EXTERNAL
CLOCK

CLOCK

FETCH

DECODE

LD WR BK BUS EX
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-19

Figure 7-9 External Load Example

7.7.5 History Buffer Full Example

This example demonstrates the condition of a full history buffer. The floating-point
history buffer is full by the fadd and two of the three lfds.

NOTE
Following writeback of the fadd instruction, one additional bubble is
required before instruction issue resumes. During this bubble, the
history buffer retires the fadd instruction (as well as the two lfd in-
structions).

fadd fr5,fr6,fr7

lfd fr12,0(r2)

lfd fr13,8(r2)

lfd fr14,16(r2)

subf r5,r3,r5

LOAD SUB

LOAD

LOAD

LD

LD

LD

SUB

BUBBLE BUBBLE

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ADDIC

LOAD

LD

AND ORI

BUBBLE SUB

SUB

READ &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

E ADDRESS

E DATA

INTERNAL

EXTERNAL
CLOCK

CLOCK

FETCH

DECODE

EXT LOAD EX

ADDIC

ADDIC

AD
 MOTOROLA INSTRUCTION TIMING RCPU

7-20 Revised 1 February 1999 REFERENCE MANUAL

Figure 7-10 History Buffer Full Example

7.7.6 Store and Floating-Point Example

In this example the stw access on the L-bus is delayed until the fadd instruction is
written back.

NOTE
In contrast to full serialization cases, the issue and execution of fol-
lowing instructions continue unaffected.

fadd fr5,fr6,fr7

stw r12,64(SP)

subf r5,r5,r3

addic r4,r14,1

fmul fr3,fr4,fr5

or r6,r12,r3

FADD LFD

FADD

FADD

FA

LFD

LFD,FADD

LFD

LFD

LFD,FADD

LFD

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

LFD LFD SUB

LFD

BUBBLE BUBBLE

LFD

READ &EXECUTE

FX WRITE BACK

L ADDRESS DRIVE

L DATA

FP WRITE BACK

FP LOAD WRITE BACK

INTERNAL
CLOCK

FETCH

DECODE

REORDER BUF FULL EX

LFD

SUB

LFD LFD

LFDLFD
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-21

Figure 7-11 Store and Floating-Point Example

7.7.7 Branch Folding Example

In this example, the lwz instruction accesses internal storage with one wait state.
The instruction prefetch queue and the parallel operation of the branch unit allow
the two bubbles caused by the bl issue and execution to overlap the two bubbles
caused by the lwz instruction.

lwz r12,64(SP)

subf r3,r12,r3

addic r4,r14,1

bl func

...

func: mulli r5,r3,3

addi r4,r0,3

FADD STW

FADD

FADD

FA

STW

STW, FA

LFD

SUB

SUB, FA

SUB

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

SUB

ADDIC

ADDIC,FA FMULREAD &EXECUTE

FX WRITE BACK

L ADDRESS DRIVE

L DATA

FP WRITE BACK

INTERNAL
CLOCK

FETCH

DECODE

STORE/FP EX

OR

LFD

STW

ADDIC FMUL OR

FMUL OR

AD FM OR

STW
 MOTOROLA INSTRUCTION TIMING RCPU

7-22 Revised 1 February 1999 REFERENCE MANUAL

Figure 7-12 Branch Folding Example

7.7.8 Branch Prediction Example

In this example the blt instruction is dependent on the cmpi. The branch unit still
predicts the correct path and allows the bubbles caused by the blt instruction to
overlap the bubbles caused by the ld instruction, as in the previous example.

When the cmpi instruction is written back, the branch unit re-evaluates the deci-
sion. If the branch was correctly predicted, execution continues without interrup-
tion. The fetched instructions on the predicted path are not allowed to execute
before the condition is finally resolved. Instead, they are stacked in the instruction
prefetch queue.

while: mulli r3,r12,4

addi r4,r0,3

...

lwz r12,64(r2)

cmpi r12,3

addic r6,r5,1

blt while

...

LOAD SUB

LOAD

LOAD BUBBLE

LD

BUBBLE

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

SUB

SUB ADDICREAD &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

INTERNAL
CLOCK

FETCH

DECODE

BR FOLD EX

MULLI

LD

STW

ADDIC MULLI

SUB ADD

STW

BRANCH DECODE

BRANCH EXECUTE

ADDIC BL BUBBLE MULLI ADDI

LD

BL

BL
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-23

Figure 7-13 Branch Prediction Example

LOAD CMPI

LOAD

LOAD

LD

LD

LD

BLT

BLT

CMPI

CMPI

CMP

���� ��������������������������������
BUBBLE

���
����
�����������
����
����
����

�����������
����
�����
��������� �������������������������������� MULLI

ADDIC

ADDIC

ADD

MULLI

MULLI

�� ������������������

BUBBLE�
����
������� ��

���
��������� ������������������

��

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��� ��������������������

BUBBLE��
������
����������� ���

�����
�������������� ��������������������

ADDIADDIC

BLT

BLT

READ & EXECUTE

WRITEBACK

L ADDRESS DRIVE

L DATA

LOAD WRITEBACK

INTERNAL
CLOCK

FETCH

DECODE

BRANCH DECODE

BRANCH EXECUTE

BRANCH FINAL
DECISION

RCPU BR PRED EX
 MOTOROLA INSTRUCTION TIMING RCPU

7-24 Revised 1 February 1999 REFERENCE MANUAL

SECTION 8
DEVELOPMENT SUPPORT

Development tools are used by a microcomputer system developer to debug the
hardware and software of a target system. These tools are used to give the devel-
oper some control over the execution of the target program. In-circuit emulators
and bus state analyzers are the most frequently used debugging tools. In order for
these tools to function properly, they must have full visibility of the microprocessor’s
buses.

Visibility extends beyond the address and data portions of the buses and includes
attribute and handshake signals. In some cases it may also include bus arbitration
signals and signals which cause processor exceptions such as interrupts and re-
sets. The visibility requirements of emulators and bus analyzers are in opposition
to the trend of modern microcomputers and microprocessors where the CPU bus
may be hidden behind a memory management unit or cache or where bus cycles
to internal resources are not visible externally.

The development tool visibility requirements may be reduced if some of the devel-
opment support functions are included in the silicon. For example, if the bus com-
parator part of a bus analyzer or breakpoint generator is included on the chip, it is
not necessary for the entire bus to be visible at all times. In many cases the visibility
requirements may be reduced to instruction fetch cycles for tracking program exe-
cution. If some additional status information is also available to assist in execution
tracking and the development tool has access to the source code, then the only
need for bus visibility is often the destination address of indirect change-of-flow in-
structions (return from subroutine, return from interrupt, and indexed branches and
jumps).

Since full bus visibility reduces available bus bandwidth and processor perfor-
mance, certain development support functions have been included in the MCU.
These functions include the following:

• Controls to limit which internal bus cycles are reflected on the external bus
(show cycles)

• CPU status signals to allow instruction execution tracking with minimal visibil-
ity of the instructions being fetched

• Watchpoint comparators that can generate breakpoints or signal an external
bus analyzer

• A serial development port for general emulation control

8.1 Program Flow Tracking

The exact program flow is visible on the external bus only when the processor is
programmed to show all fetch cycles on the external bus. This mode is selected by
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-1

programming the ISCTL (instruction fetch show cycle control) field in the I-bus
support control register (ICTRL), as shown in Table 8-2. In this mode, the proces-
sor is fetch serialized, and all internal fetch cycles appear on the external bus. Pro-
cessor performance is therefore much lower than when working in regular mode.

The mechanism described below allows tracking of the program instructions flow
with almost no performance degradation. The information provided externally may
be captured and compressed and then parsed by a post-processing program using
the microarchitecture defined below.

The RCPU implements a prefetch queue combined with parallel, out of order, pipe-
lined execution. Instructions progress inside the processor from fetch to retire. An
instruction retires from the machine only after it, and all preceding instructions, fin-
ish execution with no exception. Therefore only retired instructions can be consid-
ered architecturally executed.

These features, together with the fact that most fetch cycles are performed inter-
nally (e.g., from the I-cache), increase performance but make it very difficult to pro-
vide the user with the real program trace.

In order to reconstruct a program trace, the program code and the following addi-
tional information from the MCU are needed:

• A description of the last fetched instruction (stall, sequential, branch not taken,
branch direct taken, branch indirect taken, exception taken).

• The addresses of the targets of all indirect flow change. Indirect flow changes
include all branches using the link and count registers as the target address,
all exceptions, and rfi and mtmsr because they may cause a context switch.

• The number of instructions canceled each clock.

Reporting on program trace during retirement would significantly complicate the
visibility support and increase the die size. (Complications arise because more
than one instruction can retire in a clock cycle, and because it is harder to report
on indirect branches during retirement.) Therefore, program trace is reported dur-
ing fetch. Since not all fetched instructions eventually retire, an indication on can-
celed instructions is reported.

Instructions are fetched sequentially until branches (direct or indirect) or excep-
tions appear in the program flow or some stall in execution causes the machine not
to fetch the next address. Instructions may be architecturally executed, or they may
be canceled in some stage of the machine pipeline.

The following sections define how this information is generated and how it should
be used to reconstruct the program trace. The issue of data compression that could
reduce the amount of memory needed by the debug system is also mentioned.

8.1.1 Indirect Change-of-Flow Cycles

An indirect change-of-flow attribute is attached to all fetch cycles that result from
indirect flow changes. Indirect flow changes include the following types of instruc-
tions or events:
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-2 Revised 1 February 1999 REFERENCE MANUAL

• Assertion or negation of VSYNC.
• Exception taken.
• Indirect branch taken.
• Execution of the following sequential instructions: rfi, isync, mtmsr, and

mtspr to CMPA–CMPF, ICTRL, ECR, and DER.

When a program trace recording is needed, the user can ensure that cycles that
result from an indirect change-of-flow are visible on the external bus. The user can
do this in one of two ways: by setting the VSYNC bit, or by programming the ISCTL
bits in the I-bus support control register. Refer to 8.1.2 Instruction Fetch Show
Cycle Control for more information.

When the processor is programmed to generate show cycles on the external bus
resulting from indirect change-of-flow, these cycles can generate regular bus cy-
cles (address phase and data phase) when the instructions reside in one of the ex-
ternal devices, or they can generate address-only show cycles for instructions that
reside in an internal device such as I-cache or internal ROM.

8.1.1.1 Marking the Indirect Change-of-Flow Attribute

When an instruction fetch cycle that results from an indirect change-of-flow is an
internal access (e.g., access to an internal memory location, or a cache hit during
an access to an external memory address), the indirect change-of-flow attribute is
indicated by the assertion (low) of the WR pin during the external bus show cycle.

When an instruction fetch cycle that results from an indirect change-of-flow is an
access to external memory not resulting in a cache hit, the indirect change-of-flow
attribute is indicated by the value 0001 on the CT[0:3] pins.

Table 8-1 summarizes the encodings that represent the indirect change-of-flow at-
tribute. In all cases the AT1 pin is asserted (high), indicating the cycle is an instruc-
tion fetch cycle.

Refer to 8.1.3 Program Flow-Tracking Pins for more information on the use of
these pins for program flow tracking.

8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribute

Because certain sequential instructions (rfi, isync, mtmsr, and mtspr to CMPA –
CMPF, ICTRL, ECR, and DER) affect the machine in a manner similar to indirect

Table 8-1 Program Trace Cycle Attribute Encodings

CT[0:3] AT1 WR Type of Bus Cycle

0001 1 1 External bus cycle

01xx,
10xx,
110x

1 0 Show cycle on the external bus reflecting
an access to internal register or memory
or a cache hit
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-3

branch instructions, the processor marks these instructions as indirect branch in-
structions (VF = 101, see Table 8-3) and marks the subsequent instruction address
with the indirect change-of-flow attribute, as if it were an indirect branch target.
Therefore, when the processor detects one of these instructions, the address of the
following instruction is visible externally. This enables the reconstructing software
to correctly evaluate the effect of these instructions.

8.1.2 Instruction Fetch Show Cycle Control

Instruction fetch show cycles are controlled by the bits in the ICTRL and the state
of VSYNC, as illustrated in Table 8-2.

Note that when the value of the ISCTL field is changed (with the mtspr instruction),
the new value does not take effect until two instructions after the mtspr instruction.
The instruction immediately following mtspr is under control of the old ISCTL val-
ue.

In order to keep the pin count of the chip as low as possible, VSYNC is not imple-
mented as an external pin; rather, it is asserted and negated using the develop-
ment port serial interface. For more information on this interface refer to 8.3.5 Trap-
Enable Input Transmissions.

The assertion and negation of VSYNC forces the machine to synchronize and the
first fetch after this synchronization to be marked as an indirect change-of-flow cy-
cle and to be visible on the external bus. This enables the external hardware to syn-
chronize with the internal activity of the processor.

When either VSYNC is asserted or the ISCTL bits in the I-bus control register are
programmed to a value of 0b10, cycles resulting from an indirect change-of-flow
are shown on the external bus. By programming the ISCTL bits to show all indirect
flow changes, the user can thus ensure that the processor maintains exactly the
same behavior when VSYNC is asserted as when it is negated. The loss of perfor-
mance the user can expect from the additional external bus cycles is minimal.

For additional information on the ISCTL bits and the ICTRL register, refer to 8.8 De-
velopment Support Registers. For more information on the use of VSYNC during
program trace, refer to 8.1.4 External Hardware During Program Trace.

Table 8-2 Fetch Show Cycles Control

VSYNC ISCTL (Instruction Fetch
Show Cycle Control Bits)

Show Cycles Generated

X 00 All fetch cycles

X 01 All change-of-flow (direct & indirect)

X 10 All indirect change-of-flow

0 11 No show cycles are performed

1 11 All indirect change-of-flow
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-4 Revised 1 February 1999 REFERENCE MANUAL

8.1.3 Program Flow-Tracking Pins

The following sets of pins are used in program flow tracking:

• Instruction queue status pins (VF[0:2]) denote the type of the last fetched in-
struction or how many instructions were flushed from the instruction queue.

• History buffer flushes status pins (VFLS [0:1]) denote how many instructions
were flushed from the history buffer during the current clock cycle.

• Address type pin 1 (AT1) indicates whether the cycle is transferring an instruc-
tion or data.

• The write/read pin (WR), when asserted during an instruction fetch show cy-
cle, indicates the current cycle results from an indirect change-of-flow.

• Cycle type pins (CT[0:3]) indicate the type of bus cycle and are used to deter-
mine the address of an internal memory or register that is being accessed.

8.1.3.1 Instruction Queue Status Pins

Instruction queue status pins VF[0:2] indicate the type of the last fetched instruction
or how many instructions were flushed from the instruction queue. These status
pins are used for both functions because queue flushes occur only during clock cy-
cles in which there is no fetch type information to be reported.

Table 8-3 shows the possible instruction types.

Table 8-4 shows VF[0:2] encodings for instruction queue flush information.

Table 8-3 VF Pins Instruction Encodings

VF[0:2] Instruction Type VF Next Clock Will Hold

000 None More instruction type information

001 Sequential More instruction type information

010 Branch (direct or indirect) not taken More instruction type information

011 VSYNC was asserted/negated and therefore the
next instruction will be marked with the indirect
change-of-flow attribute

More instruction type information

100 Exception taken — the target will be marked with
the program trace cycle attribute

Queue flush information1

NOTES:
1. Unless next clock VF=111. See below.

101 Branch indirect taken, rfi, mtmsr, isync and in
some cases mtspr to CMPA-F, ICTRL, ECR, or
DER — the target will be marked with the indirect
change-of-flow attribute2

2. The sequential instructions listed here affect the machine in a manner similar to indirect branch instructions.
Refer to 8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribute.

Queue flush information1

110 Branch direct taken Queue flush information1

111 Branch (direct or indirect) not taken Queue flush information1
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-5

There is one special case in which although queue flush information is expected
on the VF[0:2] pins (according to the immediately preceding value on these pins),
regular instruction type information is reported. The only instruction type informa-
tion that can appear in this case is VF[0:2] = 111, indicating branch (direct or indi-
rect) not taken. Since the maximum queue flushes possible is five, identifying this
special case is not a problem.

8.1.3.2 History Buffer Flush Status Pins

History buffer flush status pins VFLS[0:1] indicate how many instructions are
flushed from the history buffer this clock. Table 8-4 shows VFLS encodings.

8.1.3.3 Flow-Tracking Status Pins in Debug Mode

When the processor is in debug mode, the VF[0:2] signals are low (000) and the
VFLS[0:1] signals are high (11).

If VSYNC is asserted or negated while the processor is in debug mode, this infor-
mation is reported as the first VF pins report when the processor returns to regular

Table 8-4 VF Pins Queue Flush Encodings

VF[0:2] Queue Flush Information

000 0 instructions flushed from instruction queue

001 1 instruction flushed from instruction queue

010 2 instructions flushed from instruction queue

011 3 instructions flushed from instruction queue

100 4 instructions flushed from instruction queue

101 5 instructions flushed from instruction queue

110 Reserved

111 Instruction type information1

NOTES:
1. Refer to Table 8-3.

Table 8-5 VFLS Pin Encodings

VFLS[0:1] History Buffer Flush Information

00 0 instructions flushed from history queue

01 1 instruction flushed from history queue

10 2 instructions flushed from history queue

11 Used for debug mode indication (FREEZE). Program trace
external hardware should ignore this setting.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-6 Revised 1 February 1999 REFERENCE MANUAL

mode. If VSYNC was not changed while the processor is in debug mode, the first
VF pins report is of an indirect branch taken (VF[0:2] = 101), appropriate for the rfi
instruction that is being issued. In both cases, the first instruction fetch after debug
mode is marked with the program trace cycle attribute and therefore is visible ex-
ternally.

8.1.3.4 Cycle Type, Write/Read, and Address Type Pins

Cycle type pins (CT[0:3]) indicate the type of bus cycle being performed. During
show cycles, these pins are used to determine the internal address being
accessed. Table 8-6 summarizes cycle type encodings.

Table 8-6 Cycle Type Encodings

CT[0:3] Description

0000 Normal external bus cycle

0001 If address type is data (AT1 = 0), this is a data access to the external bus
and the start of a reservation.
If address type is instruction (AT1=1), this cycle type indicates that an
external address is the destination of an indirect change-of-flow.

0010 External bus cycle to emulation memory replacing internal I-bus or L-bus
memory. An instruction access (AT1 = 1) with an address that is the target
of an indirect change-of-flow is indicated as a logic level zero on the WR
output.

0011 Normal external bus cycle access to a port replacement chip used for
emulation support.

0100 Access to internal I-bus memory. An instruction access (AT1 = 1) with an
address that is the target of an indirect change-of-flow is indicated as a
logic level zero on the WR output.

0101 Access to internal L-bus memory. An instruction access (AT1 = 1) with an
address that is the target of an indirect change-of-flow is indicated as a
logic level zero on the WR output.

0110 Cache hit on external memory address not controlled by chip selects. An
instruction access (AT1 = 1) with an address that is the target of an indirect
change-of-flow is indicated as a logic level zero on the WR output.

0111 Access to an internal register.

1000
1001
1010
1011
1100
1101

Cache hit on external memory address controlled by CSBOOT.
Cache hit on external memory address controlled by CS1.
Cache hit on external memory address controlled by CS2.
Cache hit on external memory address controlled by CS3.
Cache hit on external memory address controlled by CS4.
Cache hit on external memory address controlled by CS5.

An instruction access (AT1 = 1) with an address that is the target of an
indirect change-of-flow is indicated as a logic level zero on the WR output.

1110 Reserved

1111
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-7

Notice in Table 8-6 that during an instruction fetch (AT1 = 1) to internal memory or
to external memory resulting in a cache hit, a logic level of zero on the WR pin in-
dicates that the cycle is the result of an indirect change-of-flow. The indirect
change-of-flow attribute is also indicated by a cycle type encoding of 0001 when
AT1 = 1. Refer to 8.1.1.1 Marking the Indirect Change-of-Flow Attribute for ad-
ditional information.

8.1.4 External Hardware During Program Trace

When program trace is needed, external hardware needs to record the status pins
(VF[0:2] and VFLS[0:1]) of each clock and record the address of all cycles marked
with the indirect change-of-flow attribute.

Program trace can be used in various ways. Two types of traces that can be imple-
mented are the back trace and the window trace.

8.1.4.1 Back Trace

A back trace provides a record of the program trace before some event occurred.
An example of such an event is some system failure.

When a back trace is needed, the external hardware should start sampling the sta-
tus pins and the address of all cycles marked with the indirect change-of-flow at-
tribute immediately after reset is negated. Since the ISCTL field in the ICTRL has
a value of is 0b00 (show all cycles) out of reset, all cycles marked with the indirect
change-of-flow attribute are visible on the external bus. VSYNC should be asserted
sometime after reset and negated when the programmed event occurs. VSYNC
must be asserted before the ISCTL encoding is changed to 0b11 (no show cycles),
if such an encoding is selected.

Note that in case the timing of the programmed event is unknown, it is possible to
use cyclic buffers.

After VSYNC is negated, the trace buffer will contain the program flow trace of the
program executed before the programmed event occurred.

8.1.4.2 Window Trace

Window trace provides a record of the program trace between two events. VSYNC
should be asserted between these two events.

After VSYNC is negated, the trace buffer will contain information describing the
program trace of the program executed between the two events.

8.1.4.3 Synchronizing the Trace Window to Internal CPU Events

In order to synchronize the assertion or negation of VSYNC to an event internal to
the processor, internal breakpoints can be used together with debug mode. This
method is available only when debug mode is enabled. (Refer to 8.4 Debug Mode
Functions.)

The following steps enable the user to synchronize the trace window to events in-
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-8 Revised 1 February 1999 REFERENCE MANUAL

ternal to the processor:

1. Enter debug mode, either immediately out of reset or using the debug mode
request.

2. Program the hardware to break on the event that marks the start of the trace
window using the control registers defined in 8.8 Development Support
Registers.

3. Enable debug mode entry for the programmed breakpoint in the debug en-
able register (DER).

4. Return to the regular code run.
5. The hardware generates a breakpoint when the programmed event is de-

tected, and the machine enters debug mode.
6. Program the hardware to break on the event that marks the end of the trace

window.
7. Assert VSYNC.
8. Return to the regular code run. The first report on the VF pins is a VSYNC

(VF[0:2] = 011).
9. The external hardware starts sampling the program trace information upon

the report on the VF pins of VSYNC.
10. The hardware generates a breakpoint when the programmed event is de-

tected, and the machine enters debug mode.
11. Negate VSYNC.
12. Return to the regular code run. The first report on the VF pins is a VSYNC

(VF[0:2] = 011).
13. The external hardware stops sampling the program trace information upon

the report on the VF pins of VSYNC.

A second method allows the trace window to be synchronized to internal processor
events without stopping execution and entering debug mode at the two events.

1. Enter debug mode, either immediately out of reset or using the debug mode
request.

2. Program a watchpoint for the event that marks the start of the trace window
using the control registers defined in 8.8 Development Support Registers.

3. Program a second watchpoint for the event that marks the end of the trace
window.

4. Return to regular code execution by exiting debug mode.
5. The watchpoint logic signals the starting event by asserting the appropriate

watchpoint pin.
6. Upon detecting the first watchpoint, assert VSYNC using the development

port serial interface.
7. The external program trace hardware starts sampling the program trace in-

formation upon the report on the VF pins of VSYNC.
8. The watchpoint logic signals the ending event by asserting the appropriate

watchpoint pin.
9. Upon detecting the second watchpoint, negate VSYNC using the develop-

ment port serial interface.
10. The external program trace hardware stops sampling the program trace in-

formation upon the report on VF[0:1] of VSYNC.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-9

The second method is not as precise as the first method because of the delay be-
tween the assertion of the watchpoint pins and the assertion or negation of VSYNC
using the development port serial interface. It has the advantage, however, of al-
lowing the program to run in quasi-real time (slowed only by show cycles on the
external bus), instead of stopping execution at the starting and ending events.

8.1.4.4 Detecting the Trace Window Starting Address

For a back trace, the value of the status pins (VF[0:2] and VFLS[0:1]) and the ad-
dress of the cycles marked with the indirect change-of-flow attribute should be
latched starting immediately after the negation of reset. The starting address is the
first address in the program trace cycle buffer.

For a window trace, the value of the status pins and the address of the cycles
marked with the indirect change-of-flow attribute should be latched beginning im-
mediately after the first VSYNC is reported on the VF pins. The starting address of
the trace window should be calculated according to the first two VF pin reports.

Assume VF1 and VF2 are the two first VF pin reports and T1 and T2 are the ad-
dresses of the first two cycles marked with the indirect change-of-flow attribute that
were latched in the trace buffer. Use Table 8-7 to calculate the trace window start-
ing address.

8.1.4.5 Detecting the Assertion or Negation of VSYNC

Since the VF pins are used for reporting both instruction type information and
queue flush information, the external hardware must take special care when trying
to detect the assertion or negation of VSYNC. A VF[0:2] encoding of 011 indicates
the assertion or negation of VSYNC only if the previous VF[0:2] pin values were
000, 001, or 010.

8.1.4.6 Detecting the Trace Window Ending Address

The information on the VF and VFLS status pins changes every clock. Cycles
marked with the indirect change-of-flow are generated on the external bus only
when possible (when the SIU wins the arbitration over the external bus). Therefore,

Table 8-7 Detecting the Trace Buffer Starting Point

VF1 VF2 Starting Point Description

011
VSYNC

001
Sequential

T1 VSYNC asserted followed by a sequential
instruction. The starting address is T1.

011
VSYNC

110
Branch direct
taken

T1 – 4 +
offset(T1 – 4)

VSYNC asserted followed by a taken direct branch.
The starting address is the target of the direct
branch.

011
VSYNC

101
Branch indirect
taken

T2 VSYNC asserted followed by a taken indirect
branch. The starting address is the target of the
indirect branch.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-10 Revised 1 February 1999 REFERENCE MANUAL

there is some delay between the time it is reported on the status pins that a cycle
marked as program trace cycle will be performed on the external bus and the actual
time that this cycle can be detected on the external bus.

When the user negates VSYNC, the processor delays the report of the assertion
or negation of VSYNC on the VF pins until all addresses marked with the indirect
change-of-flow attribute have been made visible externally. Therefore, the external
hardware should stop sampling the value of the status pins (VF and VFLS) and the
address of the cycles marked with the program trace cycle attribute immediately
after the VSYNC report on the VF pins.

CAUTION
The last two instructions reported on the VF pins are not always valid.
Therefore, at the last stage of the reconstruction software, the last
two instructions should be ignored.

8.1.5 Compress

In order to store all the information generated on the pins during program trace (5
bits per clock + 30 bits per show cycle) a large memory buffer may be needed.
However, since this information includes events that were canceled, compression
can be very effective. External hardware can be added to eliminate all canceled in-
structions and report only on branches (taken and not taken), indirect flow change,
and the number of sequential instructions after the last flow change.

8.2 Watchpoint and Breakpoint Support

The RCPU provides the ability to detect specific bus cycles, as defined by a user
(watchpoints). It also provides the ability to conditionally respond to these watch-
points by taking an exception (internal breakpoints). Breakpoints can also be
caused by an event or state in a peripheral or through the development port (exter-
nal breakpoints, (i.e., breakpoints external to the processor)).

When a watchpoint is detected, it is reported to external hardware on dedicated
pins. Watchpoints do not change the timing or flow of the processor. Because bus
cycles on the internal MCU buses are not necessarily visible on the external bus,
the watchpoints are a convenient way to signal an external instrument (such as a
bus state analyzer or oscilloscope) that the internal bus cycle occurred.

An internal breakpoint occurs when a particular watchpoint is enabled to generate
a breakpoint. A watchpoint may be enabled to generate a breakpoint from a soft-
ware monitor or by using the development port serial interface. A watchpoint output
may also be counted. When the counter reaches zero, an internal breakpoint is
generated.

An external breakpoint occurs when a development system or external peripheral
requests a breakpoint through the development port serial interface. In addition, if
an on-chip peripheral requests a breakpoint, an external breakpoint is generated.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-11

All internal breakpoints are masked by the MSR[RI] bit unless the non-masked con-
trol bit (BRKNOMSK) in LCTRL2 is set. The development port maskable break-
point and breakpoints from internal peripherals are masked by the MSR[RI] bit. The
development port non-maskable breakpoint is not masked by this bit.

Figure 8-1 is a diagram of watchpoint and breakpoint support in the RCPU.

Figure 8-1 Watchpoint and Breakpoint Support in the RCPU

8.2.1 Watchpoints

Watchpoints are based on eight comparators on the I-bus and L-bus, two counters,
and two AND-OR logic structures. There are four comparators on the instruction
address bus (I-address), two comparators on the load/store address bus (L-ad-
dress), and two comparators on the load/store data bus (L-data).

BREAKPOINT

NON-MASKABLE BREAKPOINT

MSRRI

WATCHPOINTS

TO WATCHPOINTS

MASKABLE BREAKPOINT

DEVELOPMENT PORT TRAP ENABLE BITS

COUNTERS

(NON-MASKED CONTROL BIT)

SOFTWARE TRAP ENABLE BITS

TO CPU

INTERNAL

PERIPHERALS

X
X

X BIT WISE AND

BIT WISE ORXX

INTERNAL

WATCHPOINTS

LOGIC

DEVELOPMENT

PORT

LCTRL2

MSR

DEVELOPMENT

SYSTEM OR

EXTERNAL

PERIPHERALS

PINS

WATCH/BREAK SUPPORT
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-12 Revised 1 February 1999 REFERENCE MANUAL

The comparators are able to detect the following conditions: equal, not equal,
greater than, and less than. Greater than or equal and less than or equal are easily
obtained from these four conditions. (For more information refer to 8.2.1.3 Gener-
ating Six Compare Types.) Using the AND-OR logic structures, in range and out
of range detection (on address and on data) are supported. Using the counters, it
is possible to program a breakpoint to be generated after an event is detected a
predefined number of times.

The L-data comparators can operate on integer data, floating-point single-preci-
sion data, and the integer value stored using the stfiwx instruction. Integer com-
parisons can be performed on bytes, half words, and words. The operands can be
treated as signed or unsigned values.

The comparators generate match events. The I-bus match events enter the I-bus
AND-OR logic, where the I-bus watchpoints and breakpoint are generated. When
asserted, the I-bus watchpoints may generate the I-bus breakpoint. Two of them
may decrement one of the counters. When a counter that is counting one of the
I-bus watchpoints expires, the I-bus breakpoint is asserted.

The I-bus watchpoints and the L-bus match events (address and data) enter the
L-bus AND-OR logic where the L-bus watchpoints and breakpoint are generated.
When asserted, the L-bus watchpoints may generate the L-bus breakpoint, or they
may decrement one of the counters. When a counter that is counting one of the
L-bus watchpoints expires, the L-bus breakpoint is asserted.

L-bus watchpoints can be qualified by I-bus watchpoints. If qualified, the L-bus
watchpoint occurs only if the L-bus cycle was the result of executing an instruction
that caused the qualifying I-bus watchpoint.

A watchpoint progresses in the machine along with the instruction that caused it
(fetch or load/store cycle). Watchpoints are reported on the external pins when the
associated instruction is retired.

8.2.1.1 Restrictions on Watchpoint Detection

There are cases when the same watchpoint can be detected more than once dur-
ing the execution of a single instruction. For example, the processor may detect an
L-bus watchpoint on more than one transfer when executing a load/store multiple
or string instruction or may detect an L-bus watchpoint on more than one byte when
working in byte mode. In these cases only one watchpoint of the same type is re-
ported for a single instruction. Similarly, only one watchpoint of the same type can
be counted in the counters for a single instruction.

Since watchpoint events are reported upon the retirement of the instruction that
caused the event, and more than one instruction can retire from the machine in one
clock, separate watchpoint events may be reported in the same clock. Moreover,
the same event, if detected on more than one instruction (e.g., tight loops, range
detection), in some cases is reported only once. However, the internal counters still
count correctly.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-13

8.2.1.2 Byte and Half-Word Working Modes

Watchpoint and breakpoint support enables the user to detect matches on bytes
and half words even when accessed using a load/store instruction of larger data
widths, e.g. when loading a table of bytes using a series of load word instructions.

To use this feature the user needs to program the byte mask for each of the L-data
comparators and to write the needed match value to the correct half word of the
data comparator when working in half word mode and to the correct bytes of the
data comparator when working in byte mode.

Since bytes and half words can be accessed using a larger data width instruction,
the user cannot predict the exact value of the L-address lines when the requested
byte or half word is accessed. For example, if the matched byte is byte two of the
word and it is accessed using a load word instruction, the L-address value will be
of the word (byte zero). Therefore the processor masks the two least significant bits
of the L-address comparators whenever a word access is performed and the least
significant bit whenever a half word access is performed. Address range is support-
ed only when aligned according to the access size.

The following examples illustrate how to detect matches on bytes and half words.

1. A fully supported scenario:
Looking for:

Data size: Byte
Address: 0x0000 0003
Data value: greater than 0x07 and less than 0x0C

Programming option:
One L-address comparator = 0x0000 0003 and program for equal
One L-data comparator = 0xXXXX XXX7 and program for greater than
One L-data comparator = 0xXXXX XXXC and program for less than
Both byte masks = 0b0001
Both L-data comparators program to byte mode

Result: The event will be detected regardless of the instruction the compiler
chooses for this access

2. A fully supported scenario:
Looking for:

Data size: Half word
Address: greater than 0x0000 0000 and less than 0x0000 000C
Data value: greater than 0x4E20 and less than 0x9C40

Programming option:
One L-address comparator = 0x0000 0000 and program for greater than
One L-address comparator = 0x0000 000C and program for less than
One L-data comparator = 0x4E20 4E20 and program for greater than
One L-data comparator = 0x9C40 9C40 and program for less than
Both byte masks = 0b1111
Both L-data comparators program to half word mode

Result: The event will be detected correctly provided that the compiler does not use
a load/store instruction with data size of byte.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-14 Revised 1 February 1999 REFERENCE MANUAL

3. A partially supported scenario:
Looking for:

Data size: Half word
Address: greater than 0x0000 0002 and less than 0x0000 000E
Data value: greater than 0x4E20 and less than 0x9C40

Programming option:
One L-address comparator = 0x0000 0002 and program for greater than
One L-address comparator = 0x0000 000E and program for less than
One L-data comparator = 0x4E20 4E20 and program for greater than
One L-data comparator = 0x9C40 9C40 and program for less than
Both byte masks = 0b1111
Both L-data comparators program to half word mode or to word mode

Result: The event will be detected correctly if the compiler chooses a load/store
instruction with data size of half word. If the compiler chooses load/store instruc-
tions with data size greater than half word (word, multiple), there might be some
false detections. These can be ignored only by the software that handles the break-
points. Figure 8-2 illustrates this partially supported scenario.

Figure 8-2 Partially Supported Watchpoint/Breakpoint Example

8.2.1.3 Generating Six Compare Types

Using the four basic compare types (equal, not equal, greater than, less than), it is
possible to generate two additional compare types: “greater than or equal” and
“less than or equal.”

The “greater than or equal” compare type can be generated using the greater than
compare type and programming the comparator to the needed value minus one.

The “less than or equal” compare type can be generated using the less than com-
pare type and programming the comparator to the needed value plus one.

This method does not work for the following boundary cases:

• Less than or equal of the largest unsigned number (1111...1)
• Greater than or equal of the smallest unsigned number (0000...0)

WATCH/BREAK EXAMPLE

0x0000_0000
0x0000_0004
0x0000_0008
0x0000_000c
0x0000_0010

����������������������������
����������������������������

�������������������������������
�������������������������������

�����������������������������
�����������������������������

���������������������������
���������������������������

POSSIBLE FALSE DETECT ON THESE
HALF WORDS WHEN USING WORD/MULTIPLE
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-15

• Less than or equal of the maximum positive number when in signed mode
(0111...1)

• Greater than or equal of the maximum negative number when in signed mode
(1000...)

These boundary cases need no special support because they all mean “always
true” and can be programmed using the ignore option of the L-bus watchpoint pro-
gramming (refer to 8.8 Development Support Registers).

8.2.1.4 I-Bus Support Detailed Description

There are four I-bus address comparators (comparators A,B,C,D). Each is 30 bits
long and generates two output signals: equal and less than. These signals are
used to generate one of the following four events: equal, not equal, greater than,
less than. Figure 8-3 shows the general structure of I-bus support.

Figure 8-3 I-Bus Support General Structure

The I-bus watchpoints and breakpoint are generated using these events and ac-
cording to the user’s programming of the CMPA, CMPB, CMPC, CMPD, and IC-

COMPARATOR

EQ

LT

COMPARE TYPE

COMPARATOR

EQ

LT

COMPARATOR

EQ

LT

COMPARATOR

EQ

LT

E
V

E
N

T
S

 G
E

N
E

R
A

T
O

R

AND-OR

LOGIC

CONTROL BITS

A

B

(A&B)

(A | B)

C

D

(C&D)

(C | D)

I-WATCHPOINT 0

I-WATCHPOINT 1

I-BREAKPOINT

I-WATCHPOINT 2

I-WATCHPOINT 3

COMPARE

TYPE

LOGIC

COMPARE

TYPE

LOGIC

COMPARE

TYPE

LOGIC

COMPARE

TYPE

LOGIC
B

C

D

A

I-BUS SUPPORT
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-16 Revised 1 February 1999 REFERENCE MANUAL

TRL registers. Table 8-8 shows how watchpoints are determined from the
programming options. Note that using the OR option enables “out of range” detec-
tion.

8.2.1.5 L-Bus Support Detailed Description

There are two L-bus address comparators (comparators E and F). Each compares
the 32 address bits and the cycle’s read/write attribute. The two least significant
bits are masked (ignored) whenever a word is accessed, and the least significant
bit is masked whenever a half word is accessed. (For more information refer to
8.2.1.2 Byte and Half-Word Working Modes). Each comparator generates two
output signals: equal and less than. These signals are used to generate one of the
following four events (one from each comparator): equal, not equal, greater than,
less than.

There are two L-bus data comparators (comparators G and H). Each is 32 bits wide
and can be programmed to treat numbers either as signed values or as unsigned
values. Each data comparator operates as four independent byte comparators.
Each byte comparator has a mask bit and generates two output signals, equal and
less than, if the mask bit is not set. Therefore, each 32-bit comparator has eight
output signals.

These signals are used to generate the “equal and less than” signals according to
the compare size programmed by the user (byte, half word, word). In byte mode all
signals are significant. In half word mode only four signals from each 32-bit com-
parator are significant. In word mode only two signals from each 32-bit comparator
are significant.

From the new “equal and less than” signals, depending on the compare type pro-
grammed by the user, one of the following four match events is generated: equal,
not equal, greater than, less than. Therefore from the two 32-bit comparators, eight
match indications are generated: Gmatch[0:3], Hmatch[0:3].

According to the lower bits of the address and the size of the cycle, only match in-
dications that were detected on bytes that have valid information are validated; the

Table 8-8 I-bus Watchpoint Programming Options

Name Description Programming Options

IW0 First I-bus watchpoint Comparator A
Comparators (A&B)

IW1 Second I-bus watchpoint Comparator B
Comparator (A | B)

IW2 Third I-bus watchpoint Comparator C
Comparators (C&D)

IW3 Fourth I-bus watchpoint Comparator D
Comparator (C | D)
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-17

rest are negated. Note that if the cycle executed has a smaller size than the com-
pare size (e.g., a byte access when the compare size is word or half word) no
match indication is asserted.

Figure 8-4 shows the general structure of L-bus support.

Figure 8-4 L-Bus Support General Structure

Using the match indication signals, four L-bus data events are generated as shown
in Table 8-9.

COMPARATOR G

BYTE 0
EQ

LT

COMPARE SIZECOMPARE TYPE

BYTE 1
EQ

LT

BYTE 2
EQ

LT

BYTE 3
EQ

LT

EQ

LT

EQ

LT

EQ

LT

EQ

LT

COMPARATOR H

BYTE 0
EQ

LT

BYTE 1
EQ

LT

BYTE 2
EQ

LT

BYTE 3
EQ

LT

EQ

LT

EQ

LT

EQ

LT

EQ

LT

A
D

D
(3

0:
31

)

L-
B

U
S

 C
Y

C
LE

 S
IZ

E

C
O

M
P

A
R

E
 S

IZ
E

V
A

LI
D

 0

V
A

LI
D

 1

V
A

LI
D

 2
V

A
LI

D
 3

G

H

(G&H)

(G | H)

I-
B

U
S

 W
A

T
C

H
P

O
IN

T
S

L-WATCHPOINT 0

L-WATCHPOINT 1

L-BREAKPOINT

SIZE

LOGIC

COMPARE BYTE

QUALIFIER

LOGIC
E

V
E

N
T

S
 G

E
N

E
R

A
T

O
R

AND-OR LOGICSIZE

LOGIC

BYTE

QUALIFIER

LOGIC

C
O

N
T

R
O

L
B

IT
S

E F
(E

&
F

)

(E
 |

F
)

EVENTS

GENERATOR

LT EQ LT EQ

COMPARE TYPE

TYPE

LOGIC

COMPARE

TYPE

LOGIC

BYTE MASK

BYTE MASK

COMPARATOR E

TYPE LOGIC

COMPARATOR F

TYPE LOGIC

L-BUS SUPPORT
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-18 Revised 1 February 1999 REFERENCE MANUAL

The four L-bus data events together with the match events of the L-bus address
comparators and the I-bus watchpoints are used to generate the L-bus watchpoints
and breakpoint according to the user’s programming of the CMPE, CMPF, CMPG,
CMPH, LCTRL1, and LCTRL2 registers. Table 8-10 shows how the watchpoints
are determined from the programming options.

8.2.1.6 Treating Floating-Point Numbers
The data comparators can detect match events on floating-point single precision
values in floating point load/store instructions. When floating point values are com-
pared, the comparators must be programmed to operate in signed word mode.

During the execution of a load/store instruction of a floating-point double operand,
the L-data comparators never generate a match. If L-data events are programmed
for don’t care (i.e., LCTRL2[LWOLADC] = 0), L-bus watchpoint and breakpoint
events can be generated from the L-address events, even if the instruction is a
load/store double instruction.

Table 8-9 L-Bus Data Events

Event name Event Function1

NOTES:
1. ‘&’ denotes a logical AND, ‘|’ denotes a logical OR

G (Gmatch0 | Gmatch1 | Gmatch2 | Gmatch3)

H (Hmatch0 | Hmatch1 | Hmatch2 | Hmatch3)

(G&H) ((Gmatch0 & Hmatch0) | (Gmatch1 & Hmatch1) | (Gmatch2 & Hmatch2) | (Gmatch3 &
Hmatch3))

(G | H) ((Gmatch0 | Hmatch0) | (Gmatch1 | Hmatch1) | (Gmatch2 | Hmatch2) | (Gmatch3 | Hmatch3))

Table 8-10 L-Bus Watchpoints Programming Options

Name Description I-bus events
programming

options

L-address events
programming options

L-data events
programming options

LW0 First
L-bus

watchpoint

IW0, IW1, IW2, IW3
or don’t care

Comparator E
Comparator F

Comparators (E&F)
Comparators (E | F)

or don’t care

Comparator G
Comparator H

Comparators (G&H)
Comparators (G | H)

or don’t care

LW1 Second
L-bus

watchpoint

IW0, IW1, IW2, IW3
or don’t care

Comparator E
Comparator F

Comparators (E&F)
Comparators (E | F)

or don’t care

Comparator G
Comparator H

Comparators (G&H)
Comparators (G | H)

or don’t care
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-19

8.2.2 Internal Breakpoints
Internal breakpoints are generated from the watchpoints. The user may enable a
watchpoint to create a breakpoint by setting the associated software trap enable bit
in the ICTRL or LCTRL2 register. This can be done by a software monitor program
executed by the MCU. An external development tool can also enable internal
breakpoints from watchpoints by setting the associated development port trap en-
able bit using the development port serial interface.

Internal breakpoints can also be generated by assigning a breakpoint counter to a
particular watchpoint. The counter counts down for each watchpoint, and a break-
point is generated when the counter reaches zero.

An internal breakpoint progresses in the machine along with the instruction that
caused it (fetch or load/store cycle). When a breakpoint reaches the top of the his-
tory buffer, the machine processes the breakpoint exception.

An instruction that causes an I-bus breakpoint is not retired. The processor branch-
es to the breakpoint exception routine before it executes the instruction. An instruc-
tion that causes an L-bus breakpoint is executed. The processor branches to the
breakpoint exception routine after it executes the instruction. The address of the
load/store cycle that generated the L-bus breakpoint is stored in the breakpoint ad-
dress register (BAR).

8.2.2.1 Breakpoint Counters
There are two 16-bit down counters. Each counter is able to count one of the I-bus
watchpoints or one of the L-bus watchpoints. Both generate the corresponding
breakpoint when they reach zero. If the instruction associated with the watchpoint
is not retired, the counter is adjusted back so that it reflects actual execution.

In the masked mode, the counters do not count watchpoints detected when
MSR[RI] = 0. See 8.2.4 Breakpoint Masking.

When counting watchpoints programmed on the actual instructions that alter the
counters, the counters will have unpredictable values. A sync instruction should be
inserted before a read of an active counter.

8.2.2.2 Trap-Enable Programming
The trap enable bits can be programmed by regular, supervisor-level software (by
writing to the ICTRL or LCTRL2 with the mtspr instruction) or “on the fly” using the
development port interface. For more information on the latter method, refer to
8.3.5 Trap-Enable Input Transmissions.

The value used by the breakpoints generation logic is the bit-wise OR of the soft-
ware trap enable bits (the bits written using the mtspr) and the development port
trap enable bits (the bits serially shifted using the development port).

All bits, the software trap-enable bits and the development port trap enable bits,
can be read from ICTRL and the LCTRL2 using mfspr. For the exact bits place-
ment refer to Table 8-30 and Table 8-32.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-20 Revised 1 February 1999 REFERENCE MANUAL

8.2.2.3 Ignore First Match
In order to facilitate the debugger utilities of “continue” and “go from x”, the option
to ignore the first match is supported for the I-bus breakpoints. When an I-bus
breakpoint is first enabled (as a result of the first write to the I-bus support control
register or as a result of the assertion of the MSR[RI] bit in masked mode), the first
instruction will not cause an I-bus breakpoint if the IFM (ignore first match) bit in the
I-bus support control register (ICTRL) is set (used for “continue”). This allows the
processor to be stopped at a breakpoint and then later to “continue” from that point
without the breakpoint immediately stopping the processor again before executing
the first instruction.

When the IFM bit is cleared, every matched instruction can cause an I-bus break-
point (used for “go from x,” where x is an address that would not cause a break-
point).

The IFM bit is set by the software and cleared by the hardware after the first I-bus
breakpoint match is ignored.

Since L-bus breakpoints are treated after the instruction is executed, L-bus break-
points and counter-generated I-bus breakpoints are not affected by this mode.

8.2.3 External Breakpoints

Breakpoints external to the processor can come from either an on-chip peripheral
or from the development port. For additional information on breakpoints from on-
chip peripherals, consult the user’s manual for the microcontroller of interest or the
reference manual for the peripheral of interest.

The development port serial interface can be used to assert either a maskable or
non-maskable breakpoint. Refer to 8.3.5 Trap-Enable Input Transmissions for
more information about generating breakpoints from the development port. The de-
velopment port breakpoint bits remain asserted until they are cleared; however,
they cause a breakpoint only when they change from cleared to set. If they remain
set, they do not cause an additional breakpoint until they are cleared and set again.

External breakpoints are not referenced to any particular instruction; they are ref-
erenced to the current or following L-bus cycle. The breakpoint is taken as soon as
the processor completes an instruction that uses the L-bus.

8.2.4 Breakpoint Masking

The processor responds to two different types of breakpoints. The maskable
breakpoint is taken only if the processor is in a recoverable state. This means that
taking the breakpoint will not destroy any of the internal machine context. The pro-
cessor is defined to be in a recoverable state when the MSR[RI] (recoverable ex-
ception) bit is set. Maskable breakpoints are generated by the internal breakpoint
logic, modules on the IMB2, and the development port.

Non-maskable breakpoints cause the processor to stop without regard to the state
of the MSR[RI] bit. If the processor is in a non-recoverable state when the break-
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-21

point occurs, the state of the SRR0, SRR1, and the DAR may have been overwrit-
ten by the breakpoint. It will not be possible to restart the processor, since the
restart address and MSR context may not be available in SRR0 and SRR1.

Only the development port and the internal breakpoint logic are capable of gener-
ating a non-maskable breakpoint. This allows the user to stop the processor in cas-
es where it would otherwise not stop, but with the penalty that it may not be
restartable. The value of the MSR[RI] bit as saved in the SRR1 register indicates
whether the processor stopped in a recoverable state or not.

Internal breakpoints are made maskable or non-maskable by clearing or setting the
BRKNOMSK bit of the LCTRL2 register. Refer to 8.8.7 L-Bus Support Control
Register 2.

8.3 Development Port

The development port provides a full duplex serial interface for communications
between the internal development support logic, including debug mode, and an ex-
ternal development tool.

The relationship of the development support logic to the rest of the MCU is shown
in Figure 8-5. Although the development port is implemented as part of the system
interface unit (SIU), it is used in conjunction with RCPU development support fea-
tures and is therefore described in this section.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-22 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-5 Development Port Support Logic

8.3.1 Development Port Signals

The following development port signals are provided:

• Development serial clock (DSCK)
• Development serial data in (DSDI)
• Development serial data out (DSDO)

The development port signal DSDO shares a pin with the PLLL signal.

8.3.1.1 Development Serial Clock

In clocked mode (see 8.3.3 Development Port Clock Mode Selection), the de-
velopment serial clock (DSCK) is used to shift data into and out of the development

������������

��

DEVELOPMENT PORT

DEVELOPMENT PORT

��

RCPU

9

TECR

CONTROL LOGIC

SHIFT REGISTER
DSDI

DSCK

BKPT, TE,

VSYNC

PLLL/
DSDO

VFLS
(FRZ)

EXT
BUS

I-CACHE

L-BUS

I-BUS

32

32
SIU/
EBI

DEV SUPPORT LOGIC

�����������������������������

DEV SUPPORT SP s

BREAKPOINT LOGIC

SIU BUS

DEV
PORT
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-23

port shift register. The DSCK and DSDI inputs are synchronized to the on-chip sys-
tem clock, thereby minimizing the chance of propagating metastable states into the
serial state machine. The values of the pins are sampled during the low phase of
the system clock. At the rising edge of the system clock, the sampled values are
latched internally. One quarter clock later, the latched values are made available
to the development support logic.

In clocked mode, detection of the rising edge of the synchronized clock causes the
synchronized data from the DSDI pin to be loaded into the least significant bit of
the shift register. This transfer occurs one quarter clock after the next rising edge
of the system clock. At the same time, the new most significant bit of the shift reg-
ister is presented at the PLLL/DSDO pin. Future references to the DSCK signal im-
ply the internal synchronized value of the clock. The DSCK input must be driven
either high or low at all times and not allowed to float. A typical target environment
would pull this input low with a resistor.

To allow the synchronizers to operate correctly, the development serial clock fre-
quency must not exceed one half of the system clock frequency. The clock may be
implemented as a free-running clock. The shifting of data is controlled by ready and
start signals so the clock does not need to be gated with the serial transmissions.
(Refer to 8.3.5 Trap-Enable Input Transmissions and 8.3.6 CPU Input Trans-
missions.)

The DSCK pin is also used during reset to enable debug mode and immediately
following reset to optionally cause immediate entry into debug mode following re-
set. This is described in section 8.4.1 Enabling Debug Mode and 8.4.2 Entering
Debug Mode.

8.3.1.2 Development Serial Data In

Data to be transferred into the development port shift register is presented at the
development serial data in (DSDI) pin by external logic. To be sure that the correct
value is used internally, transitions on the DSDI pin should occur at least a setup
time ahead of the rising edge of the DSCK signal (if in clocked mode) or a setup
time ahead of the rising edge of the system clock, whichever is greater. This will
allow operation of the development port either asynchronously or synchronously
with the system clock. The DSDI input must be driven either high or low at all times
and not allowed to float. A typical target environment would pull this input low with
a resistor.

When the processor is not in debug mode (freeze not indicated on VFLS[0:1] pins)
the data received on the DSDI pin is transferred to the trap enable control register.
When the processor is in debug mode, the data received on the DSDI pin is pro-
vided to the debug mode interface. Refer to 8.3.5 Trap-Enable Input Transmis-
sions and 8.3.6 CPU Input Transmissions for additional information.

The DSDI pin is also used at reset to control overall chip reset configuration and
immediately following reset to determine the development port clock mode. See
8.3.3 Development Port Clock Mode Selection for more information.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-24 Revised 1 February 1999 REFERENCE MANUAL

8.3.1.3 Development Serial Data Out

When the processor is not in reset, the development port shifts data out of the de-
velopment port shift register using the development serial data out (PLLL/DSDO)
pin. When the processor is in reset, the PLLL/DSDO pin indicates the state of lock
of the system clock phase-locked loop. This can be used to determine when a reset
is caused by a loss of lock on the system clock PLL.

8.3.2 Development Port Registers

 The development port consists of two registers: the development port shift register
and the trap enable control register. These registers are described in the following
paragraphs. Figure 8-6 illustrates the development port registers and data paths.

Figure 8-6 Development Port Registers and Data Paths

DEV PORT REGISTER

LENGTH/STATUS0

CONTROL/STATUS1

SHIFT REGISTER (35 BITS)

INPUT AND OUTPUT 3-STATE BUFFERS (32 BITS)

START/READY

DSDI (INTERNAL)

D
S

C
K

D
S

D
I

P
LL

L/
D

S
D

O

D
E

V
E

LO
P

M
E

N
T

 P
O

R
T

 B
U

S

(TO SIU)

DSDO (INTERNAL)

SHIFT

32

32 (DATA)

(DEVELOPMENT PORT PINS)

TRAP ENABLES, VSYNC, BREAKPOINTS (9 BITS)

6 2

TRAP ENABLES [0:5] BREAKPOINTS

(TO RCPU)

7

H
A

N
D

S
H

A
K

E
 A

N
D

 B
U

S
 IN

T
E

R
F

A
C

E
 S

IG
N

A
LS

32

DEBUG BUS CONTROL
(OEs AND WEs)

32

VSYNC

SHIFT CONTROL

AND COUNTER

CLOCK
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-25

8.3.2.1 Development Port Shift Register
The development port shift register is a 35-bit shift register. Instructions and data
are shifted into it serially from DSDI. These instructions or data are then transferred
in parallel to the processor or the trap enable control register (TECR).

When the processor enters debug mode, it fetches instructions from the develop-
ment port shift register. These instructions are serially loaded into the shift register
from DSDI.

When the processor is in debug mode, data is transferred to the CPU by shifting it
into the shift register. The processor then reads the data as the result of executing
a “move from special purpose register DPDR” (development port data register) in-
struction.

In debug mode, data is also parallel loaded into the development port shift register
from the CPU by executing a “move to special purpose register DPDR” instruction.
It is then shifted out serially to PLLL/DSDO.

8.3.2.2 Trap Enable Control Register

The trap enable control register (TECR) is a nine-bit register that is loaded from the
development port shift register. The contents of the TECR are used to drive the six
trap enable signals, the two breakpoint signals, and the VSYNC signal to the pro-
cessor. Trap-enable transmissions to the development port cause the appropriate
bits of the development port shift register to be transferred to the control register.

8.3.3 Development Port Clock Mode Selection

All of the development port serial transmissions are clocked transmissions. The
transmission clock can be either synchronous or asynchronous with the system
clock (CLKOUT). The development port supports three methods for clocking the
serial transmissions. The first method allows the transmission to occur without be-
ing externally synchronized with CLKOUT but at more restricted data rates. The
two faster communication methods require the clock and data to be externally syn-
chronized with CLKOUT.

The first clock mode is called asynchronous clocked since the input clock (DSCK)
is asynchronous with CLKOUT. The input synchronizers on the DSCK and DSDI
pins sample the inputs to ensure that the signals used internally have no metasta-
ble oscillations. To be sure that data on DSDI is sampled correctly, transitions on
DSDI must occur a setup time ahead of the rising edge of DSCK. Data on DSDI
must also be held for one CLKOUT cycle plus one hold time after the rising edge
of DSCK. This ensures that after the signals have passed through the input syn-
chronizers, the data will be valid at the rising edge of the serial clock even if DSCK
and DSDI do not meet the setup and hold time requirements of the pins.

Asynchronous clocked mode allows communications with the port from a develop-
ment tool that does not have access to the CLKOUT signal or where the CLKOUT
signal has been delayed or skewed. Because of the asynchronous nature of the
inputs and the setup and hold time requirements on DSDI, this clock mode must
be clocked at a frequency less than or equal to one third of CLKOUT.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-26 Revised 1 February 1999 REFERENCE MANUAL

The second clock mode is called synchronous clocked because the input clock and
input data meet all setup and hold time requirements with respect to CLKOUT.
Since the input synchronizers must sample the input clock in both the high and low
state, DSCK cannot be faster than one half of CLKOUT.

The third clock mode is called synchronous self-clocked because it does not re-
quire an input clock. Instead, the port is clocked by the system clock. The DSDI in-
put is required to meet all setup and hold time requirements with respect to
CLKOUT. The data rate for this mode is always the same as the system clock rate,
which is at least twice as fast as in synchronous clocked mode. In this mode, an
undelayed CLKOUT signal must be available to the development tool, and extra
care must be taken to avoid noise and crosstalk on the serial lines.

The selection of clocked or self-clocked mode is made immediately following reset.
The state of the DSDI input is latched eight clocks after RESETOUT is negated. If
it is latched low, external clocked mode is enabled. If it is latched high then self
clocked mode is enabled. When external clocked mode is enabled, the use of
asynchronous or synchronous mode is determined by the design of the external
development tool.

Since DSDI is used during reset to configure the MCU and to select the develop-
ment port clocking scheme, it is necessary to prevent any transitions on DSDI dur-
ing this time from being recognized as the start of a serial transmission. The port
does not begin scanning for the start bit of a serial transmission until 16 clocks after
the negation of RESETOUT. If DSDI is asserted 16 clocks after RESETOUT nega-
tion, the port will wait until DSDI is negated to begin scanning for the start bit.

The selection of clocked/self clocked mode is shown in Figure 8-7. The timing di-
agrams in Figure 8-8, Figure 8-9, and Figure 8-10 show the serial communica-
tions for both trap enable mode and debug mode for all clocking schemes.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-27

Figure 8-7 Enabling Clock Mode Following Reset

Examples of serial communications using the three clock modes are shown in Fig-
ure 8-8, Figure 8-9, and Figure 8-10.

CLOCK MODE AFTER RESET TIM

DSDI

OUT
CLK

SRESET

 DSDI PRIOR TO RESETOUT DETERMINES PART CONFIGURATION MODE.

 DSDI NEGATES FOLLOWING RESETOUT NEGATION TO ENABLE CLOCKED MODE.

CLKEN

INTERNAL CLOCK ENABLE SIGNAL ASSERTS 8 CLOCKS AFTER RESETOUT NEGATION

RESET

BECAUSE DSDI IS NEGATED. THIS ENABLES CLOCKED MODE.

��
��
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-28 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-8 Asynchronous Clocked Serial Communications

In Figure 8-8, the frequency on the DSCK pin is equal to CLKOUT frequency di-
vided by three. This is the maximum frequency allowed for the asynchronous
clocked mode. DSCK and DSDI transitions are not required to be synchronous with
CLKOUT.

ASYNC SER COM TIM

DSCK

DSDI

PLLL/

LENGTH CNTRL DI<0>

S<0> S<1> DO<0>

START

READY

OUT
CLK

DSDO

SYNC
DSCK

SYNC LENGTH CNTRL DI<0>STARTDSDI

NT S/R
CLK

DEBUG PORT DRIVES “READY” BIT ONTO PLLL/DSDO WHEN READY FOR A NEW TRANSMISSION.

DEBUG PORT DETECTS THE “START” BIT ON DSDI AND FOLLOWS
THE “READY” BIT WITH TWO STATUS BITS AND N OUTPUT DATA BITS.

DEVELOPMENT TOOL DRIVES THE “START” BIT ON DSDI (AFTER DETECTING “READY” BIT
PLLL/DSDO WHEN IN DEBUG MODE). THE “START” BIT IS IMMEDIATELY FOLLOWED BY
A LENGTH BIT AND A CONTROL BIT AND THEN N (7 OR 32) INPUT DATA BITS.

DI DI DI
<N><N-1><N-2>

DI DI DI
<N><N-1><N-2>

DO DO DO
<N><N-1><N-2>
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-29

Figure 8-9 Synchronous Clocked Serial Communications

In Figure 8-9, the frequency on the DSCK pin is equal to CLKOUT frequency di-
vided by two. DSDI and DSCK transitions must meet setup and hold timing require-
ments with respect to CLKOUT.

SYNC SER COM TIM

DEBUG PORT DRIVES “READY” BIT ONTO PLLL/DSDO WHEN READY FOR A NEW TRANSMISSION.

DSCK

DSDI

PLLL/

LENGTH CNTRL DI<0>

S<0> S<1> DO<0>

START

READY

DI DI DI

DO DO DO

DEBUG PORT DETECTS THE “START” BIT ON DSDI AND FOLLOWS
THE “READY” BIT WITH TWO STATUS BITS AND N (7OR 32) OUTPUT

OUT
CLK

DO<1>
DSDO

SYNC
DSCK

SYNC LENGTH CNTRL DI<0>START
DI DI DI

DSDI

DI<1>

NT S/R
CLK

DI
DI<1>

DI <N><N-1><N-2>
I

<N><N-1><N-2><N-3>

<N><N-1><N-2>
DO

<N-3>

<-3>

DEVELOPMENT TOOL DRIVES THE “START” BIT ON DSDI (AFTER DETECTING “READY” BIT
PLLL/DSDO WHEN IN DEBUG MODE). THE “START” BIT IS IMMEDIATELY FOLLOWED BY
A LENGTH BIT AND A CONTROL BIT AND THEN N (7 OR 32) INPUT DATA BITS.

BITS.DATA
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-30 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-10 Synchronous Self-Clocked Serial Communications

In Figure 8-10, the DSCK pin is not used, and the transmission is clocked by CLK-
OUT. DSDI transitions must meet setup and hold timing requirements with respect
to CLKOUT.

8.3.4 Development Port Transmissions

The development port starts communications by setting PLLL/DSDO (the ready bit,
or MSB of the 35 bit development port shift register) low to indicate that all activity
related to the previous transmission is complete and that a new transmission may
begin. The start of a serial transmission from an external development tool to the
development port is signaled by a start bit on the DSDI pin.

The start bit also signals the development port that it can begin driving data on the
DSDO pin. While data is shifting into the LSB of the shift register from the DSDI pin,
it is simultaneously shifting out of the MSB of the shift register onto the DSDO pin.

A length bit defines the transmission as being to either the trap-enable register
(length bit = 1, indicating 7 data bits) or the CPU (length bit = 0, indicating 32 data
bits). Transmissions of data and instructions to the CPU are allowed only when the
processor is in debug mode. The two types of transmissions are discussed in 8.3.5
Trap-Enable Input Transmissions and 8.3.6 CPU Input Transmissions.

SYNC S SER COM T

OUT
CLK 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 342 3 14

DEVELOPMENT TOOL DRIVES THE “START” BIT ON DSDI (AFTER DETECTING “READY” BIT ON

DEBUG PORT DRIVES “READY” BIT ONTO PLLL/DSDO WHEN CPU READY FOR A NEW

DSDI

PLLL/ S<0> S<1> DO<0>READY DO DO DO

DEBUG PORT DETECTS THE “START” BIT ON DSDI AND FOLLOWS
THE “READY” BIT WITH TWO STATUS BITS AND N (7 OR 32) OUTPUT

DO
DSDO

SYNC LENGTHCNTRL DI<0>START DI DI DI
DSDI DI<1>

NT S/R
CLK

DI

DO

LENGTHCNTRL DI<0>START DI DI DIDI<1> DI

DO<

1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 342 31

<N><N-1><N-2><N-3><N-4>

<N><N-1><N-2><N-3><-4>

<N><N-1><N-2><N-3>DI<

PLLL/DSDO WHEN IN DEBUG MODE). THE “START” BIT IS IMMEDIATELY FOLLOWED BY
A LENGTH BIT AND A CONTROL BIT AND THEN N (7 OR 32) INPUT DATA BITS.

DATA BITS.

TRANSMISSION.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-31

8.3.5 Trap-Enable Input Transmissions

If the length bit is set, the input transmission will only be 10 bits long. These trap-
enable transmissions into the development port include a start bit, a length bit, a
control bit, and seven data bits. Only the seven data bits are shifted into the 35-bit
shift register. These seven bits are then latched into the TECR. The control bit de-
termines whether the data is latched into the trap enable and VSYNC bits of the
TECR or into the breakpoints bits of the TECR, as shown in Table 8-11 and Table
8-12.

8.3.6 CPU Input Transmissions

If the length bit in the serial input sequence is cleared, the transmission is an input
to the CPU. This transmission type is legal only when the processor is in debug
mode.

For transmissions to the CPU, the 35 bits of the development port shift register are
interpreted as a start bit, a length bit, a control bit, and 32 bits of instructions or da-
ta. The encoding of data shifted into the development port shift register (through
the DSDI pin) is shown in Table 8-13.

Table 8-11 Trap Enable Data Shifted Into Development Port Shift Register

Start Length Control 1st 2nd 3rd 4th 1st 2nd

V
S

Y
N

C

Usage

I-bus L-bus

Watchpoint Trap Enables

1 1 0 0 = disabled; 1 = enabled
Input data for trap enable

control register

Table 8-12 Breakpoint Data Shifted Into Development Port Shift Register

Start Length Control Non-
Maskable

Maskable Reserved bits Usage

Breakpoints

1 1 1
0 = negate; 1 = assert

1 1 1 1 1
Input data for trap enable

control register

Table 8-13 CPU Instructions/Data Shifted into Shift Register

Start Length Control Instruction/Data (32 Bits) Usage

1 0 0 CPU Instruction Input instruction for the CP

1 0 1 CPU Data Input data for the CPU
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-32 Revised 1 February 1999 REFERENCE MANUAL

The control bit differentiates between instructions and data and allows the devel-
opment port to detect that an instruction was entered when the CPU was expecting
data and vice versa. If this occurs, a sequence error indication is shifted out in the
next serial transmission.

8.3.7 Serial Data Out of Development Port — Non-Debug Mode

The encoding of data shifted out of the development port shift register when the
processor is not in debug mode is shown in Table 8-14.

When the processor is not in debug mode, the sequencing error encoding indicates
that the transmission from the external development tool was a transmission to the
CPU (length = 0). When a sequencing error occurs, the development port ignores
the data being shifted in while the sequencing error is shifting out.

The null output encoding is used to indicate that the previous transmission did not
have any associated errors.

When the processor is not in debug mode, the ready bit is asserted at the end of
each transmission. If debug mode is not enabled and transmission errors can be
guaranteed not to occur, the status output is not needed, and the DSDO pin can
be used for untimed I/O.

8.3.8 Serial Data Out of Development Port — Debug Mode

The encoding of data shifted out of the development port shift register when the
processor is in debug mode is shown in Table 8-14.

Table 8-14 Status Shifted Out of Shift Register — Non-Debug Mode

Ready Status [0:1] Data (7 or 32 Bits1)

NOTES:
1. Depending on input mode.

Indication

(0) 0 1 Ones Sequencing Error

(0) 1 1 Ones Null
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-33

8.3.8.1 Valid Data Output

The valid data encoding is used when data has been transferred from the CPU to
the development port shift register. This is the result of executing an instruction in
debug mode to move the contents of a general purpose register to the develop-
ment port data register (DPDR).

The valid data encoding has the highest priority of all status outputs and is reported
even if an exception occurs at the same time. Any exception that is recognized dur-
ing the transmission of valid data is not related to the execution of an instruction.
Therefore, a status of valid data is output and the CPU exception status is saved
for the next transmission. Since it is not possible for a sequencing error to occur
and for valid data to be received on the same transmission, there is no conflict be-
tween a valid data status and the sequencing error status.

8.3.8.2 Sequencing Error Output

The sequencing error encoding indicates that the inputs from the external develop-
ment tool are not what the development port or the CPU was expecting. Two cases
could cause this error:

1) the processor was trying to read instructions and data was shifted into the
development port, or

2) the processor was trying to read data and an instruction was shifted into the
development port.

When a sequencing error occurs, the port terminates the CPU read or fetch cycle
with a bus error. This bus error causes the CPU to signal the development port that
an exception occurred. Since a status of sequencing error has a higher priority than
a status of exception, the port reports the sequencing error. The development port
ignores the data being shifted in while the sequencing error is shifting out. The next
transmission to the port should be a new instruction or trap enable data.

Table 8-16 illustrates a typical sequence of events when a sequencing error oc-
curs. This example begins with CPU data being shifted into the shift register (con-
trol bit = 1) when the processor is expecting an instruction. During the next

Table 8-15 Status/Data Shifted Out of Shift Register

Ready Status [0:1] Data (7 or 32 Bits1)

NOTES:
1. Depending on input mode.

Indication

(0) 0 0 Data Valid Data from CPU

(0) 0 1 Ones Sequencing Error

(0) 1 0 Ones CPU Exception

(0) 1 1 Ones Null
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-34 Revised 1 February 1999 REFERENCE MANUAL

transmission, a sequencing error is shifted out of the development port, and the
data shifted into the shift register is thrown away. During the third transmission, the
“CPU exception” status is output, and again the data shifted into the shift register
is thrown away. During the fourth transmission, an instruction is again shifted into
the development port and fetched by the CPU for execution. Notice in this example
that the development port throws away the first two input transmissions following
the one causing the sequencing error.

8.3.8.3 CPU Exception Output

The CPU exception encoding is used to indicate that the CPU encountered an ex-
ception during the execution of the previous instruction in debug mode. Exceptions
may occur as the result of instruction execution (such as unimplemented opcode
or arithmetic error), because of a memory access fault, or from an external inter-
rupt. The exception is recognized only if the associated bit in the DER is set. When
an exception occurs, the development port ignores the data being shifted in while
the CPU exception status is shifting out. The port terminates the current CPU ac-
cess with a bus error. The next transmission to the port should be a new instruction
or trap enable data.

8.3.8.4 Null Output

Finally, the null encoding is used to indicate that no data has been transferred from
the CPU to the development port shift register. It also indicates that the previous
transmission did not have any associated errors.

8.3.9 Use of the Ready Bit

To minimize the overhead required to detect and correct errors, the external devel-
opment system should wait for the ready bit on DSDO before beginning each input
transmission. This ensures that all CPU activity (if any) relative to the previous
transmission has been completed and that any errors have been reported.

Table 8-16 Sequencing Error Activity

Trans # Input to
Development

Port

Output from
Development

Port

Port Action CPU Action

1 CPU Data
(Control bit = 1)

Depends on
previous
transmissions

Cause bus error, set
sequence error latch

Fetch instruction, take
exception because of bus
error

2 X (Thrown away) Sequencing Error Set exception latch, clear
sequencing error latch

Signal exception to port,
begin new fetch from port

3 X (Thrown away) CPU Exception Clear exception latch Continue to wait for
instruction from port

4 CPU instruction Null Send instruction to CPU
at end of transmission

Fetch instruction from port
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-35

When the ready bit is used to pace the transmissions, the error status is reported
during the transmission following the error. Since any transmission into the port
which occurs while shifting out an error status is ignored by the port, the error han-
dler in the external development tool does not need to undo the effects of an inter-
vening instruction.

To improve system performance, however, an external development system may
begin transmissions before the ready bit is asserted. If the next transmission does
not wait until the port indicates ready, the port will not assert ready again until this
next transmission completes and all activity associated with it has finished. Trans-
missions that begin before ready is asserted on DSDI are subject to the following
limitations and problems.

First, if the previous transmission results in a sequence error, or the CPU reports
an exception, that status may not be reported until two transmissions after the
transmission that caused the error. (When the ready bit is used, the status is re-
ported in the following transmission.) This is because an error condition which oc-
curs after the start of a transmission cannot be reported until the next transmission.

Second, if a transmitted instruction causes the CPU to write to the DPDR and the
transmission that follows does not wait for the assertion of ready, the CPU data
may not be latched into the development port shift register, and the valid data sta-
tus is not output. Despite this, no error is indicated in the status outputs.To ensure
that the CPU has had enough time to write to the DPDR, there must be at least four
CLKOUT cycles between when the last bit of the instruction (move to SPR) is
clocked into the port and the time the start bit for the next transmission is clocked
into the port.

8.4 Debug Mode Functions

In debug mode, the CPU fetches all instructions from the development port. In ad-
dition, data can be read from and written to the development port. This allows
memory and registers to be read and modified by an external development tool
(emulator) connected to the development port.

8.4.1 Enabling Debug Mode

Debug mode is enabled by asserting the DSCK pin during reset. The state of this
pin is sampled immediately before the negation of RESETOUT. If the DSCK pin is
sampled low, debug mode is disabled until a subsequent reset when the DSCK pin
is sampled high. When debug mode is disabled, the internal watchpoint/breakpoint
hardware is still operational and can be used by a software monitor program for de-
bugging purposes.

The DSCK pin is sampled again eight clock cycles following the negation of
RESETOUT. If DSCK is negated following reset, the processor jumps to the reset
vector and begins normal execution. If DSCK is asserted following reset and debug
mode is enabled, the processor enters debug mode before executing any instruc-
tions.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-36 Revised 1 February 1999 REFERENCE MANUAL

A timing diagram for enabling debug mode is shown in Figure 8-11.

Figure 8-11 Enabling Debug Mode at Reset

8.4.2 Entering Debug Mode

Debug mode is entered whenever debug mode is enabled, an exception occurs,
and the corresponding bit is set in the debug enable register (DER).The processor
performs normal exception processing, i.e., saving the next instruction address
and the current state of MSR in SRR0 and SRR1 and modifying the contents of the
MSR. The processor then enters debug mode and fetches the next instruction from
the development port instead of from the vector address. The exception cause reg-
ister (ECR) shows which event caused entry into debug mode. The freeze indica-
tion is encoded on the VFLS pins to show that the CPU is in debug mode.

Debug mode may also be entered immediately following reset. If the DSCK pin
continues to be asserted following reset (after debug mode is enabled), the proces-
sor takes a breakpoint exception and enters debug mode directly after fetching (but
not executing) the reset vector. To avoid entering debug mode following reset, the
DSCK pin must be negated no later than seven clock cycles after RESETOUT is
negated.

A timing diagram for entering debug mode following reset is shown in Figure 8-12.

DEBUG MODE AT RESET TIM

DSCK

OUT
CLK

SRESET

DSCK ASSERTED PRIOR TO RESETOUT NEGATION ENABLES

DEBUG MODE IS ENABLED IF DSCK IS HIGH

DSCK IS NEGATED WITHIN 8 CLOCKS FOLLOWING RESETOUT NEGATION TO AVOID ENTRY INTO

DM_EN

NMBKPT

INTERNAL BREAKPOINT SIGNAL DOES NOT ASSERT BECAUSE DSCK IS NEGATED LESS THAN 8 CLOCKS

RESET

AFTER RESETOUT NEGATION (THEREFORE CPU DOES NOT ENTER DEBUG MODE FOLLOWING RESET).

BEFORE RESETOUT NEGATES.

DEBUG MODE.

IMMEDIATELY

DEBUG MODE.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-37

Figure 8-12 Entering Debug Mode Following Reset

8.4.3 Debug Mode Operation

In debug mode, the CPU fetches instructions from the development port. It can also
read and write data at the development port. In debug mode the prefetch mecha-
nism in the CPU is disabled. This forces all data accesses to the development port
to occur immediately following the fetch of the associated instruction.

In debug mode, if an exception occurs during the execution of an instruction, nor-
mal exception processing does not result. (That is, the processor does not save the
MSR and instruction address and does not branch to the exception handler.) In-
stead, a flag is set that results in a CPU exception status indication in the data shift-
ed out of the development port shift register. The same thing happens if the
processor detects an external interrupt. (This can occur only when the associated
DER bit is clear and MSR[EE] is set.) When the data in the development port shift
register is shifted out, the exception status is detected by the external development
tool. The cause of the exception can be determined by reading the ECR.

DEBUG MODE AFTER RESET TIM

DSCK

OUT
CLK

SRESET

DSCK ASSERTED PRIOR TO RESETOUT NEGATION ENABLES

DEBUG MODE IS ENABLED IF DSCK IS ASSERTED

DSCK STAYS ASSERTED FOR AT LEAST 8 CLOCK CYCLES FOLLOWING RESETOUT NEGATION

DM_EN

NMBKPT

INTERNAL BREAKPOINT SIGNAL ASSERTS BECAUSE DSCK STAYS ASSERTED FOR AT LEAST

RESET

8 CLOCK CYCLES AFTER RESETOUT NEGATION (THEREFORE CPU WILL ENTER DEBUG MODE

IMMEDIATELY BEFORE RESETOUT NEGATES.

VFLS
[0:1]

DEBUG MODE ENTRY IS INDICATED BY VFLS [0:1] BOTH HIGH

TO CAUSE ENTRY INTO DEBUG MODE.

FOLLOWING RESET).

DEBUG MODE.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-38 Revised 1 February 1999 REFERENCE MANUAL

8.4.4 Freeze Function

While the processor is in debug mode, the freeze indication is broadcast through-
out the MCU. This signal is generated by the CPU when debug mode is entered,
or when a software debug monitor program is entered as the result of an exception
and the associated bit in the DER is set. The software monitor can only assert
freeze when debug mode is not enabled. Refer to 8.7 Software Monitor Support
for more information.

Freeze is indicated by the value 11 on the VFLS[0:1] pins. This encoding is not
used for pipeline tracking and is left on the VFLS[0:1] pins when the processor is
in debug mode. Figure 8-14 shows how the internal freeze signal is generated.

8.4.5 Exiting Debug Mode

Executing the rfi instruction in debug mode causes the processor to leave debug
mode and return to normal execution. The freeze indication on the VFLS pins is
negated to indicate that the CPU has exited debug mode.

Software must read the ECR (to clear it) before executing the rfi instruction. Oth-
erwise, if a bit in the ECR is asserted and its corresponding enable bit in the DER
is also asserted, the processor re-enters debug mode and re-asserts the freeze
signal immediately after executing the rfi instruction.

8.4.6 Checkstop State and Debug Mode

When debug mode is disabled, the processor enters the checkstop state if, when
a machine check exception is detected, the machine check exception is disabled
(MSR[ME] = 0). However, when debug mode is enabled, if a machine check ex-
ception is detected when MSR[ME] = 0 and the checkstop enable bit in the DER is
set, the processor enters debug mode rather than the checkstop state. This allows
the user to determine why the checkstop state was entered. Table 8-17 shows
what happens when a machine check exception occurs under various conditions.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-39

8.5 Development Port Transmission Sequence

The following sections describe the sequence of events for communication with the
development port in both debug and normal mode and provide specific sequences
for prologues, epilogues, and poking and peeking operations.

8.5.1 Port Usage in Debug Mode

The sequence of events for communication with the development port in debug
mode (freeze is indicated on the VFLS pins) is shown in Table 8-18. The sequence
starts with the processor trying to read an instruction in step one. The sequence
ends when the processor is ready to read the next instruction. Reading an instruc-
tion is the first action the processor takes after entering debug mode. The proces-
sor and development port activity is determined by the instruction or data shifted
into the shift register. The instruction or data shifted into the shift register also de-
termines the status shifted out during the next transmission. The next step column
indicates which step has the appropriate status response.

Table 8-17 Checkstop State and Debug Mode

MSR[ME] Debug
Mode

Enable

CHSTPE1

NOTES:
1. Checkstop enable bit in the DER

MCIE2

2. Machine check interrupt enable bit in the DER

Action Performed
when CPU Detects a

Machine Check Interrupt

ECR Value

0 0 X X Enter the checkstop state 0x2000 0000

0 1 0 X Enter the checkstop state 0x2000 0000

0 1 1 X Enter debug mode 0x2000 0000

1 0 X X Take machine check exception 0x1000 0000

1 1 X 0 Take machine check exception 0x1000 0000

1 1 X 1 Enter debug mode 0x1000 0000
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-40 Revised 1 February 1999 REFERENCE MANUAL

Table 8-18 Debug Mode Development Port Usage

This
Step

Serial Data Shifted In
(DSDO indicates

“READY”)

Shifted Out
This

Transmission

Development Port Activity;
Processor Activity

Next
Step

1 CPU instruction (non-
DPDR)

Null Port transfers instruction to CPU;
CPU executes instruction, fetches next
instruction

1

CPU instruction (DPDR
read)

Port transfers instruction to CPU;
CPU executes instruction, reads DPDR

2

CPU instruction (DPDR
write)

Port transfers instruction to CPU;
CPU writes DPDR, fetches next instruction

3

CPU instruction
(instruction execution
causes exception)

Port transfers instruction to CPU;
CPU signals exception to port, fetches
next instruction

4

Data for CPU Port ignores data, terminates fetch with
error, latches sequence error;
CPU signals exception to port, fetches
next instruction

5

Data for Trap Enable
Control Register

Port updates Trap Enable Control
Register;
CPU waits (continues fetch)

1

2 Any CPU instruction Null Port ignores data, terminates DPDR read
with error;
latches sequence error;
CPU signals exception to port, fetches
next instruction

5

Data for CPU Port transfers data to CPU;
CPU reads data from DPDR, fetches next
instruction

1

Data for trap enable
control register

Port updates TECR
CPU waits (continue data read)

2

RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-41

8.5.2 Debug Mode Sequence Diagram

The sequence of activity shown in Table 8-18 is summarized below in Figure 8-
13. The numbers in the large circles correspond to the steps in Table 8-18. The
letters in the large circles indicate the status that will be shifted out during the trans-
mission. The letters in the small circles show the activity of the development port
and the CPU as a result of the transmission.

3 CPU instruction (non-
DPDR)

CPU data Port transfers instruction to CPU;
CPU executes instruction, fetches next
instruction

1

CPU instruction (DPDR
read)

Port transfers instruction to CPU;
CPU executes instruction, reads DPDR

2

CPU instruction (DPDR
write)

Port transfers instruction to CPU;
CPU writes DPDR, fetches next instruction

3

CPU instruction (with
exception)

Port transfers instruction to CPU;
CPU signals exception to port, fetches
next instruction

4

Data for CPU Port ignores data, terminates fetch with
error, latches sequence error;
CPU signals exception to port, fetches
next instruction

5

Data for trap enable
control register

7 MSB of CPU
data

Port updates TECR;
CPU waits (continues fetch)

1

4 Any (ignored by port) Exception Port ignores data;
CPU waits (continues fetch)

1

5 Any (ignored by port) Sequence
Error

Port ignores data;
CPU waits (continues fetch)

4

Table 8-18 Debug Mode Development Port Usage (Continued)

This
Step

Serial Data Shifted In
(DSDO indicates

“READY”)

Shifted Out
This

Transmission

Development Port Activity;
Processor Activity

Next
Step
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-42 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-13 General Port Usage Sequence Diagram

8.5.3 Port Usage in Normal (Non-Debug) Mode

The sequence of events for communication with the development port when the
CPU is not in debug mode (freeze is not indicated on the VFLS pins) is shown be-
low in Table 8-18. Note that any instructions or data for the CPU result in a se-
quence error status response when the processor is not in debug mode. Only data
for the trap enable control register is allowed.

2 3 5

1

TRAP ENABLE
CPU

CPU DATA

DPDR READ

DPDR WRITE
INSTRUCTION ANY INSTRUCTION

WITH EXCEPTION

CPU
INSTR

INSTRUCTION

CPU
DATA

TRAP
ENABLE

NON DPDR
INSTRUCTION

4

CPU
INSTR

CPU
DATA

INSTRUCTION

DATA

DATA

TRAP
ENABLE

DATA

N - SHIFT OUT NULL STATUS

I - TRANSFER INSTR TO CPU
R - TRANSFER DATA TO CPU (READ)

E - TERMINATE CPU READ WITH ERROR

T - TRANSFER DATA TO TECR

L - LATCH SEQUENCE ERROR

D - SHIFT OUT DATA FROM CPU

X - SHIFT OUT EXCEPTION STATUS
S - SHIFT OUT SEQUENCE ERROR STATUS

N

N D X S

T I EL

TTR

PORT USAGE STATE
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-43

8.6 Examples of Debug Mode Sequences

The tables that follow show typical sequences of instructions that are used in a de-
velopment activity. They assume that no bus errors or sequence errors occur and
that no writes occur to the trap enable control register.

8.6.1 Prologue Instruction Sequence

The prologue sequence of instructions is used to unload the machine context when
entering debug mode. The sequence starts by unloading two general-purpose reg-
isters (R0 and R1) to be used as a data transfer register and an address pointer.
Since SRR0 and SRR1 are not changed while in debug mode except by explicitly
writing to them, there is no need to save and restore these registers. Finally, the
ECR is unloaded to determine the cause of entry into debug mode. Any registers
that will be used while in debug mode in addition to R0 and R1 will also need to be
saved.

8.6.2 Epilogue Instruction Sequence

The epilogue sequence of instructions is used to restore the machine context when

Table 8-19 Non-Debug Mode Development Port Usage

This
Step

Serial Data Shifted Into
DPDI (not in Debug Mode)

Shifted Out Of
DPDO This

Transmission

Development Port Activity Next
Step

6 Any CPU instruction or data Null Port ignores data and latches sequence error 7

Data for trap enable control
register

Port updates trap enable control register 6

7 Any (ignored by port) Sequence
Error

Port ignores data 6

Table 8-20 Prologue Events

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction mtspr DPDR, R0 Transfer R0 to DPDR Save R0 so the register can
be used

Shift out R0 data,
shift in instruction

mfspr R0, ECR Transfer ECR to R0 Read the debug mode cause
register

Shift in instruction mtspr DPDR, R0 Transfer from R0 to
DPDR

Output reason for debug
mode entry

Shift out stop cause data,
shift in instruction

mtspr DPDR, R1 Transfer R1 to DPDR Save R1 so the register can
be used

Shift out R1 data,
shift in instruction

First instruction of next
sequence

Execute next instruction Continue instruction
processing
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-44 Revised 1 February 1999 REFERENCE MANUAL

leaving debug mode. It restores the two general-purpose registers and then issues
the rfi instruction. If additional registers were used while in debug mode, they also
need to be restored before the rfi instruction is executed.

8.6.3 Peek Instruction Sequence

The peek sequence of instructions is used to read a memory location and transfer
the data to the development port. It starts by moving the memory address into R1
from the development port. Next the location is read and the data loaded into R0.
Finally, R0 is transferred to the development port.

8.6.4 Poke Instruction Sequence

The poke sequence of instructions is used to write data entered at the development
serial port to a memory location. It starts by moving the memory address into R1
from the development port. Next the data is moved into R0 from the development
port. Finally, R0 is written to the address in R1.

Table 8-21 Epilogue Events

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction,
shift in saved R0

mfspr R0, DPDR Transfer from DPDR to
R0

Restores value of R0 when
stopped

Shift in instruction,
shift in saved R1

mfspr R1, DPDR Transfer from DPDR to
R1

Restores value of R1 when
stopped

Shift in instruction rfi Return from exception Restart execution

Table 8-22 Peek Instruction Sequence

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction mfspr R1,DPDR Transfer address from
DPDR to R1

Point to memory address

Shift in instruction lwzu R0,D(R1) Load data from memory
address (R1) into R0

Read data from memory

Shift in instruction mtspr DPDR,R0 Transfer data from R0 to
DPDR

Write memory data to the port

Shift in instruction,
shift out memory data

First instruction of next
sequence

Execute next instruction Output memory data
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-45

8.7 Software Monitor Support

When debug mode is disabled, a software monitor debugger can make use of all
of the processor’s development support features. With debug mode disabled, all
events result in regular exception handling, (i.e., the processor resumes execution
in the appropriate exception handler). The ECR and the DER only influence the as-
sertion and negation of the freeze indication.

The internal freeze signal is connected to all relevant internal modules. These mod-
ules can be programmed to stop all operations in response to the assertion of the
freeze signal. In order to enable a software monitor debugger to broadcast the fact
that the debug software is now executing, it is possible to assert and negate the
internal freeze signal when debug mode is disabled. (The freeze signal can be as-
serted externally only when the processor enters debug mode.)

The internal freeze signal is asserted whenever an enabled event occurs, regard-
less of whether debug mode is enabled or disabled. To enable an event to cause
freeze assertion, software needs to set the relevant bit in the DER. To clear the
freeze signal, software needs to read the ECR to clear the register and then per-
form an rfi instruction.

If the ECR is not cleared before the rfi instruction is executed, freeze is not negat-
ed. It is therefore possible to nest inside a software monitor debugger without af-
fecting the value of the freeze signal, even though rfi is performed. Only before the
last rfi does the software need to clear the ECR.

Figure 8-14 shows how the ECR and DER control the assertion and negation of
the freeze signal and the internal debug mode signal.

Table 8-23 Poke Instruction Sequence

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction mfspr R1,DPDR Transfer address from
DPDR to R1

Point to memory address

Shift in instruction,
shift in memory data

mfspr R0, DPDR Transfer data from DPDR
to R0

Read memory data from the
port

Shift in instruction stwu R0,D(R1) Store data from R0 to
memory address (R1)

Write data to memory
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-46 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-14 Debug Mode Logic

8.8 Development Support Registers

Table 8-24 lists the registers used for development support. The registers are ac-
cessed with the mtspr and mfspr instructions.

DECODER

EXCEPTION CAUSE REGISTER (ECR)

DEBUG ENABLE REGISTER (DER)

EVENT

RESET

5

EVENT VALID

SET

Q

RFI

FREEZE

DEBUG MODE ENABLE

RMCU DEBUG LOGIC

INTERNAL DEBUG
MODE SIGNAL
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-47

8.8.1 Register Protection

Table 8-25 and Table 8-26 summarize protection features of development support
registers during read and write accesses, respectively.

Table 8-24 Development Support Programming Model

SPR Number
(Decimal)

Mnemonic Name

144 CMPA Comparator A Value Register

145 CMPB Comparator B Value Register

146 CMPC Comparator C Value Register

147 CMPD Comparator D Value Register

148 ECR Exception Cause Register

149 DER Debug Enable Register

150 COUNTA Breakpoint Counter A Value and Control Register

151 COUNTB Breakpoint Counter B Value and Control Register

152 CMPE Comparator E Value Register

153 CMPF Comparator F Value Register

154 CMPG Comparator G Value Register

155 CMPH Comparator H Value Register

156 LCTRL1 L-Bus Support Control Register 1

157 LCTRL2 L-Bus Support Control Register 2

158 ICTRL I-Bus Support Control Register

159 BAR Breakpoint Address Register

630 DPDR Development Port Data Register
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-48 Revised 1 February 1999 REFERENCE MANUAL

Table 8-25 Development Support Registers Read Access Protection

MSR[PR] Debug
Mode

Enable

In Debug
Mode

Result

0 0 X Read is performed.
ECR is cleared when read.
Reading DPDR yields indeterminate data.

0 1 0 Read is performed.
ECR is not cleared when read.
Reading DPDR yields indeterminate data.

0 1 1 Read is performed.
ECR is cleared when read.

1 X X Program exception is generated.
Read is not performed.
ECR is not cleared when read.

Table 8-26 Development Support Registers Write Access Protection

MSR[PR] Debug
Mode

Enable

In Debug
Mode

Result

0 0 X Write is performed.
Write to ECR is ignored.
Writing to DPDR is ignored.

0 1 0 Write is not performed.
Writing to DPDR is ignored.

0 1 1 Write is performed.
Write to ECR is ignored.

1 X X Write is not performed.
Program exception is generated.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-49

8.8.2 Comparator A–D Value Registers (CMPA–CMPD)

The reset state of these registers is undefined.

8.8.3 Comparator E–F Value Registers

The reset state of these registers is undefined.

CMPA–CMPD — Comparator A–D Value Register SPR 144 – SPR 147

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CMPAD

RESET: UNDEFINED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPAD RESERVED

RESET: UNDEFINED

Table 8-27 CMPA-CMPD Bit Settings

Bits Mnemonic Description

0:29 CMPAD Address bits to be compared

30:31 — Reserved

CMPE–CMPF — Comparator E–F Value Registers SPR 152, 153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPEF

RESET: UNDEFINED

Table 8-28 CMPE-CMPF Bit Settings

Bits Mnemonic Description

[0:31] CMPV Address bits to be compared
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-50 Revised 1 February 1999 REFERENCE MANUAL

8.8.4 Comparator G–H Value Registers (CMPG–CMPH)

The reset state of these registers is undefined.

8.8.5 I-Bus Support Control Register

CMPG–CMPH — Comparator G–H Value Registers SPR 154, 155

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPGH

RESET: UNDEFINED

Table 8-29 CMPG-CMPH Bit Settings

Bits Mnemonic Description

[0:31] CMPGH Data bits to be compared

ICTRL — I-Bus Support Control Register SPR 158

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTA CTB CTC CTD IW0 IW1

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IW2 IW3 SIW0
EN

SIW1
EN

SIW2
EN

SIW3
EN

DIW0
EN

DIW1
EN

DIW2
EN

DIW3
EN

IIFM SER ISCTL

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-51

Table 8-30 ICTRL Bit Settings

Bits Mnemonic Description Function

[0:2] CTA Compare type of comparator A 0xx = not active (reset value)
100 = equal
101 = less than
110 = greater than
111 = not equal

[3:5] CTB Compare type of comparator B

[6:8] CTC Compare type of comparator C

[9:11] CTD Compare type of comparator D

[12:13] IW0 I-bus 1st watchpoint programming 0x = not active (reset value)
10 = match from comparator A
11 = match from comparators (A&B)

[14:15] W1 I-bus 2nd watchpoint
programming

0x = not active (reset value)
10 = match from comparator B
11 = match from comparators (A | B)

[16:17] IW2 I-bus 3rd watchpoint programming 0x = not active (reset value)
10 = match from comparator C
11 = match from comparators (C&D)

[18:19] IW3 I-bus 4th watchpoint programming 0x = not active (reset value)
10 = match from comparator D
11 = match from comparators (C | D)

20 SIW0EN Software trap enable selection of
the 1st I-bus watchpoint

0 = trap disabled (reset value)
1 = trap enabled

21 SIW1EN Software trap enable selection of
the 2nd I-bus watchpoint

22 SIW2EN Software trap enable selection of
the 3rd I-bus watchpoint

23 SIW3EN Software trap enable selection of
the 4th I-bus watchpoint

24 DIW0EN Development port trap enable
selection of the 1st I-bus
watchpoint (read only bit)

0 = trap disabled (reset value)
1 = trap enabled

25 DIW1EN Development port trap enable
selection of the 2nd I-bus
watchpoint (read only bit)

26 DIW2EN Development port trap enable
selection of the 3rd I-bus
watchpoint (read only bit)

27 DIW3EN Development port trap enable
selection of the 4th I-bus
watchpoint (read only bit)

28 IIFM Ignore first match, only for I-bus
breakpoints

0 = Do not ignore first match, used for “go to x”
(reset value)

1 = Ignore first match (used for “continue”)

29 SER Serialize 0 = Fetch serialize the machine
1 = Normal operation
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-52 Revised 1 February 1999 REFERENCE MANUAL

The ICTRL is cleared following reset. Note that the machine is fetch serialized
whenever SER = 0b0 or ISCTL = 0b00.

8.8.6 L-Bus Support Control Register 1

[30:31] ISCTL Instruction fetch show cycle
control

00 = Show cycle will be performed for all fetched
instructions (reset value). When in this
mode, the machine is fetch serialized.

01 = Show cycle will be performed for all chang-
es in the program flow.

10 = Show cycle will be performed for all indirect
changes in the program flow.

11 = No show cycles will be performed for
fetched instructions

When the value of this field is changed (with the
mtspr instruction), the new value does not take
effect until two instructions after the mtspr in-
struction. The instruction immediately following
mtspr is under control of the old ISCTL value.

LCTRL1 — L-Bus Support Control Register 1 SPR 156

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTE CTF CTG CTH CRWE CRWF

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CSG CSH SUSG SUSH CGBMSK CHBMSK UNUSED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-30 ICTRL Bit Settings (Continued)

Bits Mnemonic Description Function
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-53

LCTRL1 is cleared following reset.

Table 8-31 LCTRL1 Bit Settings

Bits Mnemonic Description Function

[0:2] CTE Compare type, comparator E 0xx = not active (reset value)
100 = equal
101 = less than
110 = greater than
111 = not equal

[3:5] CTF Compare type, comparator F

[6:8] CTG Compare type, comparator G

[9:11] CTH Compare type, comparator H

[12:13] CRWE Select match on read/write of
comparator E

0X = don’t care (reset value)
10 = match on read
11 = match on write

[14:15] CRWF Select match on read/write of
comparator F

[16:17] CSG Compare size, comparator 00 = reserved
01 = word
10 = half word
11 = byte
(Must be programmed to word for floating

point compares)

[18:19] CSH Compare size, comparator H

20 SUSG Signed/unsigned operating mode
for comparator G

0 = unsigned
1 = signed
(Must be programmed to signed for floating

point compares)21 SUSH Signed/unsigned operating mode
for comparator H

[22:25] CGBMSK Byte mask for 1st L-data
comparator

0000 = all bytes are not masked
0001 = the last byte of the word is masked
.
.
.
1111 = all bytes are masked

[26:29] CHBMSK Byte mask for 2nd L-data
comparator

[30:31] — Reserved —
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-54 Revised 1 February 1999 REFERENCE MANUAL

8.8.7 L-Bus Support Control Register 2

LCTRL2 — L-Bus Support Control Register 2 SPR 157

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LW0E
N

LW0IA LW0
IADC

LW0LA LW0
LADC

LW0LD LW0
LDD

LW1E
N

LW1IA LW1
IADC

LW1LA

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LW1
LADC

LW1LD LW1
LDDC

BRK
NOM-

SK

RESERVED SLW0
EN

SLW1
EN

DLW0
EN

DLW1
EN

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-32 LCTRL2 Bit Settings

Bits Mnemonic Description Function

0 LW0EN 1st L-bus watchpoint enable
bit

0 = watchpoint not enabled (reset value)
1 = watchpoint enabled

[1:2] LW0IA 1st L-bus watchpoint I-addr
watchpoint selection

00 = first I-bus watchpoint
01 = second I-bus watchpoint
10 = third I-bus watchpoint
11 = fourth I-bus watchpoint

3 LW0IADC 1st L-bus watchpoint
care/don’t care I-addr events

0 = Don’t care
1 = Care

[4:5] LW0LA 1st L-bus watchpoint
L-addr events selection

00 = match from comparator E
01 = match from comparator F
10 = match from comparators (E&F)
11 = match from comparators (E | F)

6 LW0LADC 1st L-bus watchpoint
care/don’t care L-addr events

0 = Don’t care
1 = Care

[7:8] LW0LD 1st L-bus watchpoint
L-data events selection

00 = match from comparator G
01 = match from comparator H
10 = match from comparators (G&H)
11 = match from comparators (G | H)

9 LW0LDDC 1st L-bus watchpoint
care/don’t care L-data events

0 = Don’t care
1 = Care

10 LW1EN 2nd L-bus watchpoint enable
bit

0 = watchpoint not enabled (reset value)
1 = watchpoint enabled
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-55

LCTRL2 is cleared following reset.

For each watchpoint, three control register fields (LWxIA, LWxLA, LWxLD) must be
programmed. For a watchpoint to be asserted, all three conditions must be detect-
ed.

[11:12] LW1IA 2nd L-bus watchpoint I-addr
watchpoint selection

00 = first I-bus watchpoint
01 = second I-bus watchpoint
10 = third I-bus watchpoint
11 = fourth I-bus watchpoint

13 LW1IADC 2nd L-bus watchpoint
care/don’t care I-addr events

0 = Don’t care
1 = Care

[14:15] LW1LA 2nd L-bus watchpoint
L-addr events selection

00 = match from comparator E
01 = match from comparator F
10 = match from comparators (E&F)
11 = match from comparators (E | F)

16 LW1LADC 2nd L-bus watchpoint
care/don’t care L-addr events

0 = Don’t care
1 = Care

[17:18] LW1LD 2nd L-bus watchpoint
L-data events selection

00 = match from comparator G
01 = match from comparator H
10 = match from comparators (G&H)
11 = match from comparator (G | H)

19 LW1LDDC 2nd L-bus watchpoint
care/don’t care L-data events

0 = Don’t care
1 = Care

20 BRKNOMSK Internal breakpoints non-mask
bit

0 = masked mode; breakpoints are recognized
only when MSR[RI]=1 (reset value)

1 = non-masked mode; breakpoints are always
recognized

[21:27] — Reserved —

28 SLW0EN Software trap enable selection
of the 1st L-bus watchpoint

0 = trap disabled (reset value)
1 = trap enabled

29 SLW1EN Software trap enable selection
of the 2nd L-bus watchpoint

30 DLW0EN Development port trap enable
selection of the 1st L-bus
watchpoint
(read only bit)

31 DLW1EN Development port trap enable
selection of the 2nd L-bus
watchpoint
(read only bit)

Table 8-32 LCTRL2 Bit Settings (Continued)

Bits Mnemonic Description Function
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-56 Revised 1 February 1999 REFERENCE MANUAL

8.8.8 Breakpoint Counter A Value and Control Register

COUNTA[16:31] are cleared following reset; COUNTA[0:15] are undefined.

COUNTA — Breakpoint Counter A Value and Control Register SPR 150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CNTV

RESET: UNDEFINED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVE CNTC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-33 Breakpoint Counter A Value and Control Register (COUNTA)

Bit(s) Name Description

[0:15] CNTV Counter preset value

[16:29
]

— Reserved

[30:31
]

CNTC Counter source select

00 = not active (reset value)
01 = I-bus first watchpoint
10 = L-bus first watchpoint
11 = Reserved
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-57

8.8.9 Breakpoint Counter B Value and Control Register

COUNTB[16:31] are cleared following reset; COUNTB[0:15] are undefined.

8.8.10 Exception Cause Register (ECR)

The ECR indicates the cause of entry into debug mode. All bits are set by the hard-
ware and cleared when the register is read when debug mode is disabled, or if the
processor is in debug mode. Attempts to write to this register are ignored. When
the hardware sets a bit in this register, debug mode is entered only if debug mode
is enabled and the corresponding mask bit in the DER is set.

All bits are cleared to zero following reset.

COUNTB — Breakpoint Counter B Value and Control Register SPR 151

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CNTV

RESET: UNDEFINED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVE CNTC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-34 Breakpoint Counter B Value and Control Register (COUNTB)

Bit(s) Name Description

[0:15] CNTV Counter preset value

[16:29
]

— Reserved

[30:31
]

CNTC Counter source select

00 = not active (reset value)
01 = I-bus second watchpoint
10 = L-bus second watchpoint
11 = Reserved
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-58 Revised 1 February 1999 REFERENCE MANUAL

ECR — Exception Cause Register SPR 148

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED CHST
P

MCE DSE ISE EXTI ALE PRE FPUV
E

DECE RESERVED SYSE TR FPAS
E

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 SEE RESERVE LBRK IBRK EBRK
D

DPI

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-35 ECR Bit Settings

Bit(s) Name Description

[0:1] — Reserved

2 CHSTP Checkstop bit. Set when the processor enters checkstop state.

3 MCE Machine check interrupt bit. Set when a machine check exception (other than one caused by a
data storage or instruction storage error) is asserted.

4 DSE Data storage exception bit. Set when a machine check exception caused by a data storage er-
ror is asserted.

5 ISE Instruction storage exception bit. Set whena machine check exception caused by an instruction
storage error is asserted.

6 EXTI External interrupt bit. Set when the external interrupt is asserted.

7 ALE Alignment exception bit. Set when the alignment exception is asserted.

8 PRE Program exception bit. Set when the program exception is asserted.

9 FPUVE Floating point unavailable exception bit. Set when the program exception is asserted.

10 DECE Decrementer exception bit. Set when the decrementer exception is asserted.

[11:12
]

— Reserved

13 SYSE System call exception bit. Set when the system call exception is asserted.

14 TR Trace exception bit. Set when in single-step mode or when in branch trace mode.

15 FPASE Floating point assist exception bit. Set when the floating-point assist exception is asserted.

16 — Reserved

17 SEE Software emulation exception. Set when the software emulation exception is asserted.

[18:27
]

Reserved
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-59

8.8.11 Debug Enable Register (DER)

This register enables the user to selectively mask the events that may cause the
processor to enter into debug mode.

28 LBRK L-bus breakpoint exception bit. Set when an L-bus breakpoint is asserted.

29 IBRK I-bus breakpoint exception bit. Set when an I-bus breakpoint is asserted.

30 EBRK External breakpoint exception bit. Set when an external breakpoint is asserted (by an on-chip
IMB or L-bus module, or by an external device or development system through the develop-
ment port).

31 DPI Development port interrupt bit. Set by the development port as a result of a debug station non-
maskable request or when debug mode is entered immediately out of reset.

DER — Debug Enable Register SPR 149

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED CHST
PE

MCEE DSEE ISEE EXTIE ALEE PREE FPU-
VEE

DE-
CEE

RESERVED SY
SEE

TRE FPA
SEE

RESET:

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 SEEE RESERVE LBRK
E

IBRKE EBRK
E

DPIE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 8-35 ECR Bit Settings (Continued)

Bit(s) Name Description
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-60 Revised 1 February 1999 REFERENCE MANUAL

Table 8-36 DER Bit Settings

Bit(s) Name Description

[0:1] — Reserved

2 CHSTPE Checkstop enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

3 MCEE Machine check exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

4 DSEE Data storage exception (type of machine check exception) enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

5 ISEE Instruction storage exception (type of machine check exception) enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

6 EXTIE External interrupt enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

7 ALEE Alignment exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

8 PREE Program exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

9 FPUVEE Floating point unavailable exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

10 DECEE Decrementer exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

[11:12
]

— Reserved

13 SYSEE System call exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

14 TRE Trace exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

15 FPASEE Floating point assist exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

16 — Reserved
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-61

17 SEEE Software emulation exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

[18:27
]

— Reserved

28 LBRKE L-bus breakpoint exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

29 IBRKE I-bus breakpoint exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

30 EBRKE External breakpoint exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

31 DPIE Development port interrupt enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

Table 8-36 DER Bit Settings (Continued)

Bit(s) Name Description
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-62 Revised 1 February 1999 REFERENCE MANUAL

SECTION 9
INSTRUCTION SET

This section describes individual instructions, including a description of instruction
formats and notation and an alphabetical listing of RCPU instructions by mne-
monic.

9.1 Instruction Formats

Instructions are four bytes long and word-aligned, so when instruction addresses
are presented to the processor (as in branch instructions) the two low-order bits are
ignored. Similarly, whenever the processor develops an instruction address, its two
low-order bits are zero.

Bits 0 to 5 always specify the primary opcode. Many instructions also have a sec-
ondary opcode. The remaining bits of the instruction contain one or more fields for
the different instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown
in the individual instruction layouts. If a reserved field does not have all bits set to
zero, or if a field that must contain a particular value does not contain that value,
the instruction form is invalid.

9.1.1 Split Field Notation

Some instruction fields occupy more than one contiguous sequence of bits or oc-
cupy a contiguous sequence of bits used in permuted order. Such a field is called
a split field. In the format diagrams and in the individual instruction layouts, the
name of a split field is shown in small letters, once for each of the contiguous se-
quences. In the pseudocode description of an instruction having a split field and in
some places where individual bits of a split field are identified, the name of the field
in small letters represents the concatenation of the sequences from left to right.
Otherwise, the name of the field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to right, as described for each
affected instruction.

9.1.2 Instruction Fields

Table 9-1 describes the instruction fields used in the various instruction formats.
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-1

Table 9-1 Instruction Formats

Field Bits Description

 AA 30 Absolute address bit

0 The immediate field represents an address relative to the current instruction ad-
dress. The effective address of the branch is either the sum of the LI field sign-ex-
tended to 32 bits and the address of the branch instruction or the sum of the BD field
sign-extended to 32 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address of the
branch is the LI field sign-extended to 32 bits or the BD field sign-extended to 32 bits.

crbA 11:15 Field used to specify a bit in the CR to be used as a source.

crbB 16:20 Field used to specify a bit in the CR to be used as a source.

BD 16:29 Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with 0b00 and sign-extended to 32 bits.

crfD 6:8 Field used to specify one of the CR fields or one of the FPSCR fields as a destination.

crfS 11:13 Field used to specify one of the CR fields or one of the FPSCR fields as a source.

BI 11:15 Field used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO 6:10 Field used to specify options for the branch conditional instructions. The encoding is
described in 4.6 Flow Control Instructions.

crbD 6:10 Field used to specify a bit in the CR or in the FPSCR as the destination of the result of an
instruction.

CRM 12:19 Field mask used to identify the CR fields that are to be updated by the mtcrf instruction.

d 16:31 Immediate field specifying a 16-bit signed two's complement integer that is sign-extended
to 32 bits.

FM 7:14 Field mask used to identify the FPSCR fields that are to be updated by the mtfsf
instruction.

frA 11:15 Field used to specify an FPR as a source of an operation.

frB 16:20 Field used to specify an FPR as a source of an operation.

frC 21:25 Field used to specify an FPR as a source of an operation.

frS 6:10 Field used to specify an FPR as a source of an operation.

frD 6:10 Field used to specify an FPR as the destination of an operation.

IMM 16:19 Immediate field used as the data to be placed into a field in the FPSCR.

LI 6:29 Immediate field specifying a 24-bit, signed two's complement integer that is concatenated
on the right with 0b00 and sign-extended to 32 bits.

LK 31 Link bit.

0 Does not update the link register.
1 Updates the link register. If the instruction is a branch instruction, the address of the

instruction following the branch instruction is placed into the link register.

MB, M 21:25, 26:30 Fields used in rotate instructions to specify a 32-bit mask consisting of 1-bits from bit
MB+32 through bit ME+32 inclusive, and 0-bits elsewhere, as described in 4.3.4 Integer
Rotate and Shift Instructions.
 MOTOROLA INSTRUCTION SET RCPU

9-2 Revised 1 February 1999 REFERENCE MANUAL

9.1.3 Notation and Conventions

The operation of some instructions is described by a register transfer language
(RTL). See Table 9-2 for a list of RTL notation and conventions used throughout
this chapter.

NB 16:20 Field used to specify the number of bytes to move in an immediate string load or store.

opcode 0:5 Primary opcode field.

OE 21 Used for extended arithmetic to enable setting OV and SO in the XER.

rA 11:15 Field used to specify a GPR to be used as a source or as a destination.

rB 16:20 Field used to specify a GPR to be used as a source.

Rc 31 Record bit

0 Does not update the condition register.
1 Updates the condition register (CR) to reflect the result of the operation.

For integer instructions, CR[0:3] are set to reflect the result as a signed quantity. The
result as an unsigned quantity or a bit string can be deduced from the EQ bit. For
floating-point instructions, CR[4:7] are set to reflect floating-point exception, floating-
point enabled exception, floating-point invalid operation exception, and floating-point
overflow exception.

rS 6:10 Field used to specify a GPR to be used as a source.

rD 6:10 Field used to specify a GPR to be used as a destination.

SH 16:20 Field used to specify a shift amount.

SIMM 16:31 Immediate field used to specify a 16-bit signed integer.

SPR 11:20 Field used to specify a special purpose register for the mtspr and mfspr instructions. The
encoding is described in 4.7.2 Move to/from Special Purpose Register Instructions.

TO 6:10 Field used to specify the conditions on which to trap. The encoding is described in 4.6.7
Trap Instructions.

UIMM 16:31 Immediate field used to specify a 16-bit unsigned integer.

XO 21:30, 22:30,
26:30, or 30

Secondary opcode field.

Table 9-1 Instruction Formats (Continued)

Field Bits Description
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-3

Table 9-2 RTL Notation and Conventions

Notation/Convention Meaning

← Assignment

¬ NOT logical operator

∗ Multiplication

÷ Division (yielding quotient)

+ Two’s-complement addition

- Two’s-complement subtraction, unary minus

=, ≠ Equals and Not Equals relations

<,≤,>,≥ Signed comparison relations

<U,>U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (i.e., 010 || 111 is the same as 010111)

⊕ , ≡ Exclusive-OR, Equivalence logical operators ((a≡b) = (a⊕ ¬b))

0bnnnn A number expressed in binary format

0xnnnn A number expressed in hexadecimal format

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0

. (period) As the last character of an instruction mnemonic, a period (.) means that the instruction
updates the condition register field.

CEIL(x) Least integer Š x

DOUBLE(x) Result of converting x form floating-point single format to floating-point double format.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General Purpose Register x

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and 0’s elsewhere

MEM(x, y) Contents of y bytes of memory starting at address x

ROTL[32](x, y) Result of rotating the 64-bit value x||x left y positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point double format to floating-point single format.

SPR(x) Special Purpose Register x

x(n) x is raised to the nth power

(n)x The replication of x, n times (i.e., x concatenated to itself n-1 times). (n)0 and (n)1 are
special cases

x[n] n is a bit or field within x, where x is a register

TRAP Invoke the system trap handler
 MOTOROLA INSTRUCTION SET RCPU

9-4 Revised 1 February 1999 REFERENCE MANUAL

Precedence rules for RTL operators are summarized in Table 9-3.

Note that operators higher in Table 9-3 are applied before those lower in the table.
Operators at the same level in the table associate from left to right, from right to left,
or not at all, as shown.

undefined An undefined value. The value may vary from one implementation to another, and from
one execution to another on the same implementation.

characterization Reference to the setting of status bits, in a standard way that is explained in the text

CIA Current instruction address, which is the 32-bit address of the instruction being described
by a sequence of pseudocode. Used by relative branches to set the next instruction
address (NIA). Does not correspond to any architected register.

NIA Next instruction address, which is the 32-bit address of the next instruction to be
executed (the branch destination) after a successful branch. In pseudocode, a successful
branch is indicated by assigning a value to NIA. For instructions which do not branch, the
next instruction address is CIA +4.

if...then...else... Conditional execution, indenting shows range, else is optional

do Do loop, indenting shows range. To and/or by clauses specify incrementing an iteration
variable, and while and/or until clauses give termination conditions, in the usual manner.

leave Leave innermost do loop, or do loop described in leave statement

Table 9-3 Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary -, ¬ Right to left

∗ , ÷ Left to right

+,- Left to right

|| Left to right

=,¦,<,ð,>,Š,<U,>U,? Left to right

&,⊕,≡ Left to right

| Left to right

– (range) None

← None

Table 9-2 RTL Notation and Conventions (Continued)

Notation/Convention Meaning
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-5

9.2 RCPU Instruction Set

The remainder of this chapter lists and describes the RCPU instruction set. The in-
structions are listed in alphabetical order by mnemonic. Figure 9-1 shows the for-
mat for each instruction description page.

Figure 9-1 Instruction Description

addx addx
Add Integer Unit

add rD,rA,rB (OE=0 Rc=0)

add. rD,rA,rB (OE=0 Rc=1)

addo rD,rA,rB (OE=1 Rc=0)

addo. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

0 5 6 10 11 15 16 20 21 22 30 31
0x1F D A B OE 0x10A Rc

Instruction Name

Instruction Syntax

Instruction Encoding

RTL Description of
Instruction Operation
Text Description of
Instruction Operation
Registers Altered by Instruction
 MOTOROLA INSTRUCTION SET RCPU

9-6 Revised 1 February 1999 REFERENCE MANUAL

addx addx
Add Integer Unit

add rD,rA,rB (OE=0 Rc=0)
add. rD,rA,rB (OE=0 Rc=1)
addo rD,rA,rB (OE=1 Rc=0)
addo. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x10A Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-7

addcx addcx
Add Carrying Integer Unit

addc rD,rA,rB (OE=0 Rc=0)
addc. rD,rA,rB (OE=0 Rc=1)
addco rD,rA,rB (OE=1 Rc=0)
addco. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0xA Rc
 MOTOROLA INSTRUCTION SET RCPU

9-8 Revised 1 February 1999 REFERENCE MANUAL

addex addex
Add Extended Integer Unit

adde rD,rA,rB (OE=0 Rc=0)
adde. rD,rA,rB (OE=0 Rc=1)
addeo rD,rA,rB (OE=1 Rc=0)
addeo. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x8A Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-9

addi addi
Add Immediate Integer Unit

addi rD,rA,SIMM

if rA=0 then
rD←EXTS(SIMM)

else
rD←(rA)+EXTS(SIMM)

The sum (rA| 0) + SIMM is placed into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-4 Simplified Mnemonics for addi Instruction

Simplified
Mnemonic

Operands Equivalent To

la rD, SIMM(rA) addi rD,rA,SIMM

li rA,value addi rA,0,value

subi rD,rA,value addi rD,rA,-value

0 5 6 10 11 15 16 31

0x0E D A SIMM
 MOTOROLA INSTRUCTION SET RCPU

9-10 Revised 1 February 1999 REFERENCE MANUAL

addic addic
Add Immediate Carrying Integer Unit

addic rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

Table 9-5 Simplified Mnemonics for addic Instruction

Simplified
Mnemonic

Operands Equivalent To

subic rD,rA,value addic rD,rA,-value

0 5 6 10 11 15 16 31

0x0C D A SIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-11

addic. addic.
Add Immediate Carrying and Record Integer Unit

addic. rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

Table 9-6 Simplified Mnemonics for addic. Instruction

Simplified
Mnemonic

Operands Equivalent To

subic. rD,rA,value addic. rD,rA,-value

0 5 6 10 11 15 16 31

0x0D D A SIMM
 MOTOROLA INSTRUCTION SET RCPU

9-12 Revised 1 February 1999 REFERENCE MANUAL

addis addis
Add Immediate Shifted Integer Unit

addis rD,rA,SIMM

if rA=0 then
rD←(SIMM || (16)0)

else
 rD←(rA)+(SIMM || (16)0)

The sum (rA| 0) + (SIMM || 0x0000) is placed into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-7 Simplified Mnemonics for addis Instruction

Simplified
Mnemonic

Operands Equivalent To

lis rA,value addi rA,0,value

subis rD,rA,value addis rD,rA,-value

0 5 6 10 11 15 16 31

0x0F D A SIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-13

addmex addmex
Add to Minus One Extended Integer Unit

addme rD,rA (OE=0 Rc=0)
addme rD,rA (OE=0 Rc=1)
addmeo rD,rA (OE=1 Rc=0)
addmeo. rD,rA (OE=1 Rc=1)

rD ← (rA) + XER[CA] - 1

The sum (rA)+XER[CA]+0xFFFF FFFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

0x1F D A 0 0 0 0 0 OE 0xEA Rc
 MOTOROLA INSTRUCTION SET RCPU

9-14 Revised 1 February 1999 REFERENCE MANUAL

addzex addzex
Add to Zero Extended Integer Unit

addze rD,rA (OE=0 Rc=0)
addze. rD,rA (OE=0 Rc=1)
addzeo rD,rA (OE=1 Rc=0)
addzeo. rD,rA (OE=1 Rc=1)

rD ← (rA) + XER[CA]

The sum (rA)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

0x1F D A 0 0 0 0 0 OE 0xCA Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-15

andx andx
AND Integer Unit

and rA,rS,rB (Rc=0)
and. rA,rS,rB (Rc=1)

rA ← (rS) & (rB)

The contents of rS is ANDed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1C Rc
 MOTOROLA INSTRUCTION SET RCPU

9-16 Revised 1 February 1999 REFERENCE MANUAL

andcx andcx
AND with Complement Integer Unit

andc rA,rS,rB (Rc=0)
andc. rA,rS,rB (Rc=1)

rA←(rS)& ¬ (rB)

The contents of rS is ANDed with the one’s complement of the contents of rB and the re-
sult is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 3C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-17

andi. andi.
AND Immediate Integer Unit

andi. rA,rS,UIMM

rA←(rS) & ((16)0 || UIMM)

The contents of rS are ANDed with 0x0000 || UIMM and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1C S A UIMM
 MOTOROLA INSTRUCTION SET RCPU

9-18 Revised 1 February 1999 REFERENCE MANUAL

andis. andis.
AND Immediate Shifted Integer Unit

andis. rA,rS,UIMM

rA←(rS)+(UIMM || (16)0)

The contents of rS are ANDed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1D S A UIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-19

bx bx
Branch Branch Processing Unit

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

if AA then
NIA←EXTS(LI || 0b00)

else
NIA←CIA+EXTS(LI || 0b00)

if LK, then
 LR←CIA+4

target_addr specifies the branch target address.

If AA=0, then the branch target address is the sum of LI || 0b00 sign-extended and the
address of this instruction.

If AA=1, then the branch target address is the value LI || 0b00 sign-extended.

If LK=1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers affected:

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

0 5 6 29 30 31

0x12 LI AA LK
 MOTOROLA INSTRUCTION SET RCPU

9-20 Revised 1 February 1999 REFERENCE MANUAL

bcx bcx
Branch Conditional Branch Processing Unit

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

if ¬ BO[2], then CTR ← CTR-1
ctr_ok ← BO[2] | ((CTR¦0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok the

 if AA then
NIA ← EXTS(BD || 0b00)

 else
 NIA ← CIA+EXTS(BD || 0b00)

 if LK, then
 LR ← CIA+4

The BI field specifies the bit in the Condition Register (CR) to be used as the condition of
the branch. The BO field is used as described above.

target_addr specifies the branch target address.

If AA=0, the branch target address is the sum of BD || 0b00 sign-extended and the ad-
dress of this instruction.

If AA=1, the branch target address is the value BD || 0b00 sign-extended.

If LK=1, the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers affected:

Count Register (CTR) (if BO[2]=0)

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 29 30 31

0x10 BO BI BD AA LK
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-21

Table 9-8 Simplified Mnemonics for
bc, bca, bcl, and bcla Instructions

Operation Simplified Mnemonic1 Equivalent To

Decrement CTR, branch if CTR non-zero bdnz target bc 16,0,target

Decrement CTR, branch absolute if CTR non-zero bdnza target bca 16,0,target

Decrement CTR, branch and update LR if CTR non-
zero

bdnzl target bcl 16,0,target

Decrement CTR, branch absolute and update LR if
CTR non-zero

bdnzla target bcla 16,0,target

Decrement CTR, branch if false and CTR non-zero bdnzf BI,target bc 0,BI,target

Decrement CTR, branch absolute if false and CTR
non-zero

bdnzfa BI,target bca 0,BI,target

Decrement CTR, branch and update LR if false and
CTR non-zero

bdnzfl BI,target bcl 0,BI,target

Decrement CTR, branch absolute and update LR if
false and CGRnon-zero

bdnzfla BI,target bcla 0,BI,target

Decrement CTR, branch if true and CTR non-zero bdnzt BI,target bc 8,BI,target

Decrement CTR, branch absolute if true and CTR
non-zero

bdnzta BI,target bca 8,BI,target

Decrement CTR, branch and update LR if true and
CTR non-zero

bdnztl BI,target bcl 8,BI,target

Decrement CTR, branch absolute and update LR if
true and CTR non-zero

bdnztla BI,target bcla 8,BI,target

Decrement CTR, branch if CTR zero bdz target bc 18,0,target

Decrement CTR, branch absolute if CTR zero bdza target bca 18,0,target

Decrement CTR, branch and update LR if CTR zero bdzl target bcl 18,0,target

Decrement CTR, branch absolute and update LR if
CTR zero

bdzla target bcla 18,0,target

Decrement CTR, branch if false and CTR zero bdzf BI,target bc 2,BI,target

Decrement CTR, branch absolute if false and CTR
zero

bdzfa BI,target bca 2,BI,target

Decrement CTR, branch and update LR if false and
CTR zero

bdzfl BI,target bcl 2,BI,target

Decrement CTR, branch absolute and update LR if
false and CTR zero

bdzfla BI,target bcla 2,BI,target

Decrement CTR, branch if true and CTR zero bdzt BI,target bc 10,BI,target

Decrement CTR, branch absolute if true and CTR
zero

bdzta BI,target bca 10,BI,target

Decrement CTR, ranch and update LR if true and
CTR zero

bdztl BI,target bcl 10,BI,target
 MOTOROLA INSTRUCTION SET RCPU

9-22 Revised 1 February 1999 REFERENCE MANUAL

Decrement CTR, branch absolute and update LR if
true and CTR zero

bdztla BI,target bcla 10,BI,target

Branch if equal beq crX,target bc 12, 4*crX+2,target

Branch absolute if equal beqa crX,target bca 12, 4*crX+2,target

Branch and update LR if equal beql crX,target bcl 12, 4*crX+2,target

Branch absolute and update LR if equal beqla crX,target bcla 12, 4*crX+2,target

Branch if false bf BI,target bc 4,BI,target

Branch if false bfa BI,target bca 4,BI,target

Branch and update LR if false bfl BI,target bcl 4,BI,target

Branch absolute and update LR if false bfla BI,target bcla 4,BI,target

Branch if greater than or equal to bge crX,target bc 4,4*crX,target

Branch absolute if greater than or equal to bgea crX,target bca 4,4*crX,target

Branch and update LR if greater than or equal to bgel crX,target bcl 4,4*crX,target

Branch absolute and update LR if greater than or
equal to

bgela crX,target bcla 4,4*crX,target

Branch if greater than bgt crX,target bc 12,4*crX+1,target

Branch absolute if greater than bgta crX,target bca 12,4*crX+1,target

Branch and update LR if greater than bgtl crX,target bcl 12,4*crX+1,target

Branch absolute and update LR if greater than bgtla crX,target bcla 12,4*crX+1,target

Branch if less than or equal to ble crX,target bc 4,4*crX+1,target

Branch absolute if less than or equal to blea crX,target bca 4,4*crX+1,target

Branch and update LR if less than or equal to blel crX,target bcl 4,4*crX+1,target

Branch absolute and update LR if less than or equal
to

blela crX,target bcla 4,4*crX+1,target

Branch if less than blt crX,target bc 12,4*crX,target

Branch absolute if less than blta crX,target bca 12,4*crX,target

Branch and update LR if less than bltl crX,target bcl 12,4*crX,target

Branch absolute and update LR if less than bltla crX,target bcla 12,4*crX,target

Branch if not equal to bne crX,target bc 4,4*crX+2,target

Branch absolute if not equal to bnea crX,target bca 4,4*crX+2,target

Branch and update LR if not equal to bnel crX,target bcl 4,4*crX+2,target

Branch absolute and update LR if not equal to bnela crX,target bcla 4,4*crX+2,target

Branch if not greater than bng crX,target bc 4,4*crX+1,target

Table 9-8 Simplified Mnemonics for
bc, bca, bcl, and bcla Instructions (Continued)

Operation Simplified Mnemonic1 Equivalent To
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-23

Refer to APPENDIX E SIMPLIFIED MNEMONICS for more information on simplified
mnemonics.

Branch absolute if not greater than bnga crX,target bca 4,4*crX+1,target

Branch and update LR if not greater than bngl crX,target bcl 4,4*crX+1,target

Branch absolute and update LR if not greater than bngla crX,target bcla 4,4*crX+1,target

Branch if not less than bnl crX,target bc 4,4*crX,target

Branch absolute if not less than bnla crX,target bca 4,4*crX,target

Branch and update LR if not less than bnll crX,target bcl 4,4*crX,target

Branch absolute and update LR if not less than bnlla crX,target bcla 4,4*crX,target

Branch if not summary overflow bns crX,target bc 4,4*crX+3,target

Branch absolute if not summary overflow bnsa crX,target bca 4,4*crX+3,target

Branch and update LR if not summary overflow bnsl crX,target bcl 4,4*crX+3,target

Branch absolute and update LR if not summary
overflow

bnsla crX,target bcla 4,4*crX+3,target

Branch if not unordered bnu crX,target bc 4,4*crX+3,target

Branch absolute if not unordered bnua crX,target bca 4,4*crX+3,target

Branch and update LR if not unorderd bnul crX,target bcl 4,4*crX+3,target

Branch absolute and update LR if not unordered bnula crX,target bcla 4,4*crX+3,target

Branch if summary overflow bso crX,target bc 12,4*crX+3,target

Branch absolute if summary overflow bsoa crX,target bca 12,4*crX+3,target

Branch and update LR if summary overflow bsol crX,target bcl 12,4*crX+3,target

Branch absolute and update LR if summary
overflow

bsola crX,target bcla 12,4*crX+3,target

Branch if true bt BI,target bc 12,BI,target

Branch absolute if true bta BI,target bca 12,BI,target

Branch and update LR if true btl BI,target bcl 12,BI,target

Branch absolute and update LR if true btla BI,target bcla 12,BI,target

Branch if unordered bun crX,target bc 12,4*crX+3,target

Branch absolute if unordered buna crX,target bca 12,4*crX+3,target

Branch and update LR if unordered bunl crX,target bcl 12,4*crX+3,target

Branch and update LR if unordered bunla crX,target bcla 12,4*crX+3,target

NOTES:
1. If crX is not included in the operand list (for operations that use a cr field), cr0 is assumed.

Table 9-8 Simplified Mnemonics for
bc, bca, bcl, and bcla Instructions (Continued)

Operation Simplified Mnemonic1 Equivalent To
 MOTOROLA INSTRUCTION SET RCPU

9-24 Revised 1 February 1999 REFERENCE MANUAL

bcctrx bcctrx
Branch Conditional to Count Register Branch Processing Unit

bcctr BO,BI (LK=0)
bcctrl BO,BI (LK=1)

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok then

 NIA ← CTR[0:29] || 0b00
 if LK then

 LR ← CIA+4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is used as described above, and the branch target address is
CTR[0:29] || 0b00.

If LK=1, the effective address of the instruction following the branch instruction is placed
into the link register.

If the “decrement and test CTR” option is specified (BO[2]=0), the instruction form is in-
valid.

Other registers affected:

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

Table 9-9 provides simplified mnemonics for the bcctr and bcctrl instructions. Refer to
APPENDIX E SIMPLIFIED MNEMONICS for more information on simplified mnemonics.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 BO BI 0 0 0 0 0 0x210 LK
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-25

Table 9-9 Simplified Mnemonics for
bcctr and bcctrl Instructions

Operation Simplified Mnemonic1

NOTES:
1. If crX is not included in the operand list (for operations that use a cr field), cr0 is assumed.

Equivalent To

Branch to CTR bctr bcctr 20,0

Branch to CTR and update LR bctrl bcctrl 20,0

Branch if equal to CTR beqctr crX bcctr 12, 4*crX+2

Branch if equal to CTR, update LR beqctrl crX bcctrl 12, 4*crX+2

Branch if false to CTR bfctr BI bcctr 4,BI

Branch if false to CTR, update LR bfctrl BI bcctrl 4,BI

Branch to CTR if greater than or equal to bgectr crX bcctr 4,4*crX

Branch to CTR if greater than or equal to, update LR bgectrl crX bcctrl 4,4*crX

Branch to CTR if greater than bgtctr crX bcctr 12,4*crX+1

Branch to CTR if greater than, update LR bgtctrl crX bcctrl 12,4*crX+1

Branch to CTR if less than or equal to blectr crX bcctr 4,4*crX+1

Branch to CTR if less than or equal to, update LR blectrl crX bcctrl 4,4*crX+1

Branch to CTR if less than bltctr crX bcctr 12,4*crX

Branch to CTR if less than, update LR bltctrl crX bcctrl 12,4*crX

Branch to CTR if not equal to bnectr crX bcctr 4,4*crX+2

Branch to CTR if not equal to, update LR bnectrl crX bcctrl 4,4*crX+2

Branch to CTR if not greater than bngctr crX bcctr 4,4*crX+1

Branch to CTR if not greater than, update LR bngctrl crX bcctrl 4,4*crX+1

Branch to CTR if not less than bnlctr crX bcctr 4,4*crX

Branch to CTR if not less than, update LR bnlctrl crX bcctrl 4,4*crX

Branch to CTR if not summary overflow bnsctr crX bcctr 4,4*crX+3

Branch to CTR if not summary overflow, update LR bnsctrl crX bcctrl 4,4*crX+3

Branch to CTR if not unordered bnuctr crX bcctrl 4,4*crX+3

Branch to CTR if not unordered, update LR bnuctrl crX bcctrl 4,4*crX+3

Branch to CTR if summary overflow bsoctr crX bcctr 12,4*crX+3

Branch to CTR if summary overflow, update LR bsoctrl crX bcctrl 12,4*crX+3

Branch to CTR if true btctr BI bcctr 12,BI

Branch to CTR if true, update LR btctrl BI bcctrl 12,BI

Branch to CTR if unordered bunctr crX bcctr 12,4*crX+3

Branch to CTR if unordered, update LR bunctrl crX bcctrl 12,4*crX+3
 MOTOROLA INSTRUCTION SET RCPU

9-26 Revised 1 February 1999 REFERENCE MANUAL

bclrx bclrx
Branch Conditional to Link Register Branch Processing Unit

bclr BO,BI (LK=0)
bclrl BO,BI (LK=1)

if ¬ BO[2] then
CTR ← CTR-1

ctr_ok ← BO[2] | ((CTR¦0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok the

 NIA ← LR[0:29] || 0b00
 if LK then

 LR ← CIA+4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is used as described above, and the branch target address is
LR[0:29] || 0b00.

If LK=1 then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers affected:

Count Register (CTR) (if BO[2]=0)

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 BO BI 0 0 0 0 0 0x10 LK
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-27

Table 9-10 Simplified Mnemonics for
bclr and bclrl Instructions

Operation Simplified Mnemonic1 Equivalent To

Decrement CTR, branch to LR if false and CTR non-
zero

bdnzflr BI bclr 0,BI

Decrement CTR, branch to LR if false and CTR non-
zero, update LR

bdnzflrl BI bclrl 0,BI

Decrement CTR, branch to LR if CTR non-zero bdnzlr bclr 16,0

Decrement CTR, branch to LR if CTR non-zero,
update LR

bdnzlrl bclrl 16,0

Decrement CTR, branch to LR if true and CTR non-
zero

bdnztlr BI bclr 8,BI

Decrement CTR, branch to LR if true and CTR non-
zero, update LR

bdnztlrl BI bclrl 8,BI

Decrement CTR, branch to LR if false and CTR zero bdzflr BI bclr 2,BI

Decrement CTR, branch to LR if false and CTR
zero, update LR

bdzflrl BI bclrl 2,BI

Decrement CTR, branch to LR if CTR zero bdzlr bclr 18,0

Decrement CTR, branch to LR if CTR zero, update
LR

bdzlrl bclrl 18,0

Decrement CTR, branch to LR if true and CTR zero bdztlr BI bclr 10,BI

Decrement CTR, branch to LR if true and CTR zero,
update LR

bdztlrl BI bclrl 10,BI

Branch to LR if equal beqlr crX bclr 12, 4*crX+2

Branch to LR if equal, update LR beqlrl crX bclrl 12, 4*crX+2

Branch to LR if false bflr BI bclr 4,BI

Branch to LR if false, update LR bflrl BI bclrl 4,BI

Branch to LR if greater than or equal to bgelr crX bclr 4,4*crX

Branch to LR if greater than or equal to, update LR bgelrl crX bclrl 4,4*crX

Branch to LR if greater than bgtlr crX bclr 12,4*crX+1

Branch to LR if greater than, update LR bgtlrl crX bclrl 12,4*crX+1

Branch to LR if less than or equal to blelr crX bclr 4,4*crX+1

Branch to LR if less than or equal to, update LR blelrl crX bclrl 4,4*crX+1

Branch to LR blr bclr 20,0

Branch to LR, update LR blrl bclrl 20,0

Branch to LR if less than bltlr crX bclr 12,4*crX

Branch to LR if less than, update LR bltlrl crX bclrl 12,4*crX
 MOTOROLA INSTRUCTION SET RCPU

9-28 Revised 1 February 1999 REFERENCE MANUAL

Refer to APPENDIX E SIMPLIFIED MNEMONICS for more information on simplified
mnemonics.

Branch to LR if not equal to bnelr crX bclr 4,4*crX+2

Branch to LR if not equal to, update LR bnelrl crX bclrl 4,4*crX+2

Branch to LR if not greater than bnglr crX bclr 4,4*crX+1

Branch to LR if not greater than, update LR bnglrl crX bclrl 4,4*crX+1

Branch to LR if not less than bnllr crX bclr 4,4*crX

Branch to LR if not less than, update LR bnllrl crX bclrl 4,4*crX

Branch to LR if not summary overflow bnslr crX bclr 4,4*crX+3

Branch to LR if not summary overflow, update LR bnslrl crX bclrl 4,4*crX+3

Branch to LR if not unordered bnulr crX bclr 4,4*crX+3

Branch to LR if not unordered, update LR bnulrl crX bclrl 4,4*crX+3

Branch to LR if summary overflow bsolr crX bclr 12,4*crX+3

Branch to LR if summary overflow, update LR bsolrl crX bclrl 12,4*crX+3

Branch to LR if true btlr BI bclr 12,BI

Branch to LR if true, update LR btlrl BI bclrl 12,BI

Branch to LR if unordered bunlr crX bclr 12,4*crX+3

Branch to LR if unordered, update LR bunlrl crX bclrl 12,4*crX+3

NOTES:
1. If crX is not included in the operand list (for operations that use a cr field), cr0 is assumed.

Table 9-10 Simplified Mnemonics for
bclr and bclrl Instructions (Continued)

Operation Simplified Mnemonic1 Equivalent To
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-29

cmp cmp
Compare Integer Unit

cmp crfD,L,rA,rB

a ← (rA)
b ← (rB)
if a < b then

c ← 0b100
else

if a > b then
c ← 0b01

else
c ← 0b00

CR[4∗ crfD:4∗ crfD+3] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as signed
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-11 Simplified Mnemonics for cmp Instruction

Operation Simplified Mnemonic Equivalent To

Compare word cmpw crfD, rA,rB
cmp crfD, rA,rB

cmp crfD, 0, rA,rB

Compare word, place
result in CR0

cmpw rA,rB
cmp rA,rB

cmp 0, 0, rA,rB

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 00x1F crfD 0 L A
 MOTOROLA INSTRUCTION SET RCPU

9-30 Revised 1 February 1999 REFERENCE MANUAL

cmpi cmpi
Compare Immediate Integer Unit

cmpi crfD,L,rA,SIMM

a ← (rA)
if a < EXTS(SIMM) the

c ← 0b100
else

if a > EXTS(SIMM) then
c ← 0b01

else
 c ← 0b001

CR[4∗ crfD:4∗ crfD+3] ← c || XER[SO]

The contents of rA are compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR Field
crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-12 Simplified Mnemonics for cmpi Instruction

Operation Simplified Mnemonic Equivalent To

Compare word immediate cmpwi crf,rA,value
cmpi crfD, rA,value

cmpi crfD, 0, rA,value

Compare word immediate,
place result in CR0

cmpwi rA,value
cmpi rA,value

cmpi 0, 0, rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM0x0B crfD 0 L A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-31

cmpl cmpl
Compare Logical Integer Unit

cmpl crfD,L,rA,rB

a ← (rA)
b ← (rB)
if a < U b then

c ← 0b100
else

if a >U b then
c ← 0b01

else
c ← 0b00

CR[4∗ crfD:4∗ crfD+3] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as un-
signed integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-13 Simplified Mnemonics for cmpl Instruction

Operation Simplified Mnemonic Equivalent To

Compare word logical cmplw crfD, rA,rB
cmpl crfD, rA,rB

cmpl crfD, 0, rA,rB

Compare word logical,
place result in CR0

cmplw rA,rB
cmpl rA,rB

cmpl 0, 0, rA,rB

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

0x1F crfD 0 L A B 0x20 0
 MOTOROLA INSTRUCTION SET RCPU

9-32 Revised 1 February 1999 REFERENCE MANUAL

cmpli cmpli
Compare Logical Immediate Integer Unit

cmpli crfD,L,rA,UIMM

a ← (rA)
b ← (rB)
if a <U (0x0000 || UIMM) then

c ← 0b100
else

if a >U (0x0000 || UIMM) then
c ← 0b01

else
 c ← 0b001

CR[4∗ crfD:4∗ crfD+3] ← c || XER[SO]

The contents of rA are compared with 0x0000 || UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-14 Simplified Mnemonics for cmpli Instruction

Operation Simplified Mnemonic Equivalent To

Compare word logical
immediate

cmplwi crfD,rA,value
cmpli crfD,rA,value

cmpli crfD,0,rA,value

Compare word logical
immediate, place result
in CR0

cmplwi rA,value
cmpli rA,value

cmpli 0,0,rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM0x0A crfD 0 L A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-33

cntlzwx cntlzwx
Count Leading Zeros Word Integer Unit

cntlzw rA,rS (Rc=0)
cntlzw. rA,rS (Rc=1)

n ← 0
do whil n < 32

if rS[n]=1 then leave
n ← n+1

rA ← n

A count of the number of consecutive zero bits starting at bit 0 of rS is placed into rA. This
number ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

For count leading zeros instructions, if Rc=1 then LT is cleared to zero in the CR0 field.

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F S A 0 0 0 0 0 0x1A Rc
 MOTOROLA INSTRUCTION SET RCPU

9-34 Revised 1 February 1999 REFERENCE MANUAL

crand crand
Condition Register AND Branch Processor Unit

crand crbD,crbA,crbB

CR[crbD] ← CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x101 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-35

crandc crandc
Condition Register AND with Complement Branch Processor Unit

crandc crbD,crbA,crbB

CR[crbD] ← CR[crbA] & ¬ CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the
bit in the condition register specified by crbB and the result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x81 0
 MOTOROLA INSTRUCTION SET RCPU

9-36 Revised 1 February 1999 REFERENCE MANUAL

creqv creqv
Condition Register Equivalent Branch Processor Unit

creqv crbD,crbA,crbB

CR[crbD] ← CR[crbA] ≡ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition reg-
ister bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

Table 9-15 Simplified Mnemonics for creqv Instruction

Operation Simplified Mnemonic Equivalent To

Condition register set crset crbD creqv crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x121 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-37

crnand crnand
Condition Register NAND Branch Processor Unit

crnand crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] & CR[crbB])

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition reg-
ister bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0xE1 0
 MOTOROLA INSTRUCTION SET RCPU

9-38 Revised 1 February 1999 REFERENCE MANUAL

crnor crnor
Condition Register NOR Branch Processor Unit

crnor crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] | CR[crbB])

The bit in the condition register specified by crbA is ORed with the bit in the condition reg-
ister specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

Table 9-16 Simplified Mnemonics for crnor Instruction

Operation Simplified Mnemonic Equivalent To

Condition register NOT crnot crbD, crbA crnor crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x21 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-39

cror cror
Condition Register OR Branch Processor Unit

cror crbD,crbA,crbB

CR[crbD] ← CR[crbA] | CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition reg-
ister specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

Table 9-17 Simplified Mnemonics for cror Instruction

Operation Simplified Mnemonic Equivalent To

Condition register move crmove crbD, crbA cror crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x1C1 0
 MOTOROLA INSTRUCTION SET RCPU

9-40 Revised 1 February 1999 REFERENCE MANUAL

crorc crorc
Condition Register OR with Complement Branch Processor Unit

crorc crbD,crbA,crbB

CR[crbD] ← CR[crbA] | ¬ CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the con-
dition register bit specified by crbB and the result is placed into the condition register bit
specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x1A1 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-41

crxor crxor
Condition Register XOR Branch Processor Unit

crxor crbD,crbA,crbB

CR[crbD] ← CR[crbA] ⊕ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the result is placed into the condition register bit specified
by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by crbD

This instruction is defined by the PowerPC UISA.

Table 9-18 Simplified Mnemonics for crxor Instruction

Operation Simplified Mnemonic Equivalent To

Condition register clear crclr crbD crxor crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0xC1 0
 MOTOROLA INSTRUCTION SET RCPU

9-42 Revised 1 February 1999 REFERENCE MANUAL

divwx divwx
Divide Word Integer Unit

divw rD,rA,rB (OE=0 Rc=0)
divw. rD,rA,rB (OE=0 Rc=1)
divwo rD,rA,rB (OE=1 Rc=0)
divwo. rD,rA,rB (OE=1 Rc=1)

dividend ←(rA)
divisor ←(rB)
rD ← dividend ÷ divisor

Register rA is the 32-bit dividend. Register rB is the 32-bit divisor. A 32-bit quotient is
formed and placed into rD. The remainder is not supplied as a result.

Both operands are interpreted as signed integers. The quotient is the unique signed inte-
ger that satisfies the following:

dividend=(quotient times divisor)+r

where

0 ≤ r < |divisor|

if the dividend is non-negative, and

-|divisor| < r ≤ 0

if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000 0000 / -1

<anything> / 0

then the following conditons result:

• The contents of rD are undefined.

• If Rc = 1, the contents of the LT, GT, and EQ bits of the CR0 field are undefined.

• If OE = 1, then OV is set to 1.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x1EB Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-43

• XER:

Affected: SO, OV (if OE=1)

The 32-bit signed remainder of dividing rA by rB can be computed as follows, except in
the case that rA= 0x8000 0000 and rB=-1:

divw rD,rA,rB # rD=quotient

mull rD,rD,rB # rD=quotient∗ divisor

subf rD,rD,rA # rD=remainder

This instruction is defined by the PowerPC UISA.
 MOTOROLA INSTRUCTION SET RCPU

9-44 Revised 1 February 1999 REFERENCE MANUAL

divwux divwux
Divide Word Unsigned Integer Unit

divwu rD,rA,rB (OE=0 Rc=0)
divwu. rD,rA,rB (OE=0 Rc=1)
divwuo rD,rA,rB (OE=1 Rc=0)
divwuo. rD,rA,rB (OE=1 Rc=1)

dividend ← (rA)
divisor ← (rB)
rD ← dividend ÷ divisor

The dividend is the contents of rA. The divisor is the contents of rB. A 32-bit quotient is
formed and placed into rD. The remainder is not supplied as a result.

Both operands are interpreted as unsigned integers, except that if Rc = 1 the first three
bits of the CR0 field are set by signed comparison of the result to zero. The quotient is the
unique unsigned integer that satisfies the following:

dividend=(quotient ∗ divisor)+r

where

0 ≤ r < divisor.

If an attempt is made to divide by zero, then the following conditons result:

• The contents of rD are undefined.

• If Rc = 1, the contents of the LT, GT, and EQ bits of the CR0 field are undefined.

• If OE = 1, then OV is set to 1.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

The 32-bit unsigned remainder of dividing rA by rB can be computed as follows:

divwu rD,rA,rB # rD=quotient

mull rD,rD,rB # rD=quotient∗ divisor

subf rD,rD,rA # rD=remainder

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x1CB Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-45

eieio eieio
Enforce In-Order Execution of I/O Load/Store Unit

The eieio instruction provides an ordering function for the effects of load and store instruc-
tions executed by a given processor. Executing an eieio instruction ensures that all mem-
ory accesses previously initiated by the given processor are complete with respect to main
memory before any memory accesses subsequently initiated by the given processor ac-
cess main memory.

The eieio instruction orders loads from cache-inhibited memory.

Other registers altered:

• None

The eieio instruction is intended for use only in performing memory-mapped I/O opera-
tions and to prevent load/store combining operations in main memory. It can be thought
of as placing a barrier into the stream of memory accesses issued by a processor, such
that any given memory access appears to be on the same side of the barrier to both the
processor and the I/O device.

The eieio instruction may complete before previously initiated memory accesses have
been performed with respect to other processors and mechanisms.

This instruction is defined by the PowerPC VEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x356 0
 MOTOROLA INSTRUCTION SET RCPU

9-46 Revised 1 February 1999 REFERENCE MANUAL

eqvx eqvx
Equivalent Integer Unit

eqv rA,rS,rB (Rc=0)
eqv. rA,rS,rB (Rc=1)

rA ← ((rS) ≡ (rB))

The contents of rS are XORed with the contents of rB and the complemented result is
placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 21 22 30 31

0x1F S A B 0x11C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-47

extsbx extsbx
Extend Sign Byte Integer Unit

extsb rA,rS (Rc=0)
extsb. rA,rS (Rc=1)

S ← rS[24]
rA[24:31] ← rS[24:31]
rA[0:23] ← (24)S

The contents of rS[24:31] are placed into rA[24:31]. Bit 24 of rS is placed into rA[0:23].

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 3031

Reserved

0x1F S A 0 0 0 0 0 0x3BA Rc
 MOTOROLA INSTRUCTION SET RCPU

9-48 Revised 1 February 1999 REFERENCE MANUAL

extshx extshx
Extend Sign Half Word Integer Unit

extsh rA,rS (Rc=0)
extsh. rA,rS (Rc=1)

S ← rS[16]
rA[16:31]← rS[16:31]
rA[0:15] ← (16)S

The contents of rS[16:31] are placed into rA[16:31]. Bit 16 of rS is placed into rA[0:15].

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F S A 0 0 0 0 0 0x39A Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-49

fabsx fabsx
Floating-Point Absolute Value Floating-Point Unit

fabs frD,frB (Rc=0)
fabs. frD,frB (Rc=1)

The contents of frB with bit 0 cleared to zero are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x3F D 0 0 0 0 0 B 0x108 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-50 Revised 1 February 1999 REFERENCE MANUAL

faddx faddx
Floating-Point Add Floating-Point Unit

fadd frD,frA,frB (Rc=0)
fadd. frD,frA,frB (Rc=1)

The floating-point operand in frA is added to the floating-point operand in frB. If the most
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the target precision under control of the floating-point rounding control field
RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two signifi-
cands. The exponents of the two operands are compared, and the significand accompa-
nying the smaller exponent is shifted right, with its exponent increased by one for each bit
shifted, until the two exponents are equal. The two significands are then added or sub-
tracted as appropriate, depending on the signs of the operands, to form a n intermediate
sum. All 53 bits in the significand as well as all three guard bits (G, R, and X) enter into
the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for in-
valid operation exceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0x3F D A B 0 0 0 0 0 0x15 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-51

faddsx faddsx
Floating-Point Add (Single-Precision) Floating-Point Unit

fadds frD,frA,frB (Rc=0)
fadds. frD,frA,frB (Rc=1)

The floating-point operand in frA is added to the floating-point operand in frB. If the most
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the target precision under control of the floating-point rounding control field
RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two signifi-
cands. The exponents of the two operands are compared, and the significand accompa-
nying the smaller exponent is shifted right, with its exponent increased by one for each bit
shifted, until the two exponents are equal. The two significands are then added or sub-
tracted as appropriate, depending on the signs of the operands, t o form an intermediate
sum. All 53 bits in the significand as well as all three guard bits (G, R, and X) enter into
the computation.

If a carry occurs, the sum’s significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for in-
valid operation exceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0x3B D A B 0 0 0 0 0 0x15 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-52 Revised 1 February 1999 REFERENCE MANUAL

fcmpo fcmpo
Floating-Point Compare Ordered Floating-Point Unit

fcmpo crfD,frA,frB

if (frA) is a NaN or (frB) is a NaN
then c←0b00

else if (frA)<(frB) then c ←0b1000
else if (frA)>(frB) then c←0b0100
else c←0b001
FPSCR[FPCC]←c
CR[4*crfD: 4*crfD+3]←c
if (frA) is an SNaN or (frB) is an SNaN

then FPSCR[VXSNAN]←1
if VE=0 then FPSCR[VXVC]←1

else if (frA) is a QNaN or (frB) is a QNaN
then FPSCR[VXVC]←1

The floating-point operand in frA is compared to the floating-point operand in frB. The re-
sult of the compare is placed into CR Field crfD and FPSCR[FPCC].

If at least one of the operands is a NaN, either quiet or signaling, then CR Field crfD and
FPSCR[FPCC] are set to reflect unordered. If at least one of the operands is a signaling
NaN, then FPSCR[VXSNAN] is set, and if invalid operation is disabled (FPSCR[VE]=0)
then FPSCR[VXVC] is set. If neither operand is a signaling NaN, but at least one i s a
QNaN, then FPSCR[VXVC] is set.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN, VXVC

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0x20 00x3F crfD 0 0 A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-53

fcmpu fcmpu
Floating-Point Compare Unordered Floating-Point Unit

fcmpu crfD,frA,frB

if (frA) is a NaN or (frB) is a NaN
then c←0b00

else if (frA)<(frB) then c ←0b1000
else if (frA)>(frB) then c←0b0100
else c←0b001
FPSCR[FPCC]←c
CR[4*crfD: 4*crfD+3]←c
if (frA) is an SNaN or (frB) is an SNaN

then FPSCR[VXSNAN]←1

The floating-point operand in register frA is compared to the floating-point operand in reg-
ister frB. The result of the compare is placed into CR Field crfD and into FPSCR[FPCC].

If at least one of the operands is a NaN, either quiet or signaling, then CR Field crfD and
FPSCR[FPCC] are set to reflect unordered. If at least one of the operands is a signaling
NaN, then FPSCR[VXSNAN] is set.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 00x3F crfD 0 0 A
 MOTOROLA INSTRUCTION SET RCPU

9-54 Revised 1 February 1999 REFERENCE MANUAL

fctiwx fctiwx
Floating-Point Convert to Integer Word Floating-Point Unit

fctiw frD,frB (Rc=0)
fctiw. frD,frB (Rc=1)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode specified by FPSCR[RN], and placed in of frD[32:63]. frD[0:31] are unde-
fined.

If the contents of frB is greater than 231-1, frD[32:63] are set to 0x7FFF FFFF.

If the contents of frB is less than -231, frD[32:63] are set to 0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT MODELS AND
CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FP-
SCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result is
inexact.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x0E Rc0x3F D 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-55

fctiwzx fctiwzx
Floating-Point Convert to Integer Word with Round toward Zero Floating-Point Unit

fctiwz frD,frB (Rc=0)
fctiwz. frD,frB (Rc=1)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode round toward zero, and placed in bits 32:63 of frD. frD[0:31] are unde-
fined.

If the operand in frB is greater than 231-1, frD[32:63] are set to 0x7FFF FFFF.

If the operand in frB is less than -231, frD[32:63] are set to 0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT MODELS AND
CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FP-
SCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result is
inexact.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0X0F Rc0X3F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-56 Revised 1 February 1999 REFERENCE MANUAL

fdivx fdivx
Floating-Point Divide Floating-Point Unit

fdiv frD,frA,frB (Rc=0)
fdiv. frD,frA,frB (Rc=1)

The floating-point operand in register frA is divided by the floating-point operand in regis-
ter frB. No remainder is preserved.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x12 Rc0x3F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-57

fdivsx fdivsx
Floating-Point Divide Single-Precision Floating-Point Unit

fdivs frD,frA,frB (Rc=0)
fdivs. frD,frA,frB (Rc=1)

The floating-point operand in register frA is divided by the floating-point operand in regis-
ter frB. No remainder is preserved.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x12 Rc0x3B D A
 MOTOROLA INSTRUCTION SET RCPU

9-58 Revised 1 February 1999 REFERENCE MANUAL

fmaddx fmaddx
Floating-Point Multiply-Add Floating-Point Unit

fmadd frD,frA,frC,frB (Rc=0)
fmadd. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗ (frC)]+(frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1D Rc0x3F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-59

fmaddsx fmaddsx
Floating-Point Multiply-Add Single-Precision Floating-Point Unit

fmadds frD,frA,frC,frB (Rc=0)
fmadds. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗ (frC)]+(frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1D Rc0x3B D A
 MOTOROLA INSTRUCTION SET RCPU

9-60 Revised 1 February 1999 REFERENCE MANUAL

fmrx fmrx
Floating-Point Move Register Floating-Point Unit

fmr frD,frB (Rc=0)
fmr. frD,frB (Rc=1)

The contents of register frB are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x48 Rc0x3F D 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-61

fmsubx fmsubx
Floating-Point Multiply-Subtract Floating-Point Unit

fmsub frD,frA,frC,frB (Rc=0)
fmsub. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗ (frC)] - (frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1C Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-62 Revised 1 February 1999 REFERENCE MANUAL

fmsubsx fmsubsx
Floating-Point Multiply-Subtract (Single-Precision) Floating-Point Unit

fmsubs frD,frA,frC,frB (Rc=0)
fmsubs. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗ (frC)] - (frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1C Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-63

fmulx fmulx
Floating-Point Multiply Floating-Point Unit

fmul frD,frA,frC (Rc=0)
fmul. frD,frA,frC (Rc=1)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the signif-
icands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 0x19 Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-64 Revised 1 February 1999 REFERENCE MANUAL

fmulsx fmulsx
Floating-Point Multiply Single-Precision Floating-Point Unit

fmuls frD,frA,frC (Rc=0)
fmuls. frD,frA,frC (Rc=1)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the signif-
icands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 0x19 Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-65

fnabsx fnabsx
Floating-Point Negative Absolute Value Floating-Point Unit

fnabs frD,frB (Rc=0)
fnabs. frD,frB (Rc=1)

The contents of register frB, with bit 0 set to one, are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0x88 Rc0x3F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-66 Revised 1 February 1999 REFERENCE MANUAL

fnegx fnegx
Floating-Point Negate Floating-Point Unit

fneg frD,frB (Rc=0)
fneg. frD,frB (Rc=1)

The contents of register frB, with bit 0 inverted, are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x28 Rc0x3F D 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-67

fnmaddx fnmaddx
Floating-Point Negative Multiply-Add Floating-Point Unit

fnmadd frD,frA,frC,frB (Rc=0)
fnmadd. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗ (frC)]+(frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result. If
an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the floating-point
multiply-add instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation excep-
tions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1F Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-68 Revised 1 February 1999 REFERENCE MANUAL

fnmaddsx fnmaddsx
Floating-Point Negative Multiply-Add Single-Precision Floating-Point Unit

fnmadds frD,frA,frC,frB (Rc=0)
fnmadds. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗ (frC)]+(frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result. If
an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the floating-point
multiply-add instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation excep-
tions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1F Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-69

fnmsubx fnmsubx
Floating-Point Negative Multiply-Subtract Floating-Point Unit

fnmsub frD,frA,frC,frB (Rc=0)
fnmsub. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗ (frC)] - (frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number, it is prenormalized before the operation is start-
ed. If the most significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a floating mul-
tiply-subtract instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field)

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1E Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-70 Revised 1 February 1999 REFERENCE MANUAL

fnmsubsx fnmsubsx
Floating-Point Negative Multiply-Subtract Single-Precision Floating-Point Unit

fnmsubs frD,frA,frC,frB (Rc=0)
fnmsubs. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗ (frC)] - (frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number, it is prenormalized before the operation is start-
ed. If the most significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a floating mul-
tiply-subtract instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field)

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1E Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-71

frspx frspx
Floating-Point Round to Single-Precision Floating-Point Unit

frsp frD,frB (Rc=0)
frsp. frD,frB (Rc=1)

If it is already in single-precision range, the floating-point operand in register frB is placed
into frD. Otherwise the floating-point operand in register frB is rounded to single-precision
using the rounding mode specified by FPSCR[RN] and placed into frD.

The rounding is described fully in APPENDIX C FLOATING-POINT MODELS AND CON-
VERSIONS.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x0C Rc0x3F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-72 Revised 1 February 1999 REFERENCE MANUAL

fsubx fsubx
Floating-Point Subtract Floating-Point Unit

fsub frD,frA,frB (Rc=0)
fsub. frD,frA,frB (Rc=1)

The floating-point operand in register frB is subtracted from the floating-point operand in
register frA. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

The execution of the floating-point subtract instruction is identical to that of floating-point
add, except that the contents of frB participates in the operation with its sign bit (bit 0) in-
verted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x14 Rc0x3F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-73

fsubsx fsubsx
Floating-Point Subtract Single-Precision Floating-Point Unit

fsubs frD,frA,frB (Rc=0)
fsubs. frD,frA,frB (Rc=1)

The floating-point operand in register frB is subtracted from the floating-point operand in
register frA. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

The execution of the floating-point subtract instruction is identical to that of floating-point
add, except that the contents of frB participates in the operation with its sign bit (bit 0) in-
verted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x14 Rc0x3B D A
 MOTOROLA INSTRUCTION SET RCPU

9-74 Revised 1 February 1999 REFERENCE MANUAL

icbi icbi
Instruction Cache Block Invalidate Load/Store Unit

icbi rA,rB

EA is the sum (rA|0)+(rB).

If a block containing the byte addressed by EA is in the instruction cache of this processor,
the block is made invalid in the processor. Subsequent references cause the block to be
refetched.

NOTE
According to the PowerPC architecture, if the addressed block is in
coherency-required mode, the block is made invalid in all affected
processors. In the RCPU, however, all instruction memory is consid-
ered to be in coherency-not-required mode.

Other registers altered:

• None

This instruction is defined by the PowerPC VEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x3D6 00x1F 0 0 0 0 0 A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-75

isync isync
Instruction Synchronize Branch Processor Unit

isync

Fetch of an isync instruction causes fetch serialization: instruction fetch is halted until all
instructions currently in the processor (i.e., all issued instructions as well as the pre-
fetched instructions waiting to be issued) have completed execution. This instruction
causes subsequent instructions to execute in the context established by the previous in-
structions.

This instruction has no effect on other processors or on their caches.

Other registers altered:

• None

This instruction is defined by the PowerPC VEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x90 0
 MOTOROLA INSTRUCTION SET RCPU

9-76 Revised 1 February 1999 REFERENCE MANUAL

lbz lbz
Load Byte and Zero Load/Store Unit

lbz rD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
rD ← (24)0 || MEM(EA, 1)

The effective address is the sum (rA|0) + d. The byte in memory addressed by EA is load-
ed into rD[24:31]. Bits rD[0:23] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x22 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-77

lbzu lbzu
Load Byte and Zero with Update Load/Store Unit

lbzu rD,d(rA)

EA ← (rA)+EXTS(d)
rD←(24)0 || MEM(EA, 1)
rA←EA

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into rD[24:31].
Bits rD[0:23] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x23 D A
 MOTOROLA INSTRUCTION SET RCPU

9-78 Revised 1 February 1999 REFERENCE MANUAL

lbzux lbzux
Load Byte and Zero with Update Indexed Load/Store Unit

lbzux rD,rA,rB

EA ← (rA)+(rB)
rD ← (24)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA|0) + (rB). The byte addressed by EA is loaded into rD[24:31]. Bits
rD[0:23] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x77 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-79

lbzx lbzx
Load Byte and Zero Indexed Load/Store Unit

lbzx rD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
rD ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into rD[24:31].

Bits rD[0:23] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x57 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-80 Revised 1 February 1999 REFERENCE MANUAL

lfd lfd
Load Floating-Point Double-Precision Load/Store Unit

lfd frD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + d.

The double word in memory addressed by EA is placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x32 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-81

lfdu lfdu
Load Floating-Point Double-Precision with Update Load/Store Unit

lfdu frD,d(rA)

EA ← (rA)+EXTS(d)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA|0) + d.

The double word in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x33 D A
 MOTOROLA INSTRUCTION SET RCPU

9-82 Revised 1 February 1999 REFERENCE MANUAL

lfdux lfdux
Load Floating-Point Double-Precision with Update Indexed Load/Store Unit

lfdux frD,rA,rB

EA ← (rA)+(rB)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA|0) + (rB).

The double word in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x277 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-83

lfdx lfdx
Load Floating-Point Double-Precision Indexed Load/Store Unit

lfdx frD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB).

The double word in memory addressed by EA is placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x257 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-84 Revised 1 February 1999 REFERENCE MANUAL

lfs lfs
Load Floating-Point Single-Precision Integer Unit

lfs frD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x30 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-85

lfsu lfsu
Load Floating-Point Single-Precision with Update Integer Unit

lfsu frD,d(rA)

EA ← (rA)+EXTS(d)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA|0) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x31 D A
 MOTOROLA INSTRUCTION SET RCPU

9-86 Revised 1 February 1999 REFERENCE MANUAL

lfsux lfsux
Load Floating-Point Single-Precision with Update Indexed Load/Store Unit

lfsux frD,rA,rB

EA ← (rA)+(rB)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x237 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-87

lfsx lfsx
Load Floating-Point Single-Precision Indexed Load/Store Unit

lfsx frD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x217 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-88 Revised 1 February 1999 REFERENCE MANUAL

lha lha
Load Half Word Algebraic Load/Store Unit

lha rD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x2A D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-89

lhau lhau
Load Half Word Algebraic with Update Load/Store Unit

lhau rD,d(rA)

EA ← (rA)+EXTS(d)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31].

Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x2B D A
 MOTOROLA INSTRUCTION SET RCPU

9-90 Revised 1 February 1999 REFERENCE MANUAL

lhaux lhaux
Load Half Word Algebraic with Update Indexed Load/Store Unit

lhaux rD,rA,rB

EA ← (rA)+(rB)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x177 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-91

lhax lhax
Load Half Word Algebraic Indexed Load/Store Unit

lhax rD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x157 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-92 Revised 1 February 1999 REFERENCE MANUAL

lhbrx lhbrx
Load Half Word Byte-Reverse Indexed Load/Store Unit

lhbrx rD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
rD ← (16)0 || MEM(EA+1, 1) || MEM(EA,1)

EA is the sum (rA|0) + (rB). Bits 0:7 of the half word in memory addressed by EA are load-
ed into rD[24:31]. Bits 8:15 of the half word in memory addressed by EA are loaded into
rD[16:23]. Bits rD[0:15] are cleared to zero.

Some PowerPC implementations may run the lhbrx instructions with greater latency than
other types of load instructions. This is not the case in the RCPU. This instruction operates
with the same latency as other load instructions.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x316 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-93

lhz lhz
Load Half Word and Zero Load/Store Unit

lhz rD,d(rA)

if rA=0 then b←0
else b ← (rA)
EA ← b+EXTS(d)
rD ← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x28 D A
 MOTOROLA INSTRUCTION SET RCPU

9-94 Revised 1 February 1999 REFERENCE MANUAL

lhzu lhzu
Load Half Word and Zero with Update Load/Store Unit

lhzu rD,d(rA)

EA ← (rA)+EXTS(d)
rD ← (16)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x29 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-95

lhzux lhzux
Load Half Word and Zero with Update Indexed Load/Store Unit

lhzux rD,rA,rB

EA ← (rA)+(rB)
rD←(16)0 || MEM(EA, 2)
rA←EA

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x137 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-96 Revised 1 February 1999 REFERENCE MANUAL

lhzx lhzx
Load Half Word and Zero Indexed Load/Store Unit

lhzx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
rD←(16)0 || MEM(EA, 2)

The effective address is the sum (rA|0) + (rB). The half word in memory addressed by EA
is loaded into rD[16:31]. Bits rD[0:15] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x117 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-97

lmw lmw
Load Multiple Word Load/Store Unit

lmw rD,d(rA)

if rA=0 then b←0
else b←(rA)
EA←b+EXTS(d)
r←rD
do while r ð 3

GPR(r)← MEM(EA, 4)
r←r+1
EA←EA+4

EA is the sum (rA|0) + d.

n=(32-rD).

n consecutive words starting at EA are loaded into the 32 bits of GPRs rD through r31.
EA must be a multiple of four; otherwise, the system alignment exception handler is in-
voked.

If rA is in the range of registers specified to be loaded, including the case in which rA = 0,
the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x2E D A
 MOTOROLA INSTRUCTION SET RCPU

9-98 Revised 1 February 1999 REFERENCE MANUAL

lswi lswi
Load String Word Immediate Load/Store Unit

lswi rD,rA,NB

if rA=0 then EA←0
else EA←(rA)
if NB=0 then n←32
else n←NB
r←rD - 1
i←32
do whil n Š 0

if i=32 then
r←r+1 (mod 3)
GPR(r)←0

GPR(r)[i:i+7]←MEM(EA, 1)
i←i+8
EA←EA+1
n←n-1

The EA is (rA|0).

Let n=NB if NB¦0, n=32 if NB=0; n is the number of bytes to load. Let nr=CEIL(n/4); nr is
the number of registers to be loaded with data.

n consecutive bytes starting at the EA are loaded into GPRs rD through rD+nr-1. Bytes
are loaded left to right in each register. The sequence of registers wraps around to r0 if
required. If the four bytes of register rD+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared to zero.

If rA is in the range of registers specified to be loaded, including the case in which rA = 0,
the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 0x255 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-99

lswx lswx
Load String Word Indexed Load/Store Unit

lswx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
n←XER[25:31]
r←rD - 1
i←32
do whil n Š 0

if i=32 then
r←r+1 (mod 32)
GPR(r)←0

GPR(r)[i:i+7]←MEM(EA, 1)
i←i+8
EA←EA+1
n←n-1

EA is the sum (rA|0)+(rB). Let n=XER[25:31]; n is the number of bytes to load. Let
nr=CEIL(n/4): nr is the number of registers to receive data.

If n>0, n consecutive bytes starting at EA are loaded into GPRs rD through rD+nr-1.

Bytes are loaded left to right in each register. The sequence of registers wraps around to
r0 if required. If the bytes of rD+nr-1 are only partially filled, the unfilled low-order byte(s)
of that register are cleared to zero.

If n=0, the content of rD is undefined.

If rA or rB is in the range of registers specified to be loaded, including the case in which
rA = 0, either the system illegal instruction error handler is invoked or the results are
boundedly undefined.

If rD = rA or rD = rB, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x215 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-100 Revised 1 February 1999 REFERENCE MANUAL

lwarx lwarx
Load Word and Reserve Indexed Load/Store Unit

lwarx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
RESERVE←1
RESERVE_ADD ←func(EA)
rD←MEM(EA,4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into rD.

This instruction creates a reservation for use by a store word conditional instruction. An
address computed from the EA is associated with the reservation, and replaces any ad-
dress previously associated with the reservation: the manner in which the address to be
associated with the reservation is computed from the EA is described in 4.1.2 Addressing
Modes and Effective Address Calculation.

If the EA is not a multiple of four, the alignment exception handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x14 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-101

lwbrx lwbrx
Load Word Byte-Reverse Indexed Load/Store Unit

lwbrx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
rD←MEM(EA+3, 1) || MEM(EA+2, 1) || MEM(EA+1, 1) || MEM(EA, 1)

EA is the sum (rA|0)+(rB). Bits 0:7 of the word in memory addressed by EA are loaded
into rD[24:31]. Bits 8:15 of the word in memory addressed by EA are loaded into
rD[16:23]. Bits 16:23 of the word in memory addressed by EA are loaded into rD[8:15].
Bits 24:31 of the word in memory addressed by EA are loaded into rD[0:7].

Some PowerPC implementations may run the lwbrx instructions with greater latency than
other types of load instructions. This is not the case in the RCPU. This instruction operates
with the same latency as other load instructions.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x216 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-102 Revised 1 February 1999 REFERENCE MANUAL

lwz lwz
Load Word and Zero Load/Store Unit

lwz rD,d(rA)

if rA=0 then b←0
else b←(rA)
EA←b+EXTS(d)
rD←MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x20 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-103

lwzu lwzu
Load Word and Zero with Update Load/Store Unit

lwzu rD,d(rA)

EA ← (rA)+EXTS(d)
rD←MEM(EA, 4)
rA←EA

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x21 D A
 MOTOROLA INSTRUCTION SET RCPU

9-104 Revised 1 February 1999 REFERENCE MANUAL

lwzux lwzux
Load Word and Zero with Update Indexed Load/Store Unit

lwzux rD,rA,rB

EA ← (rA)+(rB)
rD←MEM(EA, 4)
rA←EA

EA is the sum (rA|0)+(rB). The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x37 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-105

lwzx lwzx
Load Word and Zero Indexed Load/Store Unit

lwzx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
rD←MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x17 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-106 Revised 1 February 1999 REFERENCE MANUAL

mcrf mcrf
Move Condition Register Field Branch Processor Unit

mcrf crfD,crfS

CR[4∗ crfD:4∗ crfD+3] ← CR[4∗ crfS:4∗ crfS+3]

The contents of condition register field crfS are copied into condition register field crfD.
All other condition register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00x13 crfD 0 0 crfS
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-107

mcrfs mcrfs
Move to Condition Register from FPSCR Floating Point and Branch Processor Units

mcrfs crfD,crfS

The contents of FPSCR field crfS are copied to CR Field crfD. All other CR fields are un-
changed. All exception bits copied except FEX and VX are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR Field specified by operand crfS):

Affected: FX, OX (if crfS=0)

Affected: UX, ZX, XX, VXSNAN (if crfS=1)

Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if crfS=2)

Affected: VXVC (if crfS=3)

Affected: VXSOFT, VXSQRT, VXCVI (if crfS=5)

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

0x3F crfD 0 0 crfS 0 0 0 0 0 0 0 0x40 0
 MOTOROLA INSTRUCTION SET RCPU

9-108 Revised 1 February 1999 REFERENCE MANUAL

mcrxr mcrxr
Move to Condition Register from XER Load/Store and Branch Processor Units

mcrxr crfD

CR[4∗ crfD:4∗ crfD+3]←XER[0:3]
XER[0:3]← 0b0000

The contents of XER[0:3] are copied into the condition register field designated by crfD.
All other fields of the condition register remain unchanged. XER[0:3] is cleared to zero.

Other registers altered:

• Condition Register (CR Field specified by crfD operand):

Affected: LT, GT, EQ, SO

• XER[0:3]

This instruction is defined by the PowerPC UISA.

SECTION 9 INSTRUCTION SE

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

0x1F crfD 0 0 0 0 0 0 0 0 0 0 0 0 0x200 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-109

mfcr mfcr
Move from Condition Register Branch Processor Unit

mfcr rD

rD← CR

The contents of the condition register are placed into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x13 00x1F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-110 Revised 1 February 1999 REFERENCE MANUAL

mffsx mffsx
Move from FPSCR Floating-Point Unit

mffs frD (Rc=0)
mffs. frD (Rc=1)

The contents of the FPSCR are placed into frD[32:63]. frD[0:31] are undefined.

Other registers altered:

• Condition Register (CR1 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x247 Rc0x3F frD 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-111

mfmsr mfmsr
Move from Machine State Register Branch Processor Unit

mfmsr rD

rD← MSR

The contents of the MSR are placed into rD.

This is a supervisor-level instruction.

Other registers altered:

• None

This instruction is defined by the PowerPC OEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x53 00x1F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-112 Revised 1 February 1999 REFERENCE MANUAL

mfspr mfspr
Move from Special Purpose Register All Units

mfspr rD,SPR

n←SPR[5:9] ||SPR[0:4]
 rD← SPR(n)

The SPR field denotes a special purpose register, encoded as shown in Table 4-29, Ta-
ble 4-30, and Table 4-31. The contents of the designated special purpose register are
placed into rD.

For mtspr and mfspr instructions, the SPR number coded in assembly language does
not appear directly as a 10-bit binary number in the instruction. The number coded is split
into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appear-
ing in bits 16 to 20 of the instruction and the low-order 5 bits in bits 11 to 15.

If the SPR field contains any value other than one of the values shown in one of the tables
listed above, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The system software emulation exception handler is invoked.

The value of SPR[0] is one if and only if reading the register is at the supervisor level. Ex-
ecution of this instruction specifying a supervisor-level register when MSR[PR]=1 will re-
sult in a supervisor-level instruction type program exception or a software emulation
exception. Refer to SECTION 6 EXCEPTIONS for details.

If the SPR field contains a value that is not valid for the RCPU, the instruction form is in-
valid. For an invalid instruction form in which SPR[0]=1, if MSR[PR]=1 a supervisor-level
instruction type program exception will occur instead of a no-op.

The execution unit that executes the mfspr instruction depends on the SPR. Moves from
the XER and from SPRs that are physically implemented outside the processor are han-
dled by the LSU. Moves from the FPSCR and FPECR are executed by the FPU. In all oth-
er cases, the BPU executes the mfspr instruction.

Other registers altered:

• None

0 5 6 10 11 20 21 30 31

Reserved

SPR 0x153 00x1F D
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-113

This instruction is defined by the PowerPC UISA.

Table 9-19 Simplified Mnemonics for mfspr Instruction

Operation Simplified Mnemonic Equivalent To

Move from XER mfxer rD mfspr rD,1

Move from LR mflr rD mfspr rD,8

Move from CTR mfctr rD mfspr rD,9

Move from DSISR mfdsisr rD mfspr rD,18

Move from DAR mfdar rD mfspr rD,19

Move from DEC mfdec rD mfspr rD,22

Move from SRR0 mfsrr0 rD mfspr rD,26

Move from SRR1 mfsrr1 rD mfspr rD,27

Move from SPRG mfsprg rD, n mfspr rD,272+n

Move from TBL mftb rD mftb rD,268

Move from TBU mftbu rD mftb rD,269

Move from PVR mfpvr rD mfspr rD,287
 MOTOROLA INSTRUCTION SET RCPU

9-114 Revised 1 February 1999 REFERENCE MANUAL

mftb mftb
Move from Time Base Load/Store Unit

mftb rD,TBR

n←TBR[5:9] ||TBR[0:4]
if n = 268 the

 rD ← TBL
else if n = 269 then

 rD← TBU

The TBR field denotes either the time base lower (TBL) or time base upper (TBU), encod-
ed as shown in Table 9-20. Notice that the order of the two 5-bit halves of the TBR number
is reversed in the instruction. The contents of the designated register are copied into rD.

If the TBR field contains any value other than one of the values shown in Table 9-20, one
of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The results are boundedly undefined

Note that mftb serves as both a basic and a simplified mnemonic. The assembler recog-
nized an mftb mnemonic with two operands as the basic form and an mftb mnemonic
with one operand as the simplified form. If mftb is coded with one operand, then that op-
erand is assumed to be rD, and TBR defaults to the value corresponding to TBL.

Other registers altered:

• None

This instruction is defined by the PowerPC VEA.

Table 9-20 TBR Encodings for mftb

Decimal TBR[5:9] TBR[0:4] Register Name Access

268 01000 01100 TBL User

269 01000 01101 TBU User

0 5 6 10 11 20 21 30 31

Reserved

TBR (Split Field) 0x153 00x1F D
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-115

Table 9-21 Simplified Mnemonics for mfspr Instruction

Operation Simplified Mnemonic Equivalent To

Move from TBL mftb rD mftb rD,268

Move from TBU mftbu rD mftb rD,269
 MOTOROLA INSTRUCTION SET RCPU

9-116 Revised 1 February 1999 REFERENCE MANUAL

mtcrf mtcrf
Move to Condition Register Fields Branch Processor Unit

mtcrf CRM,rS

mask←(4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])
CR←((rS) & mask) | (CR & ¬mask)

The contents of rS are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in
the range 0–7. If CRM(i) = 1, CR Field i (CR bits 4∗ i through 4∗ i+3) is set to the contents
of the corresponding field of rS.

Other registers altered:

• CR fields selected by mask

This instruction is defined by the PowerPC UISA.

Table 9-22 Simplified Mnemonics for mtcrf Instruction

Operation Simplified Mnemonic Equivalent To

Move to condition register mtcr rS mtcrf 0xFF,rS

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 0x90 00x1F S 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-117

mtfsb0x mtfsb0x
Move to FPSCR Bit 0 Floating-Point Unit

mtfsb0 crbD (Rc=0)
mtfsb0. crbD (Rc=1)

Bit crbD of the FPSCR is cleared to zero. All other bits of the FPSCR are unchanged.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPSCR bit crbD

Note: Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x46 Rc0x3F crb D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-118 Revised 1 February 1999 REFERENCE MANUAL

mtfsb1x mtfsb1x
Move to FPSCR Bit 1 Floating-Point Unit

mtfsb1 crbD (Rc=0)
mtfsb1. crbD (Rc=1)

Bit crbD of the FPSCR is set to one. All other bits of the FPSCR are unchanged.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

FPSCR bit crbD and FX

Note: Bits 1 and 2 (FEX and VX) cannot be explicitly set.

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x26 Rc0x3F crbD 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-119

mtfsfx mtfsfx
Move to FPSCR Fields Floating-Point Unit

mtfsf FM,frB (Rc=0)
mtfsf. FM,frB (Rc=1)

frB[32:63] are placed into the FPSCR under control of the field mask specified by FM. The
field mask identifies the 4-bit fields affected. Let i be an integer in the range 0–7. If
FM(i)=1, FPSCR Field i (FPSCR bits 4∗ i through 4∗ i+3) is set to the contents of the cor-
responding field of the low-order 32 bits of register frB.

FPSCR[FX] is altered only if FM[0]=1.

In some PowerPC implementations, updating fewer than all eight fields of the FPSCR may
have substantially poorer performance than updating all the fields. This is not the case
with the RCPU.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the values of frB[32] and
frB[35] (i.e., even if this instruction causes OX to change from zero to one, FX is set from
frB[32] and not by the usual rule that FX is set to one when an exception bit changes from
zero to one). Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from
frB[33:34].

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

FPSCR fields selected by mask

This instruction is defined by the PowerPC UISA.

0 5 6 7 14 15 16 20 21 30 31

Reserved

0x3F 0 FM 0 frB 0x2C7 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-120 Revised 1 February 1999 REFERENCE MANUAL

mtfsfix mtfsfix
 Move to FPSCR Field Immediate Floating-Point Unit

mtfsfi crfD,IMM (Rc=0)
mtfsfi. crfD,IMM (Rc=1)

The value of the IMM field is placed into FPSCR field crfD.

FPSCR[FX] is altered only if crfD = 0.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the values of IMM[0] and
IMM[3] (i.e., even if this instruction causes OX to change from zero to one, FX is set from
IMM[0] and not by the usual rule that FX is set to one when an exception bit changes from
0 to 1). Bits 1 and 2 (FEX and VX) are set according to the usual rule, given in 2.2.3 Float-
ing-Point Status and Control Register (FPSCR) and not from IMM[1:2].

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

FPSCR field crfD

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 12 15 16 19 20 21 30 31

Reserved

0x3F crfD 0 0 0 0 0 0 0 IMM 0 0x86 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-121

mtmsr mtmsr
 Move to Machine State Register Branch Processor Unit

mtmsr rS

MSR←rS

The contents of rS are placed into the MSR.

This is a supervisor-level, executing-synchronizing instruction.

Other registers altered:

• MSR

This instruction is defined by the PowerPC OEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x92 00x1F S 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-122 Revised 1 February 1999 REFERENCE MANUAL

mtspr mtspr
 Move to Special Purpose Register All Units

mtspr SPR,rS

n =SPR[5:9] ||SPR[0:4]
SPREG(n)←(rS)

The SPR field denotes a special purpose register, encoded as shown in Table 4-29, Ta-
ble 4-30, and Table 4-31. The contents of rS are placed into the designated special pur-
pose register.

For mtspr and mfspr instructions, the SPR number coded in assembly language does
not appear directly as a 10-bit binary number in the instruction. The number coded is split
into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appear-
ing in bits 16 to 20 of the instruction and the low-order 5 bits in bits 11 to 15.

If the SPR field contains any value other than one of the values shown in one of the tables
listed above, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The software emulation exception handler is invoked.

Note that, for this instruction, SPRs TBL and TBU are treated as separate registers; set-
ting one leaves the other unaltered.

The value of SPR[0] is one if and only if the register is read at the supervisor-level. Exe-
cution of this instruction specifying a supervisor-level register when MSR[PR]=1 results in
a supervisor-level instruction type program exception or software emulation exception.

If the SPR field contains a value that is not valid for the RCPU, the instruction form is in-
valid. For an invalid instruction form in which SPR[0]=1, if MSR[PR]=1 a supervisor-level
instruction type program exception will occur instead of a no-op.

The execution unit that executes the mtspr instruction depends on the SPR. Moves to the
XER and to SPRs that are physically implemented outside the processor are handled by
the LSU. Moves to the FPSCR and FPECR are executed by the FPU. In all other cases,
the BPU executes the mtspr instruction.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 20 21 30 31

Reserved

SPR 0x1D3 00x1F S
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-123

Table 9-23 Simplified Mnemonics for mtspr Instruction

Operation Simplified Mnemonic Equivalent To

Move to XER mtxer rS mtspr 1,rS

Move to LR mtlr rS mtspr 8,rS

Move to CTR mtctr rS mtspr 9,rS

Move to DSISR mtdsisr rS mtspr 18,rS

Move to DAR mtdar rS mtspr 19,rS

Move to DEC mtdec rS mtspr 22,rS

Move to SRR0 mtsrr0 rS mtspr 26,rS

Move to SRR1 mtsrr1 rS mtspr 27,rS

Move to SPR mtsprg n, rS mtspr 272+n,rS

Move to TBL mttbl rS mtspr 284,rS

Move to TBU mttbu rS mtspr 285,rS
 MOTOROLA INSTRUCTION SET RCPU

9-124 Revised 1 February 1999 REFERENCE MANUAL

mulhwx mulhwx
Multiply High Word Integer Unit

mulhw rD,rA,rB (Rc=0)
mulhw. rD,rA,rB (Rc=1)

prod[0:63]←(rA)∗(rB)
rD←prod[0:31]

The contents of rA and of rB are interpreted as 32-bit signed integers. They are multiplied
to form a 64-bit signed integer product. The high-order 32 bits of the 64-bit product are
placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B 0 0x4B Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-125

mulhwux mulhwux
Multiply High Word Unsigned Integer Unit

mulhwu rD,rA,rB (Rc=0)
mulhwu. rD,rA,rB (Rc=1)

prod[0:63]←(rA)∗(rB)
rD←prod[0:31]

The contents of rA and of rB are interpreted as 32-bit unsigned integers. They are multi-
plied to form a 64-bit unsigned integer product. The high-order 32 bits of the 64-bit product
are placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B 0 0x0B Rc
 MOTOROLA INSTRUCTION SET RCPU

9-126 Revised 1 February 1999 REFERENCE MANUAL

mulli mulli
 Multiply Low Immediate Integer Unit

mulli rD,rA,SIMM

prod[0:47]←rA∗ SIMM
rD←prod[16:47]

The low-order 32 bits of the 48-bit product (rA)∗ SIMM are placed into rD. The low-order
bits are calculated independently of whether the operands are treated as signed or un-
signed 32-bit integers.

This instruction can be used with mullhwx to calculate a full 64-bit product.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

SIMM0x07 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-127

mullwx mullwx
Multiply Low Integer Unit

mullw rD,rA,rB (OE=0 Rc=0)
mullw. rD,rA,rB (OE=0 Rc=1)
mullwo rD,,rA,rB (OE=1 Rc=0)
mullwo. rD,rA,rB (OE=1 Rc=1)

prod[0:63]←(rA)∗(rB)
rD←prod[32:63]

The low-order 32 bits of the 64-bit product (rA)∗ (rB) are placed into rD. The low-order bits
are calculated independently of whether the operands are treated as signed or unsigned
integers. However, OV is set based on the result interpreted as a signed integer.

If OE=1, then OV is set to one if the product cannot be represented in 32 bits.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0xEB Rc
 MOTOROLA INSTRUCTION SET RCPU

9-128 Revised 1 February 1999 REFERENCE MANUAL

nandx nandx
NAND Integer Unit

nand rA,rS,rB (Rc=0)
nand. rA,rS,rB (Rc=1)

rA← ¬ ((rS) & (rB))

The contents of rS are ANDed with the contents of rB, and the complemented result is
placed into rA.

nand with rS = rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1DC Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-129

negx negx
Negate Integer Unit

neg rD,rA (OE=0 Rc=0)
neg. rD,rA (OE=0 Rc=1)
nego rD,rA (OE=1 Rc=0)
nego. rD,rA (OE=1 Rc=1)

rD← ¬ (rA) + 1

The sum ¬(rA) + 1 is placed into rD.

If rA contains the most negative 32-bit number (0x8000 0000), the result is the most neg-
ative 32-bit number, and if OE=1, OV is set.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO OV (if OE=1)

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A 0 0 0 0 0 OE 0x68 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-130 Revised 1 February 1999 REFERENCE MANUAL

norx norx
 NOR Integer Unit

nor rA,rS,rB (Rc=0)
nor. rA,rS,rB (Rc=1)

rA← ¬ ((rS) | (rB))

The contents of rS are ORed with the contents of rB, and the one’s complement of the
result is placed into rA.

nor with rS=rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-24 Simplified Mnemonics for nor Instruction

Operation Simplified Mnemonic Equivalent To

Complement register not rA, rS
not. rA, rS

nor rA,rS,rS
nor. rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x7C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-131

orx orx
OR Integer Unit

or rA,rS,rB (Rc=0)
or. rA,rS,rB (Rc=1)

rA←(rS) | (rB)

The contents of rS is ORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-25 Simplified Mnemonics for or Instruction

Operation Simplified Mnemonic Equivalent To

Move register mr rA, rS
mr. rA, rS

or rA,rS,rS
or. rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1BC Rc
 MOTOROLA INSTRUCTION SET RCPU

9-132 Revised 1 February 1999 REFERENCE MANUAL

orcx orcx
OR with Complement Integer Unit

orc rA,rS,rB (Rc=0)
orc. rA,rS,rB (Rc=1)

rA ← (rS) | ¬ (rB)

The contents of rS is ORed with the complement of the contents of rB and the result is
placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x19C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-133

ori ori
OR Immediate Integer Unit

ori rA,rS,UIMM

rA←(rS) | ((16)0 || UIMM)

The contents of rS is ORed with 0x0000 || UIMM and the result is placed into rA.

The preferred no-op is:

ori 0,0,0

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-26 Simplified Mnemonics for ori Instruction

Operation Simplified Mnemonic Equivalent To

No operation nop ori 0,0,0

0 5 6 10 11 15 16 31

0x18 S A UIMM
 MOTOROLA INSTRUCTION SET RCPU

9-134 Revised 1 February 1999 REFERENCE MANUAL

oris oris
OR Immediate Shifted Integer Unit

oris rA,rS,UIMM

rA←(rS) | (UIMM || (16)0)

The contents of rS is ORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x19 S A UIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-135

rfi rfi
Return from Interrupt Branch Processor Unit

MSR[16:31]←SRR1[16:31]
NIA←SRR0[0:29] || 0b00

SRR1[16:31] are placed into MSR[16:31]. If the new MSR value does not enable any
pending exceptions, then the next instruction is fetched, under control of the new MSR
value, from the address SRR0[0:29] || 0b00. If the new MSR value enables one or more
pending exceptions, the exception associated with the highest priority pending exception
is generated; in this case the value placed into SRR0 by the exception processing mech-
anism is the address of the instruction that would have been executed next had the ex-
ception not occurred.

This is a supervisor-level, context-synchronizing instruction.

Other registers altered:

• MSR

This instruction is defined by the PowerPC OEA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x32 0
 MOTOROLA INSTRUCTION SET RCPU

9-136 Revised 1 February 1999 REFERENCE MANUAL

rlwimix rlwimix
Rotate Left Word Immediate then Mask Insert Integer Unit

rlwimi rA,rS,SH,MB,ME (Rc=0)
rlwimi. rA,rS,SH,MB,ME (Rc=1)

n←SH
r←ROTL(rS, n)
m←MASK(MB, ME)
rA←(r&M) | (rA &¬m)

The contents of rS are rotated left SH bits. A mask is generated having 1-bits from bit MB
through bit ME and 0-bits elsewhere. The rotated data is inserted into rA under control of
the generated mask.

Note that rlwimi can be used to insert a bit field into the contents of rA using the methods
shown below:

• To insert an n-bit field that is left-justified in rS into rA starting at bit position b, set
SH = 32 - b, MB = b, and ME = b + n - 1

• To insert an n-bit field that is right-justified in rS into rA starting at bit position b, set
SH = 32 - (b + n), MB = b, and ME = b + n - 1

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-27 Simplified Mnemonics for rlwimi Instruction

Operation Simplified Mnemonic Equivalent To

Insert from left immediate inslwi rA,rS,n,b
inslwi. rA,rS,n,b

rlwimi rA,rS,32-b,b,b+n-1
rlwimi. rA,rS,32-b,b,b+n-1

Insert from right immediate insrwi rA,rS,n,b
insrwi. rA,rS,n,b

rlwimi rA,rS,32- (b + n),b,b+n-1
rlwimi. rA,rS,32- (b + n),b,b+n-1

0 5 6 10 11 15 16 20 21 25 26 30 31

0x14 S A SH MB ME Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-137

rlwinmx rlwinmx
Rotate Left Word Immediate then AND with Mask Integer Unit

rlwinm rA,rS,SH,MB,ME (Rc=0)
rlwinm. rA,rS,SH,MB,ME (Rc=1)

n←SH
r←ROTL(rS, n)
m←MASK(MB, ME)
rA←r & m

The contents of rS are rotated left SH bits. A mask is generated having 1-bits from bit MB
through bit ME and 0-bits elsewhere. The rotated data is ANDed with the generated mask
and the result is placed into rA.

Note that rlwinm can be used to extract, rotate, or clear bit fields using the following meth-
ods:

• To extract an n-bit field that starts at bit position b in rS[0:31], right-justified into rA
(clearing the remaining 32-n bits of rA), set SH=b+n, MB=32-n, and ME=31.

• To extract an n-bit field that starts at bit position b in rS[0–31], left-justified into rA
(clearing the remaining 32-n bits of rA), set SH=b, MB=0, and ME=n-1.

• To rotate the contents of a register left (or right) by n bits, set SH=n (32-n), MB=0,
and ME=31.

• To shift the contents of a register right by n bits, set SH=32-N, MB=n, and ME=31.

• To clear the high-order b bits of a register and then shift the result left by n bits, set
SH=n, MB=b-n and ME=31-n.

• To clear the low-order n bits of a register, set SH=0, MB=0, and ME=31-n.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

0x15 S A SH MB ME Rc
 MOTOROLA INSTRUCTION SET RCPU

9-138 Revised 1 February 1999 REFERENCE MANUAL

Table 9-28 Simplified Mnemonics for rlwinm Instruction

Operation Simplified Mnemonic Equivalent To

Extract and left justify immediate extlwi rA,rS,n,b (n > 0)
extlwi. rA,rS,n,b (n > 0)

rlwinm rA,rS,b,0,n-1
rlwinm. rA,rS,b,0,n-1

Extract and right justify
immediate

extrwi rA,rS,n,b (n > 0)
extrwi rA,rS,n,b (n > 0)

rlwinm rA,rS,b + n, 32 – n, 31
rlwinm. rA,rS,b + n, 32 – n, 31

Rotate left immediate rotlwi rA,rS,n
rotlwi. rA,rS,n

rlwinm rA,rS,n,0,31
rlwinm. rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n
rotrwi. rA,rS,n

rlwinm rA,rS,32 – n,0,31
rlwinm. rA,rS,32 – n,0,31

Shift left immediate srwi rA,rS,n (n < 32)
srwi. rA,rS,n (n < 32)

rlwinm rA,rS,n,0,31–n
rlwinm. rA,rS,n,0,31–n

Shift right immediate srwi rA,rS,n (n < 32)
srwi. rA,rS,n (n < 32)

rlwinm rA,rS,32-n,n,31
rlwinm. rA,rS,32-n,n,31

Clear left immediate clrlwi rA,rS,n (n<32)
clrlwi. rA,rS,n (n<32)

rlwinm rA,rS,0,n,31
rlwinm. rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n<32)
clrrwi. rA,rS,n (n<32)

rlwinm rA,rS,0,0,31-n
rlwinm. rA,rS,0,0,31-n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ð b ð 31)
clrlslwi. rA,rS,b,n (n ð b ð 31)

rlwinm rA,rS,n,b-n,31-n
rlwinm. rA,rS,n,b-n,31-n
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-139

rlwnmx rlwnmx
Rotate Left Word then AND with Mask Integer Unit

rlwnm rA,rS,rB,MB,ME (Rc=0)
rlwnm. rA,rS,rB,MB,ME (Rc=1)

n←rB[27:31]
r←ROTL(rS, n)
m←MASK(MB, ME)
rA←r & m

The contents of rS are rotated left the number of bits specified by rB[27:31]. A mask is
generated having 1-bit from bit MB through bit ME and 0-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed into rA.

Note that rlwnm can be used to extract and rotate bit fields using the following methods:

• To extract an n-bit field that starts at variable bit position b in rS[0:31], right-justified
into rA (clearing the remaining 32-n bits of rA), set rB[27:31]=b+n, MB=32-n, and
ME=31.

• To extract an n-bit field, that starts at variable bit position b in rS[0:31], left-justified
into rA (clearing the remaining 32-n bits of rA), set rB[27:31]=b, MB=0, and ME=n-
1.

• To rotate the contents of a register left (or right) by variable n bits, set rB[27:31]=n
(32-N), MB=0, and ME=31.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-29 Simplified Mnemonics for rlwnm Instruction

Operation Simplified Mnemonic Equivalent To

Rotate left rotlw rA,rS,rB
rotlw. rA,rS,rB

rlwnm rA,rS,rB,0,31
rlwnm. rA,rS,rB,0,31

0 5 6 10 11 15 16 20 21 25 26 30 31

0x17 S A B MB ME Rc
 MOTOROLA INSTRUCTION SET RCPU

9-140 Revised 1 February 1999 REFERENCE MANUAL

sc sc
System Call Branch Processor Unit

This instruction calls the operating system to perform a service. When control is returned
to the program that executed the system call, the content of the registers depends on the
register conventions used by the program providing the system service.

The effective address of the instruction following the system call instruction is placed into
SRR0. MSR[16:31] are placed into SRR1[16:31], and SRR1[0:15] are set to undefined
values.

Then a system call exception is generated. The exception causes the MSR to be altered
as described in 6.11.8 System Call Exception (0x00C00).

The exception causes the next instruction to be fetched from offset 0xC00 from the phys-
ical base address indicated by the new setting of MSR[IP]. This instruction is context-syn-
chronizing.

Other registers altered:

• Dependent on the system service

• SRR0

• SRR1

• MSR

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 29 30 31

0x11 0 1 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-141

slwx slwx
Shift Left Word Integer Unit

slw rA,rS,rB (Rc=0)
slw. rA,rS,rB (Rc=1)

n←rB[27:31]
r←ROTL((rS), n)
if rB[26]=0 then

m← MASK(0,31-n)
else

m←(32)0
rA←r&m

If rB[26]=0, the contents of rS are shifted left the number of bits specified by rB[27:31].
Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into rA. If rB[26]=1, 32 zeros are placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x18 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-142 Revised 1 February 1999 REFERENCE MANUAL

srawx srawx
Shift Right Algebraic Word Integer Unit

sraw rA,rS,rB (Rc=0)
sraw. rA,rS,rB (Rc=1)

n←rB[27:31]
r←ROTL((rS), 32-n)
if rB[26]=0 then

m← MASK(n,31)
else

m←(32)0
s←rS[0]
rA←r&m | (32)s & ¬ m
XER[CA]←s & ((r & ¬ m)¦0)

If rB[26]=0,then the contents of rS are shifted right the number of bits specified by
rB[27:31]. Bits shifted out of position 31 are lost. The result is padded on the left with sign
bits before being placed into rA. If rB[26]=1, then rA is filled with 32 sign bits (bit 0) from
rS. CR0 is set based on the value written into rA.

XER[CA] is set to one if rS contains a negative number and any 1-bits are shifted out of
position 31; otherwise XER[CA] is cleared to zero. A shift amount of zero causes XER[CA]
to be cleared.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x318 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-143

srawix srawix
Shift Right Algebraic Word Immediate Integer Unit

srawi rA,rS,SH (Rc=0)
srawi. rA,rS,SH (Rc=1)

n←SH
r←ROTL((rS), 32-n)
m← MASK(n,31)
s←rS[0]
rA←r&m | (32)s & ¬ m
XER[CA]←s & ((r & ¬ m)¦0)

The contents of rS are shifted right SH bits. Bits shifted out of position 31 are lost. The
shifted value is sign extended before being placed in rA. The 32-bit result is placed into
rA. XER[CA] is set to one if rS contains a negative number and any 1-bits are shifted out
of position 31; otherwise XER[CA] is cleared to zero. A shift amount of zero causes
XER[CA] to be cleared to zero.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A SH 0x338 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-144 Revised 1 February 1999 REFERENCE MANUAL

srwx srwx
Shift Right Word Integer Unit

srw rA,rS,rB (Rc=0)
srw. rA,rS,rB (Rc=1)

n←rB[27:31]
r←ROTL((rS), 32-n)
if rB[26]=0 then

m←MASK(n,31)
else

m←(32)0
rA←r & m

If rB[26]=0, the contents of rA are shifted right the number of bits specified by rA[27:31].
Bits shifted out of position 31 are lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into rA.

If rB[26]=1, then rA is filled with zeros.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x218 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-145

stb stb
Store Byte Load/Store Unit

stb rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 1)←rS[24:31]

EA is the sum (rA|0)+d. The contents of rS[24:31] are stored into the byte in memory ad-
dressed by EA. Register rS is unchanged.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x26 S A d
 MOTOROLA INSTRUCTION SET RCPU

9-146 Revised 1 February 1999 REFERENCE MANUAL

stbu stbu
Store Byte with Update Load/Store Unit

stbu rS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 1)←rS[24:31]
rA←EA

EA is the sum (rA|0)+d. The contents of rS[24:31] are stored into the byte in memory ad-
dressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x27 S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-147

stbux stbux
Store Byte with Update Indexed Load/Store Unit

stbux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 1)←rS[24:31]
rA←EA

EA is the sum (rA|0)+(rB). The contents of rS[24:31] is stored into the byte in memory ad-
dressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 21 22 30 31

0x1F S A B 0xF7 0
 MOTOROLA INSTRUCTION SET RCPU

9-148 Revised 1 February 1999 REFERENCE MANUAL

stbx stbx
Store Byte Indexed Load/Store Unit

stbx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
EM(EA, 1) ← rS[24:31]

EA is the sum (rA|0)+(rB).

The contents of rS[24:31] is stored into the byte in memory addressed by EA. Register rS
is unchanged.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 21 22 30 31

0x1F S A B 0xD7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-149

stfd stfd
Store Floating-Point Double-Precision Floating-Point Unit

stfd frS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 8)←(frS)

EA is the sum (rA|0)+d.

The contents of frS are stored into the double word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 30 31

0x36 frS A d
 MOTOROLA INSTRUCTION SET RCPU

9-150 Revised 1 February 1999 REFERENCE MANUAL

stfdu stfdu
Store Floating-Point Double-Precision with Update Load/Store Unit

stfdu frS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 8)← (frS)
rA←EA

EA is the sum (rA|0)+d.

The contents of frS are stored into the double word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x37 frS A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-151

stfdux stfdux
Store Floating-Point Double-Precision with Update Indexed Load/Store Unit

stfdux frS,rA,rB

EA← (rA) + (rB)
MEM(EA, 8)←(frS)
rA←EA

EA is the sum (rA|0)+(rB).

The contents of frS are stored into the double word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x2F7 0
 MOTOROLA INSTRUCTION SET RCPU

9-152 Revised 1 February 1999 REFERENCE MANUAL

stfdx stfdx
Store Floating-Point Double-Precision Indexed Load/Store Unit

stfdx frS,rA,rB

if rA + 0 then b ←0
else b←(rA)
EA←b + (rB)
MEM(EA, 8)←(frS)

EA is the sum (rA|0)+(rB).

The contents of frS are stored into the double word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x2D7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-153

stfiwx stfiwx
Store Floating-Point as Integer Word Indexed Load/Store Unit

stfiwx frS,rA,rB

if rA =0 then ←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←frS[32:63]

EA is the sum (rA|0)+(rB).

The low-order 32 bits of frS are stored, without conversion, into the word in memory ad-
dressed by EA.

If the contents of frS were produced, either directly or indirectly, by an lfs instruction, a
single-precision arithmetic instruction, or frsp, then the value stored is undefined. The
contents of frS are produced directly by such an instruction if frS is the target register for
the instruction. The contents of frS are produced indirectly by such an instruction if frS is
the final target register of a sequence of one or more floating-point move instructions, with
the input to the sequence having been produced directly by such an instruction.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x3D7 0
 MOTOROLA INSTRUCTION SET RCPU

9-154 Revised 1 February 1999 REFERENCE MANUAL

stfs stfs
Store Floating-Point Single-Precision Load/Store Unit

stfs frS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 4)←SINGLE(frS)

EA is the sum (rA|0)+d.

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x34 frS A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-155

stfsu stfsu
Store Floating-Point Single-Precision with Update Integer and Floating-Point Units

stfsu frS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 4)←SINGLE(frS)
rA←EA

EA is the sum (rA|0)+d.

The of frS are converted to single-precision and stored into the word in memory ad-
dressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x35 frS A d
 MOTOROLA INSTRUCTION SET RCPU

9-156 Revised 1 February 1999 REFERENCE MANUAL

stfsux stfsux
Store Floating-Point Single-Precision with Update Indexed Integer/Floating-Point Units

stfsux frS,rA,rB

EA← (rA) + (rB)
MEM(EA, 4)←SINGLE(frS)
rA←EA

EA is the sum (rA|0)+(rB).

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x2B7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-157

stfsx stfsx
Store Floating-Point Single-Precision Indexed Load/Store Unit

stfsx frS,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←SINGLE(frS)

EA is the sum (rA|0)+(rB).

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x297 0
 MOTOROLA INSTRUCTION SET RCPU

9-158 Revised 1 February 1999 REFERENCE MANUAL

sth sth
Store Half Word Load/Store Unit

sth rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 2)←rS[16:31]

EA is the sum (rA|0)+d.

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x2C S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-159

sthbrx sthbrx
Store Half Word Byte-Reverse Indexed Load/Store Unit

sthbrx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 2)←rS[24:31] || rS[16:23]

EA is the sum (rA|0)+(rB).

The contents of rS[24:31] are stored into bits 0:7 of the half word in memory addressed
by EA. Bits rS[16:23] are stored into bits 8:15 of the half word in memory addressed by
EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x396 0
 MOTOROLA INSTRUCTION SET RCPU

9-160 Revised 1 February 1999 REFERENCE MANUAL

sthu sthu
Store Half Word with Update Load/Store Unit

sthu rS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 2)←rS[16:31]
rA←EA

EA is the sum (rA|0)+d.

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x2D S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-161

sthux sthux
Store Half Word with Update Indexed Load/Store Unit

sthux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 2)←rS[16:31]
rA←EA

EA is the sum (rA|0)+(rB).

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1B7 0
 MOTOROLA INSTRUCTION SET RCPU

9-162 Revised 1 February 1999 REFERENCE MANUAL

sthx sthx
Store Half Word Indexed Load/Store Unit

sthx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 2)←rS[16:31]

EA is the sum (rA|0)+(rB).

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x197 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-163

stmw stmw
Store Multiple Word Load/Store Unit

stmw rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
r←rS
do while r ð 3

MEM(EA, 4) ← GPR(r)
r←r + 1
EA← EA + 4

EA is the sum (rA|0)+d.

n = (32 - rS).

n consecutive words starting at EA are stored from the GPRs rS through 31. For example,
if rS=30, two words are stored.

EA must be a multiple of four; otherwise, the system alignment error handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x2F S A d
 MOTOROLA INSTRUCTION SET RCPU

9-164 Revised 1 February 1999 REFERENCE MANUAL

stswi stswi
Store String Word Immediate Load/Store Unit

stswi rS,rA,NB

if rA = 0 then EA←0
else EA←(rA)
if NB = 0 then n←32
else n←NB
r←rS-1
i←0
do whil n>0

if i = 0 then r←r+1 (mod 32)
MEM(EA, 1)←GPR(r)[i:i+7]
i←i+8
if i = 32 then i←0
EA←EA+1
n←n-1

EA is (rA|0). Let n = NB if NB¦0, n = 32 if NB=0; n is the number of bytes to store. Let nr
= CEIL(n/4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS+nr-1.

Bytes are stored left to right from each register. The sequence of registers wraps around
to GPR0 if required.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A NB 0x205 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-165

stswx stswx
Store String Word Indexed Load/Store Unit

stswx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b+(rB)
n←XER[25:31]
r←rS-1
i←0
do whil n>0

if i = 0 then r←r+1 (mod 32)
MEM(EA, 1)←GPR(r)[i:i+7]
i←i+8
if i = 32 then i←0
EA←EA+1
n←n-1

EA is the sum (rA|0)+(rB). Let n = XER[25:31]; n is the number of bytes to store.

Let nr = CEIL(n/4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS+nr-1. If n = 0, no
bytes are stored.

Bytes are stored left to right from each register. The sequence of registers wraps around
to GPR0 if required.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x295 0
 MOTOROLA INSTRUCTION SET RCPU

9-166 Revised 1 February 1999 REFERENCE MANUAL

stw stw
Store Word Load/Store Unit

stw rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 4)←rS

EA is the sum (rA|0)+d.

The contents of rS are stored into the word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x24 S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-167

stwbrx stwbrx
Store Word Byte-Reverse Indexed Load/Store Unit

stwbrx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←rS[24:31] || rS[16:23] || rS[8:15] || rS[0:7]

EA is the sum (rA|0)+(rB).

The contents of rS[24:31] are stored into bits 0:7 of the word in memory addressed by EA.
Bits rS[16:23] are stored into bits 8:15 of the word in memory addressed by EA. Bits
rS[8:15] are stored into bits 16:23 of the word in memory addressed by EA. Bits rS[0:7]
are stored into bits 24:31 of the word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x296 0
 MOTOROLA INSTRUCTION SET RCPU

9-168 Revised 1 February 1999 REFERENCE MANUAL

stwcx. stwcx.
Store Word Conditional Indexed Load/Store Unit

stwcx. rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
if RESERVE then

MEM(EA, 4)←rS
RESERVE←0
CR ←0b00 || 0b1|| XER[SO]

else
CR ←0b00 || 0b0 || XER[SO]

EA is the sum (rA|0)+(rB).

If a reservation exists, the contents of rS are stored into the word in memory addressed
by EA and the reservation is cleared. If no reservation exists, the instruction completes
without altering memory.

CR0 Field is set to reflect whether the store operation was performed (i.e., whether a res-
ervation existed when the stwcx. instruction commenced execution) as follows.

CR0[LT GT EQ S0] ←0b00 || store_performed || XER[SO]

The EQ bit in the condition register field CR0 is modified to reflect whether the store op-
eration was performed (i.e., whether a reservation existed when the stwcx. instruction be-
gan execution). If the store was completed successfully, the EQ bit is set to one.

EA must be a multiple of four; otherwise, the system alignment error handler is invoked.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x96 1
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-169

stwu stwu
Store Word with Update Load/Store Unit

stwu rS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 4)←rS
rA←EA

EA is the sum (rA|0)+d.

The contents of rS are stored into the word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x25 S A d
 MOTOROLA INSTRUCTION SET RCPU

9-170 Revised 1 February 1999 REFERENCE MANUAL

stwux stwux
Store Word with Update Indexed Load/Store Unit

stwux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 4)←rS
rA←EA

EA is the sum (rA|0)+(rB).

The contents of rS are stored into the word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0xB7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-171

stwx stwx
Store Word Indexed Load/Store Unit

stwx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←rS

EA is the sum (rA|0)+(rB). The contents of rS are stored into the word in memory ad-
dressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x97 0
 MOTOROLA INSTRUCTION SET RCPU

9-172 Revised 1 February 1999 REFERENCE MANUAL

subfx subfx
Subtract from Integer Unit

subf rD,rA,rB (OE=0 Rc=0)
subf. rD,rA,rB (OE=0 Rc=1)
subfo rD,rA,rB (OE=1 Rc=0)
subfo. rD,rA,rB (OE=1 Rc=1)

rD← ¬ (rA) + (rB) + 1

The sum ¬ (rA)+(rB)+1 is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

Table 9-30 Simplified Mnemonics for subf Instruction

Operation Simplified Mnemonic Equivalent To

Subtract sub rD,rA,rB
sub. rD,rA,rB
subo rD,rA,rB
subo. rD,rA,rB

subf rD,rB,rA
subf. rD,rB,rA
subfo rD,rB,rA
subfo. rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x28 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-173

subfcx subfcx
Subtract from Carrying Integer Unit

subfc rD,rA,rB (OE=0 Rc=0)
subfc. rD,rA,rB (OE=0 Rc=1)
subfco rD,rA,rB (OE=1 Rc=0)
subfco. rD,rA,rB (OE=1 Rc=1)

rD← ¬ (rA) + (rB) + 1

The sum ¬ (rA)+(rB)+1 is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

Table 9-31 Simplified Mnemonics for subfc Instruction

Operation Simplified Mnemonic Equivalent To

Subtract subc rD,rA,rB
subc. rD,rA,rB
subco rD,rA,rB
subco. rD,rA,rB

subfc rD,rB,rA
subfc. rD,rB,rA
subfco rD,rB,rA
subfco. rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x08 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-174 Revised 1 February 1999 REFERENCE MANUAL

subf x subf x
Subtract from Extended Integer Unit

subfe rD,rA,rB (OE=0 Rc=0)
subfe. rD,rA,rB (OE=0 Rc=1)
subfeo rD,rA,rB (OE=1 Rc=0)
subfeo. rD,rA,rB (OE=1 Rc=1)

rD← ¬ (rA) + (rB) + XER[CA]

The sum ¬ (rA)+(rB)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x88 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-175

subfic subfic
Subtract from Immediate Carrying Integer Unit

subfic rD,rA,SIMM

rD← ¬ (rA) + EXTS(SIMM) + 1

The sum ¬ (rA)+EXTS(SIMM)+1 is placed into rD.

Other registers altered:

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x08 D A SIMM
 MOTOROLA INSTRUCTION SET RCPU

9-176 Revised 1 February 1999 REFERENCE MANUAL

subfm x subfm x
Subtract from Minus One Extended Integer Unit

subfme rD,rA (OE=0 Rc=0)
subfme. rD,rA (OE=0 Rc=1)
subfmeo rD,rA (OE=1 Rc=0)
subfmeo. rD,rA (OE=1 Rc=1)

rD← ¬ (rA) + XER[CA] - 1

The sum ¬ (rA)+XER[CA]+0xFFFF_FFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A

Reserved

0 0 0 0 0 OE 0xE8
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-177

subfz x subfz x
Subtract from Zero Extended Integer Unit

subfze rD,rA (OE=0 Rc=0)
subfze. rD,rA (OE=0 Rc=1)
subfzeo rD,rA (OE=1 Rc=0)
subfzeo. rD,rA (OE=1 Rc=1)

rD← ¬ (rA) + XER[CA]

The sum ¬ (rA)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A

Reserved

0 0 0 0 0 OE 0xC8 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-178 Revised 1 February 1999 REFERENCE MANUAL

sync sync
Synchronize Load/Store Unit

The sync instruction provides an ordering function for the effects of all instructions exe-
cuted by a given processor. Executing a sync instruction ensures that all instructions pre-
viously initiated by the given processor appear to have completed before any subsequent
instructions are initiated by the given processor. When the sync instruction completes, all
external accesses initiated by the given processor prior to the sync will have been per-
formed with respect to all other mechanisms that access memory.

The sync instruction can be used to ensure that the results of all stores into a data struc-
ture, performed in a “critical section” of a program, are seen by other processors before
the data structure is seen as unlocked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x256 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-179

tw tw
Trap Word Integer Unit

tw TO,rA,rB

a← (rA)
b← (rB)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of rA are compared with the contents of rB. If any bit in the TO field is set to
one and its corresponding condition is met by the result of the comparison, then the sys-
tem trap handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-32 Simplified Mnemonics for tw Instruction

Operation Operands Equivalent To

Trap unconditionally trap tw 31,0,0

Trap if equal tweq rA,rB tw 4,rA,rB

Trap if greater than or equal to twge rA,rB tw 12,rA,rB

Trap if greater than twgt rA,rB tw 8,rA,rB

Trap if less than or equal to twle rA,rB tw 20,rA,rB

Trap if logically greater than or equal to twlge rA,rB tw 5,rA,rB

Trap if logically greater than twlgt rA,rB tw 1,rA,rB

Trap if logically less than or equal to twlle rA,rB tw 6,rA,rB

Trap if logically less than twllt rA,rB tw 2,rA,rB

Trap if logically not greater than twlng rA,rB tw 6,rA,rB

Trap if logically not less than twlnl rA,rB tw 5,rA,rB

Trap if less than twlt rA,rB tw 16,rA,rB

Trap if not equal to twne rA,rB tw 24,rA,rB

Trap if not greater than twng rA,rB tw 20,rA,rB

Trap if not less than twnl rA,rB tw 12,rA,rB

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F TO A B 0x04
 MOTOROLA INSTRUCTION SET RCPU

9-180 Revised 1 February 1999 REFERENCE MANUAL

twi twi
Trap Word Immediate Integer Unit

twi TO,rA,SIMM

a← (rA)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of rA are compared with the sign-extended SIMM field. If any bit in the TO
field is set to one and its corresponding condition is met by the result of the comparison,
then the system trap handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-33 Simplified Mnemonics for twi Instruction

Operation Operands Equivalent To

Trap if equal tweqi rA,value twi 4,rA,value

Trap if greater than or equal to twgei rA,value twi 12,rA,value

Trap if greater than twgti rA,value twi 8,rA,value

Trap if less than or equal to twlei rA,value twi 20,rA,value

Trap if logically greater than or equal to twlgei rA,value twi 5,rA,value

Trap if logically greater than twlgti rA,value twi 1,rA,value

Trap if logically less than or equal to twllei rA,value twi 6,rA,value

Trap if logically less than twllti rA,value twi 2,rA,value

Trap if logically not greater than twlngi rA,value twi 6,rA,value

Trap if logically not less than twlnli rA,value twi 5,rA,value

Trap if less than twlti rA,value twi 16,rA,value

Trap if not equal to twnei rA,value twi 24,rA,value

Trap if not greater than twngi rA,value twi 20,rA,value

Trap if not less than twnli rA,value twi 12,rA,value

0 5 6 10 11 15 16 31

0x03 TO A SIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-181

xorx xorx
XOR Integer Unit

xor rA,rS,rB (Rc=0)
xor. rA,rS,rB (Rc=1)

rA←(rS) ⊕ (rB)

The contents of rA is XORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x13C Rc
 MOTOROLA INSTRUCTION SET RCPU

9-182 Revised 1 February 1999 REFERENCE MANUAL

xori xori
XOR Immediate Integer Unit

xori rA,rS,UIMM

rA←(rS) ⊕ ((16)0 || UIMM)

The contents of rS is XORed with 0x0000 || UIMM and the result is placed into rA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1A S A UIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-183

xoris xoris
XOR Immediate Shifted Integer Unit

xoris rA,rS,UIMM

rA←(rS) ⊕ (UIMM || (16)0)

The contents of rS is XORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1B S A UIMM
 MOTOROLA INSTRUCTION SET RCPU

9-184 Revised 1 February 1999 REFERENCE MANUAL

APPENDIX A
INSTRUCTION SET LISTINGS

This appendix lists the instruction set implemented in the RCPU, sorted by mne-
monic. Reserved bits are shaded.

Table A-1 Complete Instruction List Sorted by Mnemonic

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 0x1F D A B OE 0x10A Rc

addcx 0x1F D A B OE 0xA Rc

addex 0x1F D A B OE 0x8A Rc

addi 0x0E D A SIMM

addic 0x0C D A SIMM

addic. 0x0D D A SIMM

addis 0x0F D A SIMM

addmex 0x1F D A 0 0 0 0 0 OE 0xEA Rc

addzex 0x1F D A 0 0 0 0 0 OE 0xCA Rc

andx 0x1F S A B 0x1C Rc

andcx 0x1F S A B 0x3C Rc

andi. 0x1C S A UIMM

andis. 0x1D S A UIMM

bx 0x12 LI AA LK

bcx 0x10 BO BI BD AA LK

bcctrx 0x13 BO BI 0 0 0 0 0 0x210 LK

bclrx 0x13 BO BI 0 0 0 0 0 0x10 LK

cmp 0x1F crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 0x0B crfD 0 L A SIMM

cmpl 0x1F crfD 0 L A B 0x20 0

cmpli 0x0A crfD 0 L A UIMM

cntlzwx 0x1F S A 0 0 0 0 0 0x1A Rc

crand 0x13 crbD crbA crbB 0x101 0

crandc 0x13 crbD crbA crbB 0x81 0
RCPU INSTRUCTION SET LISTINGS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 A-1

creqv 0x13 crbD crbA crbB 0x121 0

crnand 0x13 crbD crbA crbB 0xE1 0

crnor 0x13 crbD crbA crbB 0x13 0

cror 0x13 crbD crbA crbB 0x1C1 0

crorc 0x13 crbD crbA crbB 0x1A1 0

crxor 0x13 crbD crbA crbB 0xC1 0

divwx 0x1F D A B OE 0x1EB Rc

divwux 0x1F D A B OE 0x1CB Rc

eieio 0x1F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x356 0

eqvx 0x1F S A B 0x11C Rc

extsbx 0x1F S A 0 0 0 0 0 0x3BA Rc

extshx 0x1F S A 0 0 0 0 0 0x39A Rc

fabsx 0x3F D 0 0 0 0 0 B 0x108 Rc

faddx 0x3F D A B 0 0 0 0 0 0x15 Rc

faddsx 0x3B D A B 0 0 0 0 0 0x15 Rc

fcmpo 0x3F crfD 0 0 A B 0x20 0

fcmpu 0x3F crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

fctiwx 0x3F D 0 0 0 0 0 B 0x0E Rc

fctiwzx 0x3F D 0 0 0 0 0 B 0x0F Rc

fdivx 0x3F D A B 0 0 0 0 0 0x12 Rc

fdivsx 0x3B D A B 0 0 0 0 0 0x12 Rc

fmaddx 0x3F D A B C 0x1D Rc

fmaddsx 0x3B D A B C 0x1D Rc

fmrx 0x3F D 0 0 0 0 0 B 0x48 Rc

fmsubx 0x3F D A B C 0x1C Rc

fmsubsx 0x3B D A B C 0x1C Rc

fmulx 0x3F D A 0 0 0 0 0 C 0x19 Rc

fmulsx 0x3B D A 0 0 0 0 0 C 0x19 Rc

fnabsx 0x3F D 0 0 0 0 0 B 0x88 Rc

fnegx 0x3F D 0 0 0 0 0 B 0x28 Rc

fnmaddx 0x3F D A B C 0x1F Rc

fnmaddsx 0x3B D A B C 0x1F Rc

fnmsubx 0x3F D A B C 0x1E Rc

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 MOTOROLA INSTRUCTION SET LISTINGS RCPU

A-2 Revised 1 February 1999 REFERENCE MANUAL

fnmsubsx 0x3B D A B C 0x1E Rc

frspx 0x3F D 0 0 0 0 0 B 0x0C Rc

fsubx 0x3F D A B 0 0 0 0 0 0x14 Rc

fsubsx 0x3B D A B 0 0 0 0 0 0x14 Rc

icbi 0x1F 0 0 0 0 0 A B 0x3D6 0

isync 0x13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x90 0

lbz 0x22 D A d

lbzu 0x23 D A d

lbzux 0x1F D A B 0x77 0

lbzx 0x1F D A B 0x57 0

lfd 0x32 D A d

lfdu 0x33 D A d

lfdux 0x1F D A B 0x277 0

lfdx 0x1F D A B 0x257 0

lfs 0x30 D A d

lfsu 0x31 D A d

lfsux 0x1F D A B 0x237 0

lfsx 0x1F D A B 0x217 0

lha 0x2A D A d

lhau 0x2B D A d

lhaux 0x1F D A B 0x177 0

lhax 0x1F D A B 0x157 0

lhbrx 0x1F D A B 0x316 0

lhz 0x28 D A d

lhzu 0x29 D A d

lhzux 0x1F D A B 0x137 0

lhzx 0x1F D A B 0x117 0

lmw 0x2E D A d

lswi 31 D A NB 0x255 0

lswx 31 D A B 0x215 0

lwarx 31 D A B 0x14 0

lwbrx 31 D A B 0x216 0

lwz 32 D A d

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RCPU INSTRUCTION SET LISTINGS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 A-3

lwzu 33 D A d

lwzux 31 D A B 0x37 0

lwzx 31 D A B 0x17 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 0x40 0

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0x200 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 0x13 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 0x247 Rc

mfmsr 31 D 0 0 0 0 0 0 0 0 0 0 0x53 0

mfspr 31 D SPR 0x153 0

mftb 31 D TBR 0x173 0

mtcrf 31 S 0 CRM 0 0x90 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 0x46 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 0x26 Rc

mtfsfx 31 0 FM 0 frB 0x2C7 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 0x86 Rc

mtmsr 31 S 0 0 0 0 0 0 0 0 0 0 0x92 0

mtspr 31 D SPR 0x1D3 0

mulhwx 0x1F D A B 0 0x4B Rc

mulhwux 0x1F D A B 0 0x0B Rc

mullwx 0x1F D A B OE 0xEB Rc

mulli 0x07 D A SIMM

nandx 0x1F S A B 0x1DC Rc

negx 0x1F D A 0 0 0 0 0 OE 0x68 Rc

norx 0x1F S A B 0x7C Rc

orx 0x1F S A B 0x1BC Rc

orcx 0x1F S A B 0x19C Rc

ori 0x18 S A UIMM

oris 0x19 S A UIMM

rfi 0x13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x32 0

rlwimix 0x14 S A SH MB ME Rc

rlwinmx 0x15 S A SH MB ME Rc

rlwnmx 0x17 S A B MB ME Rc

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 MOTOROLA INSTRUCTION SET LISTINGS RCPU

A-4 Revised 1 February 1999 REFERENCE MANUAL

sc 0x11 0 1 0

slwx 0x1F S A B 0x18 Rc

srawx 0x1F S A B 0x318 Rc

srawix 0x1F S A SH 0x338 Rc

srwx 0x1F S A B 0x218 Rc

stb 0x26 S A d

stbu 0x27 S A d

stbux 0x1F S A B 0xF7 0

stbx 0x1F S A B 0xD7 0

stfd 0x36 frS A d

stfdu 0x37 frS A d

stfdux 0x1F frS A B 0x2F7 0

stfdx 0x1F frS A B 0x2D7 0

stfiwx 0x1F frS A B 0x3D7 0

 stfs 0x34 frS A d

stfsu 0x35 frS A d

stfsux 0x1F frS A B 0x2B7 0

stfsx 0x1F frS A B 0x297 0

sth 0x2C S A d

sthbrx 0x1F S A B 0x396 0

sthu 0x2D S A d

sthux 0x1F S A B 0x1B7 0

sthx 0x1F S A B 0x197 0

stmw 0x2F S A d

stswi 0x1F S A NB 0x205 0

stswx 0x1F S A B 0x295 0

stw 0x24 S A d

stwbrx 0x1F S A B 0x96 0

stwcx. 31 S A B 0x96 1

stwu 0x25 S A d

stwux 0x1F S A B 0xB7 0

stwx 0x1F S A B 0x97 0

subfx 0x1F D A B OE 0x28 Rc

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RCPU INSTRUCTION SET LISTINGS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 A-5

subfcx 0x1F D A B OE 0x08 Rc

subf x 0x1F D A B OE 0x88 Rc

subfic 0x08 D A SIMM

subfmex 0x1F D A 0 0 0 0 0 OE 0xE8 Rc

subfzex 0x1F D A 0 0 0 0 0 OE 0xC8 Rc

sync 0x1F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x256 0

tw 0x1F TO A B 0x04 0

twi 0x03 TO A SIMM

xorx 0x1F S A B 0x13C Rc

xori 0x1A S A UIMM

xoris 0x1B S A UIMM

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 MOTOROLA INSTRUCTION SET LISTINGS RCPU

A-6 Revised 1 February 1999 REFERENCE MANUAL

APPENDIX B
MULTIPLE-PRECISION SHIFTS

This appendix gives examples of how multiple precision shifts can be programmed.
A multiple-precision shift is initially defined to be a shift of an n-word quantity,
where n > 1. The quantity to be shifted is contained in n registers. The shift amount
is specified either by an immediate value in the instruction or by bits 27 to 31 of a
register.

The examples shown below distinguish between the cases n = 2 and n > 2. If n =
2, the shift amount may be in the range 0 to 63, which are the maximum ranges
supported by the shift instructions used. However if n > 2, the shift amount must be
in the range 0 to 31, for the examples to yield the desired result. The specific in-
stance shown for n > 2 is n = 3: extending those instruction sequences to larger n
is straightforward, as is reducing them to the case n = 2 when the more stringent
restriction on shift amount is met. For shifts with immediate shift amounts only the
case n = 3 is shown, because the more stringent restriction on shift amount is al-
ways met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be
shifted, and that the result is to be placed into the same registers. In all cases, for
both input and result, the lowest-numbered register contains the highest-order part
of the data and highest-numbered register contains the lowest-order part. For non-
immediate shifts, the shift amount is assumed to be in bits 27 to 31 (32-bit mode)
of GPR6. For immediate shifts, the shift amount is assumed to be greater than ze-
ro. GPRs 0 to 31 are used as scratch registers. For n > 2, the number of instruc-
tions required is 2N-1 (immediate shifts) or 3N-1 (non-immediate shifts).

In the following examples, let n be the number of words to be shifted.

Shift Left Immediate, n = 3 (Shift Amount < 32)
rlwinm r2,r2,SH,0,31-SH
rlwimi r2,r3,SH,32-SH,31
rlwinm r3,r3,SH,0,31-SH
rlwimi r3,r4,SH,32-SH,31
rlwinm r4,r4,SH,0,31-SH

Shift Left, n = 2 (Shift Amount < 64)
subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
addic r31,r6,r6
slw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6
RCPU MULTIPLE-PRECISION SHIFTS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 B-1

Shift Left, n = 3 (Shift Amount < 32)
subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
slw r3,r3,6
srw r0,r4,r31
or r3,r3,r0
slw r4,r4,r6

Shift Right Immediate, n = 3 (Shift Amount < 32)
rlwinm r4,r4,32-SH,SH,31
rlwimi r4,r3,32-SH,0,SH-1
rlwinm r3,r3,32-SH,SH,31
rlwimi r3,r2,32-SH,0,SH-1
rlwinm r2,r2,32-SH,SH,31

Shift Right, n = 2 (Shift Amount < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic r31,r6,-32
srw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Shift Right, n = 3 (Shift Amount < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r0,r2,r31
or r4,r4,r0
srw r31,r3,r6
slw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Shift Right Algebraic Immediate, n = 3 (Shift Amount < 32)
rlwinm r4,r4,32-SH,SH,31
rlwimi r4,r3,32-SH,0,SH-1
rlwinm r3,r3,32-SH,SH,31
rlwimi r3,r2,32-SH,0,SH-1
srawi r2,r2,SH

Shift Right Algebraic, n = 2 (Shift Amount < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic. r31,r6,-32
sraw r0,r2,r31
ble $+8
ori r3,r0,0
sraw r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
sraw r2,r2,r6
 MOTOROLA MULTIPLE-PRECISION SHIFTS RCPU

B-2 Revised 1 February 1999 REFERENCE MANUAL

APPENDIX C
FLOATING-POINT MODELS AND CONVERSIONS

This appendix gives examples of how the floating-point conversion instructions can
be used to perform various conversions.

C.1 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word

The full convert to signed fixed-point integer word function can be implemented
with the sequence shown below, assuming that the floating-point value to be con-
verted is in FPR1, the result is returned in GPR3, and a double word at displace-
ment “disp” from the address in GPR1 can be used as scratch space.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp+4(r1) #load word and zero

C.2 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word

The full convert to unsigned fixed-point integer word function can be implemented
with the sequence shown below, assuming that the floating-point value to be con-
verted is in FPR1, the value 0 is in FPR0, the value 2 32 is in FPR3, the value
0x0000 0000 7FFF FFFF is in FPR4, the value 231 is in FPR5 and GPR5, the result
is returned in GPR3, and a double word at displacement "disp" from the address in
GPR1 can be used as scratch space.

fmr f2,f0 #use 0 if < 0
fcmpu cr2,f1,f0
bl cr2,store
fmr f2,f4 #use max if > max
fcmpu cr2,f1,f3
bgt cr2,store
fsub f2,f1,f5 #subtract 2**31
fcmpu cr2,f1,f5 #use diff if Š 2**31
bnl cr2,$+8
fmr f2,f1
fctiw[z] f2,f2 #convert to fx int store–
stfd f2,disp(r1) #store float
lwz r3,disp+4(r1) #load word
bl cr2,$+8 #add 2**31 if input
add r3,r3,r5 #was Š 2**31

C.3 Floating-Point Models

This section describes models for floating-point instructions.

C.3.1 Floating-Point Round to Single-Precision Model

The following algorithm describes the operation of the floating-point round to sin-
gle-precision (frsp) instruction.
RCPU FLOATING-POINT MODELS AND CONVERSIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 C-1

If FRB[1:11]<897 and FRB[1:63]>0 then
Do

If FPSCR[UE]=0 then goto Disabled Exponent Underflow
If FPSCR[UE]=1 then goto Enabled Exponent Underflow

End

If FRB[1:11]>1150 and FRB[1:11]<2047 then
Do

If FPSCR[OE]=0 then goto Disabled Exponent Overflow
If FPSCR[OE]=1 then goto Enabled Exponent Overflow

End

If FRB[1:11]>896 and FRB[1:11]<1151 then goto Normal Operand

If FRB[1:63]=0 then goto Zero Operand

If FRB[1:11]=2047 then
Do

If FRB[12:63]=0 then goto Infinity Operand
If FRB[12]=1 then goto QNaN Operand
If FRB[12]=0 and FRB[13:63]>0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign ← FRB0
If FRB[1:11]=0 then

Do
exp ← -1022
frac ← 0b0 || FRB[12:63]

End
If FRB[1:11]>0 then

Do
exp ← FRB[1:11] - 1023
frac ← 0b1 || FRB[12:63]

End
Denormalize operand:

G || R || X ← 0b000
Do while exp<-126

exp ← exp + 1
frac || G || R || X ← 0b0 || frac || G || (R | X)

End
FPSCR[UX] < frac[24:52] || G || R || X>0
If frac[24:52] || G || R || X>0 then FPSCR[XX] ← 1
Round single(sign,exp,frac,G,R,X)
If frac=0 then

Do
FRT00 ← sign
FRT0[1:63] ← 0
If sign=0 then FPSCR[FPRF] ← "+zero"
If sign=1 then FPSCR[FPRF] ← "-zero"

End
If frac>0 then

Do
If frac[0]=1 then

Do
If sign=0 then FPSCR[FPRF] ← "+normal number"
If sign=1 then FPSCR[FPRF] ← "-normal number"

End
If frac[0]=0 then

Do
If sign=0 then FPSCR[FPRF] ← "+denormalized number"
If sign=1 then FPSCR[FPRF] ← "-denormalized number"

End
Normalize operand–

Do while frac[0]=0
exp ← exp-1
frac || G || R ← frac[1:52] || G || R || 0b0
 MOTOROLA FLOATING-POINT MODELS AND CONVERSIONS RCPU

C-2 Revised 1 February 1999 REFERENCE MANUAL

End
FRT[0] ← sign
FRT[1:11] ← exp + 1023
FRT[12:63] ← frac[1:23] || 0b 0 0000 0000 0000 0000 0000 0000 0000

End
Done

Enabled Exponent Underflow
FPSCR[UX] ← 1
sign ← FRB[0]
If FRB[1:11]=0 then

Do
exp ← -1022
frac ← 0b0 || FRB[12:63]

End
If FRB[1:11]>0 then

Do
exp ← FRB[1:11] - 1023
frac ← 0b1 || FRB[12:63]

End
Normalize operand–

Do while frac[0]=0
exp ← exp - 1
frac ← frac[1:52] || 0b0

End
If frac[24:52]>0 then FPSCR[XX] ← 1
Round single(sign,exp,frac,0,0,0)
exp ← exp + 192
FRT[0] ← sign
FRT[1:11] ← exp + 1023
FRT[12:63] ← frac1–23 || 0b0 0000 0000 0000 0000 0000 0000 0000
If sign=0 then FPSCR[FPRF] ← "+normal number"
If sign=1 then FPSCR[FPRF] ← "-normal number"
Done

Disabled Exponent Overflow
inc ← 0
FPSCR[OX] ← 1
FPSCR[XX] ← 1
If FPSCR[RN]= 0b00 then /* Round to Nearest */

Do
inc ← 0
If FRB[0]=0 then FRT ← 0x7FF0 0000 0000 0000
If FRB[0]=1 then FRT ← 0xFFF0 0000 0000 0000
If FRB[0]=0 then FPSCR[FPRF] ← "+infinity"
If FRB[0]=1 then FPSCR[FPRF] ← "-infinity"

End
If FPSCR[RN]= 0b01 then /* Round Truncate */

Do
If (0b0 || FRB[1:63]) < 0x047EF FFFF E000 0000 then inc ← 0
If FRB[0]=0 then FRT ← 0x47EF FFFF E000 0000
If FRB[0]=1 then FRT ← 0xC7EF FFFF E000 0000
If FRB[0]=0 then FPSCR[FPRF] ← "+normal number"
If FRB[0]=1 then FPSCR[FPRF] ← "-normal number"

End
If FPSCR[RN]= 0b10 then /* Round to +Infinity */

Do
If FRB[0]=0 then inc ← 0
If (FRB[0]=1 & (FRB > 0xC7EF FFFF E000 0000 then inc ← 1)
If FRB[0]=0 then FRT ← 0x7FF0 0000 0000 0000
If FRB[0]=1 then FRT ← 0xC7EF FFFF E000 0000
If FRB[0]=0 then FPSCR[FPRF] ← "+infinity"
If FRB[0]=1 then FPSCR[FPRF] ← "-normal number"

End
If FPSCR[RN]= 0b11 then /* Round to -Infinity */
RCPU FLOATING-POINT MODELS AND CONVERSIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 C-3

Do
(If FRB[0]=0 & FRB < 0x47EF FFFF E000 0000) then inc ← 1
If FRB[0]= 1 then inc ← 1
If FRB[0]=0 then FRT ← 0x47EF FFFF E000 0000
If FRB[0]=1 then FRT ← 0xFFF0 0000 0000 0000
If FRB[0]=0 then FPSCR[FPRF] ← "+normal number"
If FRB[0]=1 then FPSCR[FPRF] ← "-infinity"

End
FPSCR[FR] ← inc
FPSCR[FI] ← 1
Done

Enabled Exponent Overflow
sign ← FRB[0]
exp ← FRB[1:11] - 1023

frac ← 0b1 || [12:63]
If frac[24:52]>0 then FPSCR[XX] ← 1
Round single(sign,exp,frac,0,0,0)

Enabled Overflow
FPSCR[OX] ← 1
exp ← exp - 192
FRT[0] ← sign
FRT[1:11] ← exp + 1023
FRT[12:63] ← frac[1:23] || 0b0 0000 0000 0000 0000 0000 0000 0000
If sign=0 then FPSCR[FPRF] ← "+normal number"
If sign=1 then FPSCR[FPRF] ← "-normal number"

Done

Zero Operand
FRT ← FRB
If FRB[0]=0 then FPSCR[FPRF] ← "+zero"
If FRB[0]=1 then FPSCR[FPRF] ← "-zero"
FPSCR[FR FI] ← 0b00
Done

Infinity Operand
FRT ← FRB
If FRB[0]=0 then FPSCR[FPRF] ← "+infinity"
If FRB[0]=1 then FPSCR[FPRF] ← "-infinity" Done
QNaN Operand–
FRT ← FRB[0:34] || 0b0 0000 0000 0000 0000 0000 0000 0000
FPSCR[FPRF] ← "QNaN"
FPSCR[FR FI] ← 0b00
Done

QNaN Operand
FRT ← FRB[0:34] || 0b0 0000 0000 0000 0000 0000 0000 0000
FPSCR[FPRF] ← "QNaN"
FPSCR[FR FI] ← 0b00
Done

SNaN Operand
FPSCR[VXSNAN] ← 1
If FPSCR[VE]=0 then

Do
FRT[0:11] ← FRB[0:11]
FRT[12] ← 1
FRT[13:63] ← FRB[13:34] || 0b0 0000 0000 0000 0000 0000 0000 0000
FPSCR[FPRF] ← "QNaN"

End
FPSCR[FR FI] ← 0b00
Done
 MOTOROLA FLOATING-POINT MODELS AND CONVERSIONS RCPU

C-4 Revised 1 February 1999 REFERENCE MANUAL

Normal Operand
sign ← FRB[0]
exp ← FRB[1:11] - 1023
frac ← 0b1 || FRB[12:63]
If frac[24:52]>0 then FPSCR[XX] ← 1
Round single(sign,exp,frac,0,0,0)
If exp>+127 and FPSCR[OE]=0 then go to Disabled Exponent Overflow
If exp>+127 and FPSCR[OE]=1 then go to Enabled Overflow
FRT[0] ← sign
FRT[1:11] ← exp + 1023
FRT[12:63] ← frac[1:23] || 0b0 0000 0000 0000 0000 0000 0000 0000
If sign=0 then FPSCR[FPRF] ← "+normal number"
If sign=1 then FPSCR[FPRF] ← "-normal number"
Done

Round Single (sign,exp,frac,G,R,X)
inc ← 0
lsb ← frac[23]
gbit ← frac[24]
rbit ← frac[25]
xbit ← (frac[26:52]||G||R||X)¦0
If FPSCR[RN]=0b00 then
Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If FPSCR[RN]= 0b10 then
Do
If sign || lsb || gbit || rbit || xbit = 0b 0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If FPSCR[RN]= 0b11then
Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac[0:23] ← frac[0:23] + inc
If carry_out=1 then
Do
frac[0–23] ← 0b1 || frac[0:22]
exp ← exp + 1

End
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

C.3.2 Floating-Point Convert to Integer Model

The following algorithm describes the operation of the floating-point convert to in-
teger instructions. In this example, u represents an undefined hexadecimal digit.

If Floating Convert to Integer Word
Then Do

Then round_mode ← FPSCR[RN]
tgt_precision ← "32-bit integer"

End
If Floating Convert to Integer Word with round toward Zero

Then Do
round_mode ← 0b01
tgt_precision ← "32-bit integer"

End
If Floating Convert to Integer Doubleword
RCPU FLOATING-POINT MODELS AND CONVERSIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 C-5

Then Do
round_mode ← FPSCR[RN]
tgt_precision ← "64-bit integer"

End
If Floating Convert to Integer Doubleword with round toward Zero

Then Do
round_mode ← 0b01
tgt_precision ← "64-bit integer"

End
If FRB[1:11]=2047 and FRB[12:63]=0 then goto Infinity Operand
If FRB[1:11]=2047 and FRB12=0 then goto SNaN Operand
If FRB[1:11]=2047 and FRB12=1 then goto QNaN Operand
If FRB[1:11]>1086 then goto Large Operand

sign ← FRB0
If FRB[1:11]>0 then exp ← FRB[1:11] - 1023 /* exp - bias */
If FRB[1:11]=0 then exp ← -1022
If FRB[1:11]>0 then frac[0:64] ←0b01 ||FRB[12:63]||0b00000000000 /
normal/
If FRB[1:11]=0 then frac[0:64] ←b’00’||FRB[12:63]||0b00000000000 /
denormal/

gbit || rbit || xbit ← 0b000
Do i=1,63-exp

frac[0:64] || gbit || rbit || xbit ← 0b0 || frac[0:64] || gbit ||
(rbit|xbit)
End

If gbit | rbit | xbit then FPSCR[XX] ← 1

Round Integer (frac,gbit,rbit,xbit,round_mode)
In this example, u represents an undefined hexadecimal digit. Comparisons ignore
the u bits.

If sign=1 then frac[0:64] ← ¬frac[0:64] + 1

If tgt_precision="32-bit integer" and frac[0:64]>+2(31)-1
then goto Large Operand

If tgt_precision="64-bit integer" and frac[0:64]>+2(63)-1
then goto Large Operand

If tgt_precision="32-bit integer" and frac[0:64] <-2(31) then goto Large
Operand
If tgt_precision="64-bit integer" and frac[0:64]<-2(63) then goto Large
Operand
If tgt_precision="32-bit integer"

then FRT ← 0x xuuuuuuu || frac[33:64]
If tgt_precision="64-bit integer" then FRT ← frac[1:64]
FPSCR[FPRF] ← undefined
Done
 MOTOROLA FLOATING-POINT MODELS AND CONVERSIONS RCPU

C-6 Revised 1 February 1999 REFERENCE MANUAL

Round Integer (frac,gbit,rbit,xbit,round_mode)
In this example, u represents an undefined hexadecimal digit. Comparisons ignore
the u bits.

inc ← 0
If round_mode= 0b00 then

Do
If sign || frac[64] || gbit || rbit || xbit = 0bu11ux then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0bu011x then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If round_mode= 0b10 then

Do
If sign || frac64 || gbit || rbit || xbit = 0b0u1ux then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uu1x then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If round_mode = 0b11 then

Do
If sign || frac64 || gbit || rbit || xbit = 0b1u1ux then inc ← 1

If sign || frac64 || gbit || rbit || xbit = 0b1uu1x then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac[0:64] ← frac[0:64] + inc
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

Infinity Operand
FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE]=0 then Do

If tgt_precision="32-bit integer" then
Do

If sign=0 then FRT ← 0xuuuu uuuu 7FFF FFFF
 If sign=1 then FRT ← 0xuuuu uuuu 8000 0000

End
Else

Do
If sign=0 then FRT ← 0x7FFF FFFF FFFF FFFF
If sign=1 then FRT ← 0x8000 0000 0000 0000

End
FPSCR[FPRF] < undefined
End

Done

SNaN Operand
FPSCR[FR FI VXCVI VXSNAN] ← 0b0011
If FPSCR[VE]=0 then

Do
If tgt_precision="32-bit integer"

then FRT ← 0xuuuu uuuu 8000 0000
If tgt_precision="64-bit integer"

then FRT ← 0x8000 0000 0000 0000
FPSCR[FPRF] ← undefined

End
Done
RCPU FLOATING-POINT MODELS AND CONVERSIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 C-7

QNaN Operand
FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE]=0 then

Do
If tgt_precision="32-bit integer" then FRT ← 0xuuuu uuuu 8000 0000
If tgt_precision="64-bit integer" then FRT ← 0x8000 0000 0000 0000
FPSCR[FPRF] < undefined

End
Done

Large Operand
FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE]=0 then Do

If tgt_precision="32-bit integer" then
Do

If sign=0 then FRT ← 0xuuuu uuuu 7FFF FFFF
If sign=1 then FRT ← 0xuuuu uuuu 8000 0000

End
Else

Do
If sign=0 then FRT ← 0x7FFF FFFF FFFF FFFF
If sign=1 then FRT ← 0x8000 0000 0000 0000

End
FPSCR[FPRF] ← undefined
End

Done

C.4 Floating-Point Convert from Integer Model

The following algorithm describes the operation of the floating-point convert from
integer instructions.

sign ← FRB[0]
exp ← 63
frac ← FRB

If frac=0 then go to Zero Operand
If sign=1 then frac ← ¬frac + 1

Do until frac[0]=1
frac ← frac[1:63] || 0b0
exp ← exp - 1

End

Round Float (sign,exp,frac,FPSCR[RN])
If sign=1 then FPSCR[FPRF] ← "-normal number"
If sign=0 then FPSCR[FPRF] ← "+normal number"
FRT[0] ← sign
FRT[1:11] ← exp + 1023 /* exp + bias */
FRT[12:63] ← frac[1:52]
Done

Zero Operand
FPSCR[FR FI] ← 0b00
FPSCR[FPRF] ← "+zero"
FRT ← 0x0000 0000 0000 0000
Done
 MOTOROLA FLOATING-POINT MODELS AND CONVERSIONS RCPU

C-8 Revised 1 February 1999 REFERENCE MANUAL

Round Float (sign,exp,frac,round_mode)
In this example, the bits designated as u are ignored in comparisons.

inc ← 0
lsb ← frac[52]
gbit ← frac[53]
rbit ← frac[54]
xbit ← frac[55–63]>0
If round_mode=0b00 then

Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If round_mode= 0b10 then

Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If round_mode= 0b11 then

Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac[0:52] ← frac[0:52] + inc
If carry_out=1 then exp ← exp + 1
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
If (gbit | rbit | xbit) then FPSCR[XX] ← 1
Return
RCPU FLOATING-POINT MODELS AND CONVERSIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 C-9

 MOTOROLA FLOATING-POINT MODELS AND CONVERSIONS RCPU

C-10 Revised 1 February 1999 REFERENCE MANUAL

APPENDIX D
SYNCHRONIZATION PROGRAMMING EXAMPLES

The examples in this appendix show how synchronization instructions can be used
to emulate various synchronization primitives and how to provide more complex
forms of synchronization.

For each of these examples, it is assumed that a similar sequence of instructions
is used by all processes requiring synchronization of the accessed data.

D.1 General Information

The following points provide general information about the lwarx and stwcx. in-
structions:

• In general, lwarx and stwcx. instructions should be paired, with the same ef-
fective address used for both. The exception is an isolated stwcx. instruction
that is used to clear any existing reservation on the processor, for which there
is no paired lwarx and for which any (scratch) effective address can be used.

• It is acceptable to execute an lwarx instruction for which no stwcx. instruction
is executed. For example, such a dangling lwarx instruction occurs if the val-
ue loaded in the test and set sequence shown in D.3.2 Test and Set is not
zero.

• To increase the likelihood that forward progress is made, it is important that
looping on lwarx/stwcx. pairs be minimized. For example, in the sequence
shown above for test and set, this is achieved by testing the old value before
attempting the store — were the order reversed, more stwcx. instructions
might be executed, and reservations might more often be lost between the
lwarx and the stwcx. instructions.

• The manner in which lwarx and stwcx. are communicated to other proces-
sors and mechanisms and between levels of the memory subsystem within a
given processor is implementation-dependent. In some implementations per-
formance may be improved by minimizing looping on an lwarx instruction that
fails to return a desired value. For example, in the test and set example shown
above, to stay in the loop until the word loaded is zero, the programmer could
change the bne S+ 12 to bne loop. However, in some implementations better
performance may be obtained by using an ordinary load instruction to do the
initial checking of the value, as follows:

loop: lwz rS,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne loop #not equal to 0
lwarx rS,0,r3 #try again, reserving
cmpwi r5,0 #(likely to succeed)
bne loop #try to store nonzero
stwcx. r4,0,r3 #loop if lost reservation
bne loop
RCPU SYNCHRONIZATION PROGRAMMING EXAMPLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 D-1

• In a multiprocessor, livelock is possible if a loop containing an lwarx/stwcx.
pair also contains an ordinary store instruction for which any byte of the affect-
ed memory area is in the reservation granule of the reservation. For example,
the first code sequence shown in D.5 List Insertion can cause livelock if two
list elements have next element pointers in the same reservation granule.

D.2 Synchronization Primitives
The following examples show how the lwarx and stwcx. instructions can be used
to emulate various synchronization primitives. The sequences used to emulate the
various primitives consist primarily of a loop using lwarx and stwcx.. Additional
synchronization is unnecessary, because the stwcx. will fail, clearing the EQ bit, if
the word loaded by lwarx has changed before the stwcx. is executed.

D.2.1 Fetch and No-Op
The fetch and no-op primitive atomically loads the current value in a word in mem-
ory. In this example it is assumed that the address of the word to be loaded is in
GPR3 and the data loaded are returned in GPR4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bne loop #loop if lost reservation

The stwcx., if it succeeds, stores to the destination location the same value that
was loaded by the preceding lwarx. While the store is redundant with respect to
the value in the location, its success ensures that the value loaded by the lwarx
was the current value (that is, the source of the value loaded by the lwarx was the
last store to the location that preceded the stwcx. in the coherence order for the
location).

D.2.2 Fetch and Store

The fetch and store primitive atomically loads and replaces a word in memory.

In this example it is assumed that the address of the word to be loaded and re-
placed is in GPR3, the new value is in GPR4, and the old value is returned in
GPR5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if still reserved
bne loop #loop if lost reservation

D.3 Fetch and Add
The fetch and add primitive atomically increments a word in memory.

In this example it is assumed that the address of the word to be incremented is in
GPR3, the increment is in GPR4, and the old value is returned in GPR5.

loop: lwarx rS,0,r3 #load and reserve
add ra,r4,rS #increment word
stwcx. ra,0,r3 #store new value if still reserved
bne loop #loop if lost reservation
 MOTOROLA SYNCHRONIZATION PROGRAMMING EXAMPLES RCPU

D-2 Revised 1 February 1999 REFERENCE MANUAL

D.3.1 Fetch and AND
The fetch and AND primitive atomically performs a logical AND of a value and a
word in memory.

In this example it is assumed that the address of the word to be ANDed is in GPR3,
the value to AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx rS,0,r3 #load and reserve
and ra,r4,rS #AND word
stwcx. ra,0,r3 #store new value if still reserved
bne loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically
on a word in memory, simply by changing the AND instruction to the desired Bool-
ean instruction (OR, XOR, etc.).

D.3.2 Test and Set
The test and set primitive atomically loads a word from memory, ensures that the
word in memory contains a non-zero value, and sets the EQ bit of CR field 0 ac-
cording to whether the value loaded is zero.

In this example it is assumed that the address of the word to be tested is in GPR3,
the new value (non-zero) is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word
bne $+12 #not equal to 0
stwcx. r4,0,r3 #try to store nonzero
bne loop #loop if lost reservation

Test and set is shown primarily for pedagogical reasons. It is useful on machines
that lack the better synchronization facilities provided by lwarx and stwcx.. Test
and set does not scale well. Using test and set before a critical section allows only
one process to execute in the critical section at a time. Using lwarx and stwcx. to
bracket the critical section allows many processes to execute in the critical section
at once, but at most one will succeed in exiting from the section with its results
stored.

Depending on the application, if test and set fails (that is, clears the EQ bit of CR
field 0) it may be appropriate to re-execute the test and set.

D.4 Compare and Swap
The compare and swap primitive atomically compares a value in a register with a
word in memory. If they are equal, it stores the value from a second register into
the word in memory. If they are unequal, it loads the word from memory into the
first register, and sets the EQ bit of the CR0 field to indicate the result of the com-
parison.

In this example it is assumed that the address of the word to be tested is in GPR3,
the comparand is in GPR4, the new value is in GPR5, and the old value is returned
in GPR6.
RCPU SYNCHRONIZATION PROGRAMMING EXAMPLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 D-3

lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #first 2 operands equal ?
bne $+8 #skip if not
stwcx. rS,0,r3 #store new value if still reserved

Compare and swap is shown primarily for pedagogical reasons. It is useful on ma-
chines that lack the better synchronization facilities provided by lwarx and stwcx..
A major weakness of typical compare and swap instructions is that they permit spu-
rious success if the word being tested has changed and then changed back to its
old value: the sequence shown above does not have this weakness.

Depending on the application, if compare and swap fails (that is, clears the EQ bit
of CR0) it may be appropriate to recompute the value potentially to be stored and
then re-execute the compare and swap.

D.5 List Insertion
The following example shows how the lwarx and stwcx. instructions can be used
to implement simple LIFO (last-in-first-out) insertion into a singly-linked list. (Com-
plicated list insertion, in which multiple values must be changed atomically, or in
which the correct order of insertion depends on the contents of the elements, can-
not be implemented in the manner shown below, and requires a more complicated
strategy such as using locks.)

The next element pointer from the list element after which the new element is to be
inserted, here called the parent element, is stored into the new element, so that the
new element points to the next element in the list: this store is performed uncondi-
tionally. Then the address of the new element is conditionally stored into the parent
element, thereby adding the new element to the list.

In this example it is assumed that the address of the parent element is in GPR3,
the address of the new element is in GPR4, and the next element pointer is at offset
O from the start of the element. It is also assumed that the next element pointer of
each list element is in a reservation granule separate from that of the next element
pointer of all other list elements.

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
sync #let store settle (can omit if not

MP)
stwcx. r 4, a, r3 #add new element to list
bne loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the
same reservation granule then, in a multiprocessor, livelock can occur. (Livelock is
a state in which processors interact in a way such that no processor makes
progress.)

If it is not possible to allocate list elements such that each element's next element
pointer is in a different reservation granule, then livelock can be avoided by using
the following, more complicated, code sequence.
 MOTOROLA SYNCHRONIZATION PROGRAMMING EXAMPLES RCPU

D-4 Revised 1 February 1999 REFERENCE MANUAL

lwz r2,0(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #let store settle

loop2: lwarx rZ,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne loopl #else progressed)
stwcx. r4,0,r3 #add new element to list
bne loop2 #loop if failed
RCPU SYNCHRONIZATION PROGRAMMING EXAMPLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 D-5

 MOTOROLA SYNCHRONIZATION PROGRAMMING EXAMPLES RCPU

D-6 Revised 1 February 1999 REFERENCE MANUAL

APPENDIX E
SIMPLIFIED MNEMONICS

This appendix is provided in order to simplify writing and comprehending assembly
language programs. Included are a set of simplified mnemonics and symbols that
define the simple shorthand used for the most frequently used forms of branch con-
ditional, compare, trap, rotate and shift, and certain other instructions.

E.1 Symbols

The symbols in Table E-1 are defined for use in instructions (basic or simplified
mnemonics) that specify a condition register (CR) field or a bit in the CR.

The simplified mnemonics in E.5 Simplified Mnemonics for Branch Instructions
and E.6 Simplified Mnemonics for Condition Register Logical Instructions re-
quire identification of a CR bit. If one of the CR field symbols is used, it must be
multiplied by four and added to a symbol or value (zero to three) representing the
bit number within the CR field.

The simplified mnemonics in E.5.3 Branch Mnemonics Incorporating Condi-

Table E-1 Condition Register CR Field Bit Symbols

Symbol Value Bit Field
Range

Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number
within a CR field.

cr0 0 0:3 CR0 field.

cr1 1 4:7 CR1 field.

cr2 2 8:11 CR2 field.

cr3 3 12:15 CR3 field.

cr4 4 16:19 CR4 field.

cr5 5 20:23 CR5 field.

cr6 6 24:27 CR6 field.

cr7 7 28:31 CR7 field.
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-1

tions and E.3 Simplified Mnemonics for Compare Instructions require identifi-
cation of a CR field. If one of the CR field symbols is used, it must not be multiplied
by four. Refer to each of these sections for examples that use the symbols in Table
E-1.

E.2 Simplified Mnemonics for Subtract Instructions

This section discusses simplified mnemonics for the subtract instructions.

E.2.1 Subtract Immediate

Although there is not a “subtract immediate” instruction, its effect can be achieved
by using an addi instruction with the immediate operand negated. Simplified mne-
monics are provided that include this negation, making the intent of the computa-
tion clearer. In these examples, the immediate operand “value” is subtracted from
the value in rA and the result placed in rD.

subi rD,rA,value (equivalent to addi rD,rA,-value)

subis rD,rA,value (equivalent to addis rD,rA,-value)

subic rD,rA,value (equivalent to addic rD,rA,-value)

subic. rD,rA,value (equivalent to addic. rD,rA,-value)

E.2.2 Subtract

The “subtract-from” instructions subtract the second operand (rA) from the third
(rB). Simplified mnemonics are provided in which the third operand is subtracted
from the second. Both these mnemonics can be coded with a final ‘o’ or ‘.’ (or both)
to cause the OE or Rc bit, respectively, to be set in the underlying instruction. In
these examples, the value in rB is subtracted from the value in rA and the result
placed in rD.

sub rD,rA,rB (equivalent to subf rD,rB,rA)

subc rD,rA,rB (equivalent to subfc rD,rB,rA)

E.3 Simplified Mnemonics for Compare Instructions

The instructions listed in Table 4-3 are simplified mnemonics that provide compare
word capability for 32-bit operands. These instructions correctly clear the L value
in the instruction (specifying a 32-bit operand; refer to 4.3.2 Integer Compare In-
structions) rather than requiring it to be coded as a numeric operand.

The crfD field can be omitted if the result of the comparison is to be placed into the
CR0 field. Otherwise, the target CR field must be specified as the first operand. The
CR field symbols defined in E.1 Symbols can be used to identify the condition reg-
ister field.
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-2 Revised 1 February 1999 REFERENCE MANUAL

CAUTION
If the crfD field is omitted from a compare mnemonic, the L field must
also be omitted. That is, when the assembler encounters a compare
instruction with three operands, it interprets the first operand to be
the crfD field.

The following examples demonstrate the use of the word compare mnemonics:

1. Compare 32 bits in register rA with immediate value 100 and place result in
condition register field CR0.

cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

2. Same as (1), but place results in condition register field CR4.

cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

3. Compare registers rA and rB as logical 32-bit quantities and place result in
condition register field CR0.

cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

4. Same as (3), but place result in condition register field CR4.

cmplw cr4,rA,rB (equivalent to cmpl 4,0,rA,rB)

E.4 Simplified Mnemonics for Rotate and Shift Instructions

The rotate and shift instructions provide powerful and general ways to manipulate
register contents but can be difficult to understand. Simplified mnemonics, which
allow some of the simpler operations to be coded easily, are provided for the fol-
lowing types of operations:

• Extract — Select a field of n bits starting at bit position b in the source register;
left or right justify this field in the target register; clear all other bits of the target
register.

• Insert — Select a left-justified or right-justified field of n bits in the source reg-

Table E-2 Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM
cmpi crfD,rA,SIMM

cmpi crfD,0,rA,SIMM

Compare Word cmpw crfD,rA,rB
cmp crfD,rA,rB

cmp crfD,0,rA,rB

Compare Logical Word
Immediate

cmplwi crfD,rA,UIMM
cmpli crfD,rA,UIMM

cmpli crfD,0,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB
cmpl crfD,rA,rB

cmpl crfD,0,rA,rB
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-3

ister; insert this field starting at bit position b of the target register; leave other
bits of the target register unchanged. (No simplified mnemonic is provided for
insertion of a left-justified field when operating on double words, because
such an insertion requires more than one instruction.)

• Rotate — Rotate the contents of a register right or left n bits without masking.
• Shift — Shift the contents of a register right or left n bits, clearing vacated bits

(logical shift).
• Clear — Clear the leftmost or rightmost n bits of a register.
• Clear left and shift left — Clear the leftmost b bits of a register, then shift the

register left by n bits. This operation can be used to scale a (known non-neg-
ative) array index by the width of an element.

The word rotate and shift operations shown in Table E-3 are available in all imple-
mentations. All these mnemonics can be coded with a final ‘.’ to cause the Rc bit
to be set in the underlying instruction.

The following examples illustrate the use of these mnemonics.

1. Extract the sign bit (bit 32) of rS and place the result right-justified into rA.

extrwi rA,rS,1,0 (equivalent to: rlwinm rA,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of rB.

insrwi rB,rA,1,0 (equivalent to: rlwimi rB,rA,31,0,0

3. Shift the contents of rA left 8 bits, clearing the high-order 32 bits.

slwi rA,rA,8 (equivalent to: rlwinm rA,rA,8,0,23

E.5 Simplified Mnemonics for Branch Instructions

Mnemonics are provided so that branch conditional instructions can be coded with
the condition as part of the instruction mnemonic rather than as a numeric operand.
The mnemonics discussed in this section are variations of the branch conditional

Table E-3 Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n-1

Extract and right justify immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n, 31

Insert from left immediate inslwi rA,rS,n,b rlwimi rA,rS,32-b,b,b+n-1

Insert from right immediate insrwi rA,rS,n,b rlwimi rA,rS,32- (b + n),b,b+n-1

Rotate left immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right immediate rotrw rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31–n

Shift right immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32-n,n,31

Clear left immediate clrlwi rA,rS,n (n<32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n<32) rlwinm rA,rS,0,0,31-n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ð b ð 31) rlwinm rA,rS,n,b-n,31-n
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-4 Revised 1 February 1999 REFERENCE MANUAL

instructions.

E.5.1 BO and BI Fields

The 5-bit BO field in branch conditional instructions encodes the following opera-
tions:

• Decrement count register (CTR)
• Test CTR equal to zero
• Test CTR not equal to zero
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in
the CR represents the condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI
fields would require 210 = 1024 mnemonics, most of which would be only margin-
ally useful. The abbreviated set found in E.5.2 Basic Branch Mnemonics is in-
tended to cover the most useful cases. Unusual cases can be coded using a basic
branch conditional mnemonic (bc, bclr, bcctr) with the condition to be tested spec-
ified as a numeric operand.

E.5.2 Basic Branch Mnemonics

Table E-5 provides the simplified mnemonics for the most commonly performed
conditional branches. These mnemonics allow all the BO operand encodings

Table E-4 BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ¦ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

The z indicates a bit that must be zero; otherwise, the instruction form is invalid.

The y bit provides a hint about whether a conditional branch is likely to be taken.
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-5

shown in Table E-4 to be specified as part of the mnemonic, along with the abso-
lute address (AA) and set link register (LK) bits. (The y bit in the BO operand is al-
ways cleared in these simplified mnemonics.)

Notice that there are no simplified mnemonics for relative and absolute uncondi-
tional branches. For these, the basic mnemonics b, ba, bl, and bla are used.

Table E-6 provides the operands for the simplified mnemonics in Table E-5, as
well as the operands of the corresponding basic branch instruction.

Table E-5 Simplified Branch Mnemonics

LK Bit Not Set (LR Update Not
Enabled)

LK Bit Set (LR Update Enabled)

Branch Semantics bc
Relative

bca
Absolute

bclr to
LR

bcctr
to
CTR

bcl
Relative

bcla
Absolute

bclrl to
LR

bcctrl
to CTR

Branch unconditionally b1

NOTES:
1. These are basic mnemonics, not simplified mnemonics.

ba1 blr bctr bl1 bla1 blrl bctrl

Branch if condition
true2

2. Refer to Table E-7 for an expanded set of simplified mnemonics for “branch if condition true” and “branch if con-
dition false.” This expanded set of simplified mnemonics incorporates the condition being tested as part of the
mnemonic.

bt bta btlr btctr btl btla btlrl btctrl

Branch if condition
false2

bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
branch if CTR non-zero

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
branch if CTR non-zero
AND condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
branch if CTR non-zero
AND condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
branch if CTR zero
AND condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
branch if CTR zero
AND condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-6 Revised 1 February 1999 REFERENCE MANUAL

Table E-6 Operands for Simplified Branch Mnemonics

Branch Type Simplified Mnemonic Equivalent to:

Mnemonic Operands Mnemonic Operands

Branch unconditionally blr None bclr 20,0

bctr None bcctr 20,0

blrl None bclrl 20,0

bctrl None bcctrl 20,0

Branch if true bt BI,target bc 12,BI,target

bta BI,target bca 12,BI,target

btlr BI bclr 12,BI

btctr BI bcctr 12,BI

btl BI,target bcl 12,BI,target

btla BI,target bcla 12,BI,target

btlrl BI bclrl 12,BI

btctrl BI bcctrl 12,BI

Branch if false bf BI,target bc 4,BI,target

bfa BI,target bca 4,BI,target

bflr BI bclr 4,BI

bfctr BI bcctr 4,BI

bfl BI,target bcl 4,BI,target

bfla BI,target bcla 4,BI,target

bflrl BI bclrl 4,BI

bfctrl BI bcctrl 4,BI

Decrement CTR, branch if
CTR non-zero

bdnz target bc 16,0,target

bdnza target bca 16,0,target

bdnzlr None bclr 16,0

bdnzl target bcl 16,0,target

bdnzla target bcla 16,0,target

bdnzlrl None bclrl 16,0

Decrement CTR, branch if
CTR non-zero AND
condition true

bdnzt BI,target bc 8,BI,target

bdnzta BI,target bca 8,BI,target

bdnztlr BI bclr 8,BI

bdnztl BI,target bcl 8,BI,target

bdnztla BI,target bcla 8,BI,target

bdnztlrl BI bclrl 8,BI

Decrement CTR, branch if
CTR non-zero AND
condition false

bdnzf BI,target bc 0,BI,target

bdnzfa BI,target bca 0,BI,target

bdnzflr BI bclr 0,BI

bdnzfl BI,target bcl 0,BI,target

bdnzfla BI,target bcla 0,BI,target

bdnzflrl BI bclrl 0,BI
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-7

Instructions using a mnemonic from Table E-5 that test a condition specify the con-
dition (bit in the condition register) as the first (BI) operand of the instruction. The
symbols defined in E.1 Symbols can be used in this operand. If one of the CR field
symbols is used, it must be multiplied by four and added to a symbol or value (zero
to three) representing the bit number within the CR field.

The simplified mnemonics found in Table E-5 are illustrated in the following exam-
ples:

1. Decrement CTR and branch if it is still non-zero (closure of a loop controlled
by a count loaded into CTR).

bdnz target (equivalent to bc 16,0, target)

2. Same as (1) but branch only if CTR is non-zero and condition in CR0 is
“equal.”

bdnzt eq, target (equivalent to bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.

bdnzt 4 * cr5+eq,target (equivalent to bc 8,22,target)

4. Branch if bit 27 of CR is false.

bf 27,target (equivalent to bc 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional “call.”

bfl 27,target (equivalent to bcl 4,27,target)

Decrement CTR, branch if
CTR zero

bdz target bc 18,0,target

bdza target bca 18,0,target

bdzlr None bclr 18,0

bdzl target bcl 18,0,target

bdzla target bcla 18,0,target

bdzlrl None bclrl 18,0

Decrement CTR, branch if
CTR zero AND condition
true

bdzt BI,target bc 10,BI,target

bdzta BI,target bca 10,BI,target

bdztlr BI bclr 10,BI

bdztl BI,target bcl 10,BI,target

bdztla BI,target bcla 10,BI,target

bdztlrl BI bclrl 10,BI

Decrement CTR, branch if
CTR zero AND condition
false

bdzf BI,target bc 2,BI,target

bdzfa BI,target bca 2,BI,target

bdzflr BI bclr 2,BI

bdzfl BI,target bcl 2,BI,target

bdzfla BI,target bcla 2,BI,target

bdzflrl BI bclrl 2,BI

Table E-6 Operands for Simplified Branch Mnemonics (Continued)

Branch Type Simplified Mnemonic Equivalent to:

Mnemonic Operands Mnemonic Operands
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-8 Revised 1 February 1999 REFERENCE MANUAL

E.5.3 Branch Mnemonics Incorporating Conditions

The mnemonics defined in Table E-7 are variations of the “branch if condition true”
and “branch if condition false” BO encodings, with the most common values of the
BI operand represented in the mnemonic rather than specified as a numeric oper-
and.

Table E-8 shows the operands used with the simplified branch mnemonics in Ta-
ble E-7. The examples provided are for the first column of Table E-7 (simplified
forms of the bc instruction), but all entries within a row in Table E-7 use the same
operands (except that branches to the LR or CTR do not require a “target” oper-
and). Table E-8 also indicates the operands used with the corresponding basic
branch mnemonic.

Table E-7 Simplified Branch Mnemonics with Comparison Conditions

LK Bit Not Set (LR Update Not Enabled) LK Bit Set (LR Update Enabled)

Branch Semantics bc
Relative

bca
Absolute

bclr to
LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl to
LR

bcctrl
to CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary
overflow

bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary
overflow

bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Table E-8 Operands for Simplified Branch
Mnemonics with Comparison Conditions

Branch Simplified Mnemonics
Example

Equivalent to

Branch if less than blt crfD,target bc 12,4*crfD,target

Branch if less than or equal ble crfD,target bc 4,4*crfD+1,target

Branch if equal beq crfD,target bc 12, 4*crfD+2,target

Branch if greater than bgt crfD,target bc 12,4*crfD+1,target
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-9

Instructions using the mnemonics in Table E-7 specify the condition register field
in an optional first operand. If the CR field being tested is CR0, this operand need
not be specified. Otherwise, one of the CR field symbols defined in E.1 Symbols
can be used for this operand.

Branch if greater than or
equal

bge crfD,target bc 4,4*crfD,target

Branch if not less than bnl crfD,target bc 4,4*crfD,target1

Branch if not equal bne crfD,target bc 4,4*crfD+2,target

Branch if not greater than bng crfD,target bc 4,4*crfD+1,target2

Branch if summary
overflow

bso crfD,target bc 12,4*crfD+3,target

Branch if not summary
overflow

bns crfD,target bc 4,4*crfD+3,target

Branch if unordered bun crfD,target bc 12,4*crfD+3,target

Branch if not unordered bnu crfD,target bc 4,4*crfD+3,target

NOTES:
1. Same as “branch if greater than or equal.”
2. Same as “branch if less than or equal.”

Table E-8 Operands for Simplified Branch
Mnemonics with Comparison Conditions (Continued)

Branch Simplified Mnemonics
Example

Equivalent to
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-1 Revised 1 February 1999 REFERENCE MANUAL

If one of the CR field symbols is used, it must not be multiplied by four. The bit num-
ber within the CR field is part of the simplified mnemonic. The CR field is identified,
and the assembler does the multiplication and addition required to produce a CR
bit number for the BI field of the underlying basic mnemonic.)

The simplified mnemonics found in Table E-7 are used in the following examples:

1. Branch if CR0 reflects condition “not equal.”

bne target equivalent to bc 4,2,target)

2. Same as (1), but condition is in CR3.

bne cr3,target equivalent to bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the link
register. This is a form of conditional “call”, as the return address is saved in
the link register.

bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the count register.

bgtctrl cr4 (equivalent to bcctrl 12,17)

E.5.4 Branch Prediction

In branch conditional instructions that are not always taken, the low-order bit (y bit)
of the BO field provides a hint about whether the branch is likely to be taken. See
4.6.2 Conditional Branch Control for more information on the y bit.

Assemblers should clear this bit unless otherwise directed. This default action in-
dicates the following:

• A branch conditional with a negative displacement field is predicted to be tak-
en.

• A branch conditional with a non-negative displacement field is predicted not
to be taken (fall through).

• A branch conditional to an address in the LR or CTR is predicted not to be tak-
en (fall through).

If the likely outcome (branch or fall through) of a given branch conditional instruc-
tion is known, a suffix can be added to the mnemonic that tells the assembler how
to set the y bit. That is, ‘+’ indicates that the branch is to be taken and ‘–’ indicates
that the branch is not to be taken. Such a suffix can be added to any branch con-
ditional mnemonic, either basic or simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on
whether the displacement field is negative or non-negative. For negative displace-
ment fields, coding the suffix ‘+’ causes the bit to be cleared, and coding the suffix
‘–’ causes it to be set. For non-negative displacement fields, coding the suffix ‘+’
causes the bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-11

For branches to an address in the LR or CTR (bcclr[l] or bcctr[l]), coding the suffix
‘+’ causes the y bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

Examples of branch prediction follow:

1. Branch if CR0 reflects condition “less than,” specifying that the branch
should be predicted to be taken.

blt+ target

2. Same as (1), but target address is in the LR and the branch should be pre-
dicted not to be taken.

bltlr–

E.6 Simplified Mnemonics for Condition Register Logical Instructions

The condition register logical instructions are used to set, clear, copy, or invert a
given condition register bit. The simplified mnemonics shown in Table E-9 allow
these operations to be coded easily.

The symbols defined in E.1 Symbols can be used to identify the condition register
bit. If one of the CR field symbols is used, it must be multiplied by four and added
to a symbol or value (zero to three) representing the bit number within the CR field.

The following examples illustrate the condition register logical mnemonics:

1. Set CR bit 25.
crset 25 (equivalent to creqv 25,25,25)

2. Clear the SO bit of CR0.
clclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
clclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be
placed into the EQ bit of CR5.
crnot 4*cr5+eq,4*cr4+eq (equivalent to crnor 22,18,18)

Table E-9 Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to:

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register NOT crnot bx,by crnor bx,by,by
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-1 Revised 1 February 1999 REFERENCE MANUAL

E.7 Simplified Mnemonics for Trap Instructions

A standard set of codes, shown in Table E-10, has been adopted for the most com-
mon combinations of trap conditions.

The mnemonics defined in Table E-11 are variations of the trap instructions, with
the most useful values of the trap instruction TO operand represented as a mne-
monic rather than specified as a numeric operand.

Table E-10 Trap Mnemonics Encoding

Code Meaning TO Operand
Encoding

< > = <U1

NOTES:
1. The symbol ‘<U’ indicates an unsigned “less than” evaluation will be performed.

>U2

2. The symbol ‘>U’ indicates an unsigned “greater than” evaluation will be performed.

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

(none) Unconditional 31 1 1 1 1 1
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-13

The following examples illustrate the use of simplified mnemonics for trap instruc-
tions:

1. Trap if Rx, considered as a 32-bit quantity, is logically greater than 0x7FF.

twlg rA, 0x7FF (equivalent to twi 1,rA, 0x7FF)

2. Trap unconditionally.

trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows: the contents of register rA
are compared with either the sign-extended SIMM field or the contents of register
rB, depending on the trap instruction.

The comparison results in five conditions which are ANDed with operand TO. If the
result is not zero, the trap exception handler is invoked. See Table E-12 for these
conditions.

Table E-11 Trap Mnemonics

32-Bit Comparison

Trap Semantics twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twllgi twllg

Trap if logically greater than twllgi twllg

Trap if logically not less than twlnli twlnl
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-1 Revised 1 February 1999 REFERENCE MANUAL

E.8 Simplified Mnemonics for Special-Purpose Registers

The mtspr and mfspr instructions specify an SPR as a numeric operand. Simpli-
fied mnemonics are provided that represent the SPR in the mnemonic rather than
requiring it to be coded as an operand. Table E-13 below specifies the simplified
mnemonics provided for SPR operations.

Table E-12 TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table E-13 SPR Simplified Mnemonics

Special Purpose
Register

Move to SPR
Simplified
Mnemonic

Move to SPR
Instruction

Move from SPR
Simplified
Mnemonic

Move from SPR
Instruction1

NOTES:
1. Except for mftb and mftbu

Integer unit exception
register

mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DAE/source instruction
service register

mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

Status save/restore
register 0

mtsrr0 rS mtspr 26,rS mfsrr0 rD mfspr rD,26

Status save/restore
register 1

mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27

General special
purpose registers G0
through G3

mtsprg n,rS mtspr 272+n,rS mfsprg rD,n mfspr rD,272+n

Time base (lower) mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base (upper) mttbu rS mtspr 285,rS mftbu rD mftb rD,269

Processor version
register

— — mfpvr rD mfspr rD,287
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-15

The following examples illustrate the use of SPR simplified mnemonics.

1. Copy the contents of the low-order 32 bits of rS to the XER.

mtxer rS (equivalent to mtspr 1,rS)

2. Copy the contents of the LR to rS.

mflr rS (equivalent to mfspr rS,8)

3. Copy the contents of rS to the CTR.

mtctr rS (equivalent to mtspr 9,rS)

E.9 Recommended Simplified Mnemonics

This section describes some of the most commonly-used operations: no-op, load
immediate, load address, move register, complement register, and move to condi-
tion register.

E.9.1 No-Op

Many PowerPC instructions can be coded in a way such that, effectively, no oper-
ation is performed. An additional mnemonic is provided for the preferred form of no-
op.

nop (equivalent to ori 0,0,0)

E.9.2 Load Immediate
The addi and addis instructions can be used to load an immediate value into a reg-
ister. Additional mnemonics are provided to convey the idea that no addition is be-
ing performed but that data is being moved from the immediate operand of the
instruction to a register.

The following instruction loads a 16-bit signed immediate value into rA:

li rA,value (equivalent to addi rA,0,value)

The following instruction loads a 16-bit signed immediate value, shifted left by 16
bits, into rA:

lis rA,value (equivalent to addi rA,0,value)

E.9.3 Load Address
This mnemonic permits computing the value of a base-displacement operand, us-
ing the addi instruction which normally requires a separate register and immediate
operands.

la rD,SIMM(rA) (equivalent to addi rD,rA,SIMM)

The la mnemonic is useful for obtaining the address of a variable specified by
name, allowing the assembler to supply the base register number and compute the
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-1 Revised 1 February 1999 REFERENCE MANUAL

displacement. If the variable v is located at offset SIMMv bytes from the address in
register rv, and the assembler has been told to use register rv as a base for refer-
ences to the data structure containing v, then the following line causes the address
of v to be loaded into register rD.

la rD,v (equivalent to addi rD,rA,SIMMv)

E.9.4 Move Register
Several PowerPC instructions can be coded to simply copy the contents of one
register to another. An extended mnemonic is provided to move data from one reg-
ister to another with no computational activity.

The following instruction copies the contents of register rS into register rA. This
mnemonic can be coded with a ‘.’ to cause the condition register update option to
be specified in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rB)

E.9.5 Complement Register
Several PowerPC instructions can be coded to complement the contents of one
register and place the result in another register. A simplified mnemonic is provided
that complements the contents of rS and places the results into register rA. This
mnemonic can be coded with a ‘.’ to cause the condition register update option to
be specified in the underlying instruction.

not rA,rS (equivalent to nor rA,rS,rB)

E.9.6 Move to Condition Register
This mnemonic permits copying the contents of a GPR to the condition register, us-
ing the same style as the mfcr instruction.

mtcr rS (equivalent to mtcrf 0xFF,rS)
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-17

 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-1 Revised 1 February 1999 REFERENCE MANUAL

GLOSSARY OF TERMS AND ABBREVIATIONS
The glossary contains an alphabetical list of terms, phrases, and abbreviations
used in this book. Some of the terms and definitions included in the glossary are
reprinted from IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arith-
metic, copyright ©1985 by the Institute of Electrical and Electronics Engineers, Inc.
with the permission of the IEEE.

Atomic. A bus access that attempts to be part of a read-write operation to
the same address uninterrupted by any other access to that
address (the term refers to the fact that the transactions are
indivisible). The processor initiates the read and write separately,
but signals the L-bus or external bus interface that it is attempting
an atomic operation. If the operation fails, status is kept so that the
processor can try again. The processor implements atomic
accesses through the lwarx/stwcx. instruction pair.

Beat. A single state on the external bus interface that may extend across
multiple bus cycles. An RCPU transaction can be composed of
multiple address or data beats.

Biased Exponent. The sum of the exponent and a constant (bias) chosen
to make the biased exponent's range non-negative.

Big-Endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Blockage. The number of clock cycles between the time an instruction
begins execution and the time its execution unit is available for a
subsequent instruction.

Boundedly Undefined. The results of attempting to execute a given
instruction are said to be boundedly undefined if they could have
been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in
before attempting to execute the given instruction. Boundedly
undefined results for a given instruction may vary between
implementations, and between execution attempts in the same
implementation.

Branch Folding. A technique of removing the branch instruction from the
instruction sequence.

Breakpoint. An event that, when detected, forces the machine to branch to
a breakpoint exception routine.

A

B

RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -1

Burst. A multiple beat data transfer.

Bus Master. The owner of the address or data bus; the device that initiates
or requests the transaction.

Cache Coherency. Caches are coherent if a processor performing a read
from its cache is supplied with data corresponding to the most
recent value written to memory or to another processor’s cache.

Context Synchronization. All instructions in execution complete past the
point where they can produce an exception; all instructions in
execution complete in the context in which they began execution; all
subsequent instructions are fetched and executed in the new
context.

Denormalized Number. A non-zero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero

Exception. An unusual or error condition encountered by the processor that
results in special processing.

Exception Handler. A software routine that executes when an exception
occurs. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task
(such as aborting the program that caused the exception). The
addresses of the exception handlers are defined by a two-word
exception vector that is branched to automatically when an
exception occurs.

Execution Serialization. During execution serialization, instruction issue is
halted until all instructions currently in the pipeline (i.e., all
instructions that have been issued but have not completed)
complete execution.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the
value of the represented number. Occasionally the exponent is
called the signed or unbiased exponent.

Fetch Serialization. During fetch serialization, instruction fetch is halted
until all instructions currently in the processor (i.e., in the pipeline or
in the pre-fetch queue) have completed. Following fetch
serialization, the machine is said to be completely synchronized.

Floating-Point Unit. The functional unit in the RCPU responsible for
executing all floating-point arithmetic instructions.

Flow-Control Instruction. One of the following: b, br, bcr, bcc, rfi, sc, or
(in some cases) isync.

C

D

E

F

 MOTOROLA RCPU

-2 Revised 1 February 1999 REFERENCE MANUAL

Fraction. The field of the significand that lies to the right of its implied binary
point.

General-Purpose Registers. Any of the 32 registers in the MPC601
register file. These registers provide the source operands and
destination results for all MPC601 data manipulation instructions.
Load instructions move data from memory to registers, and store
instructions move data from registers to memory.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations of binary floating-point arithmetic
and representations of binary floating-point numbers.

I-Bus. Internal instruction bus connecting the processor to instruction
memory.

Implementation Specific. An RCPU register, exception, or other feature is
said to be implementation specific if it is not part of the PowerPC
architecture.

Instruction Completion. Completion of the instruction issue, execution,
and writeback stages. An instruction is ready to be retired if it
completes without generating an exception and all instructions
ahead of it in the history buffer have completed without generating
an exception.

Instruction Execution Time. The number of clock cycles between the time
an instruction is taken and the time it is completed.

Instruction Fetch. The process of reading the instruction data received
from the instruction memory.

Instruction Issue. The process of driving valid instruction bits inside the
processor. The instruction is decoded by each execution unit, and
the appropriate execution unit prepares to execute the instruction
during the next clock cycle.

Instruction Taken. An instruction is taken after it has been issued and
recognized by the appropriate execution unit. All resources to
perform the instruction are ready, and the processor begins to
execute it.

Instruction Unit. The functional unit in the RCPU that fetches all
instructions from memory and performs the initial stages of
instruction decoding. The instruction unit also contains the branch
processing unit and performs all instruction address calculations
(including branch address calculations).

Integer Unit. The functional unit in the RCPU responsible for executing all
integer arithmetic instructions.

G

I

RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -3

Instruction Cache. High-speed memory containing recently accessed
instructions (subset of main memory).

Interrupt. An external signal that causes the processor to suspend current
execution and take a predefined exception.

L-Bus. Internal load/store bus connecting the processor to internal modules
and data memory and to the external bus interface.

Latency. The number of clock cycles necessary to execute an instruction
and make ready the results of that instruction.

Little-Endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

NaN. Not a number; a symbolic entity encoded in floating-point format.
There are two types of NaNs — signaling NaNs and quiet NaNs.

No-Op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are added, the sum may require
33 bits due to carry. Since the 32-bit registers of the MPC601
cannot represent this sum, an overflow condition occurs.

Park. The act of allowing a bus master to maintain mastership of the bus
without having to arbitrate.

Pipelining. A technique that breaks instruction execution into distinct steps
so that multiple steps can be performed at the same time.

Precise Exceptions. The pipeline can be stopped so the instructions that
preceded the faulting instruction can complete, and subsequent
instructions can be executed from their beginning.

Quiet NaNs. Propagate through almost every arithmetic operation without
signaling exceptions. These are used to represent the results of
certain invalid operations, such as invalid arithmetic operations on
infinities or on NaNs, when invalid.

Sequential Instruction. Any instruction other than a flow-control instruction
or isync.

Show Cycle. An internal access (e.g., to an internal memory) reflected on
the external bus using a special cycle (marked with a dedicated
transfer code). For an internal memory “hit,” an address-only bus
cycle is generated; for an internal memory “miss,” a complete bus
cycle is generated.

L

N

O

P

Q

S

 MOTOROLA RCPU

-4 Revised 1 February 1999 REFERENCE MANUAL

Signaling NaNs. Signal the invalid operation exception when they are
specified as arithmetic operands.

Significand.The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Slave. The device addressed by a master device. The slave is identified in
the address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need
for coherency actions.

Static Branch Prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction the branch is likely to take.

Supervisor Mode. The privileged operation state of the RCPU. In
supervisor mode, software can access all control registers and can
access the supervisor memory space, among other privileged
operations.

Tiny Result. A tiny result is detected before rounding when a non-zero
result value, computed as though the exponent range were
unbounded, would be smaller in magnitude than the smallest
normalized number.

Underflow. An error condition that occurs during arithmetic operations
when the result cannot be represented accurately in the destination
register. For example, underflow can happen if two floating-point
fractions are multiplied and the result is a single-precision number.
The result may require a larger exponent and/or mantissa than the
single-precision format makes available. In other words, the result is
too small to be represented accurately.

User Mode. The unprivileged operating state of the RCPU. In user mode,
software can only access certain control registers and can only
access user memory space. No privileged operations can be
performed.

Watchpoint. An event that, when detected, is reported but does not change
the timing of the machine.

T

U

W

RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -5

 MOTOROLA RCPU

-6 Revised 1 February 1999 REFERENCE MANUAL

SUMMARY OF CHANGES
This is a complete revision, with complete reprint. All known errors in the publica-
tion have been corrected. The following summary lists significant changes.

Section 2 Registers

Page 2-5 Added Table 2-1 FPSCR Control, Status, and Sticky Bits.

Page 2-14 Added to the description of the BE bit in Table 2-8 Machine
State Register Bit Settings.

Section 4

Page 4-62 Updated Table 4-30 Supervisor-Level SPR Encodings.

Section 6 Exceptions

Page 6-7 Modified Figure 6-1.

Page 6-14 Added to the description of the BE bit in Table 6-7 Machine
State Register Bit Settings.

Page 6-19 Changed MSR[RI] to SRR1[RI] in second paragraph under
6.11.2.

Section 7 Instruction Timing

7-16 Corrected the syntax in the programming example in Section
7.7.1.

7-17 Corrected the syntax in the programming example in Section
7.7.2.

7-18 Corrected the syntax in the programming example in Section
7.7.3.

7-20 Corrected the syntax in the programming example in Section
7.7.4.

7-21 Corrected the syntax in the programming example in Section
7.7.5.

7-22 Corrected the syntax in the programming example in Section
7.7.67.

7-23 Corrected the syntax in the programming example in Section
7.7.7.
RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -1

7-24 Corrected the syntax in the programming example in Section
7.7.8.

Section 8 Development Support

Page 8-37 Revised the second paragraph of section 8.4.2.

Page 8-51 Updated Table 8-30 ICTRL Bit Settings to include the SER bit.

Page 8-57 Corrected the reset value for CHSTPE in Table 8-36 DER Bit
Settings.

Section 9 Instruction Set

Page 9-17 Corrected the RTL.

Page 9-18 Corrected the RTL.

Page 9-21 Made RTL consistent with RTL on pages 9 -25 and 9-27.

Page 9-22 to 9-24 Corrected Table 9-8 Simplified Mnemonics for bc, bca, bcl,
and bcla Instructions.

Page 9-25 to 9-26 Corrected the RTL. Corrected Table 9-9 Simplified Mnemon-
ics for bcctr and bcctrl Instructions.

Page 9-27 Corrected the RTL.

Page 9-28 Corrected Table 9-10 Simplified Mnemonics for bclr and bclrl
Instructions.

Page 9-30 Revised the second paragraph of text. Updated Table 9-11
Simplified Mnemonics for cmp Instruction.

Page 9-31 Updated Table 9-12 Simplified Mnemonics for cmpi Instruc-
tion.

Page 9-32 Corrected the RTL. Updated Table 9-13 Simplified Mnemon-
ics for cmpl Instruction.

Page 9-33 Corrected the RTL. Revised the second paragraph of text. Up-
dated Table 9-14 Simplified Mnemonics for cmpli Instruction.

Page 9-34 Corrected the RTL.

Page 9-43 Updated text regarding setting OV bit.

Page 9-44 Updated text regarding division by 0.

Page 9-45 Updated text regarding setting LT, GT, and EQ bits.

Page 9-47 Corrected the RTL.

Page 9-53 Revised the second paragaph of text. Corrected Other Reg-

This book is a product of the Motorola Advanced Microcontroller Documentation Group in Oak Hill, Texas. It
was written by James Middleton, illustrated by Gene Bates, and edited by Marilou Groves. Camera-ready copy
and line art were produced with Framemaker 4 running on Macintosh computers. The cover was drawn using
Adobe Illustrator and Adobe Photoshop for the Macintosh. Pre-press work on the cover was performed by Im-
perial Lithographics, Phoenix, Arizona. The manual was printed by the Banta Company, Harrisonburg, Virginia,
under the auspices of the Motorola Semiconductor Products Sector Marketing Services.
 MOTOROLA RCPU

-2 Revised 1 February 1999 REFERENCE MANUAL

isters Altered. Added RTL.

Page 9-54 Revised the second text paragaph of text. Corrected Other
Registers Altered.

Page 9-78 Corrected the RTL. Revised the third paragraph of text.

Page 9-79 Corrected the RTL. Revised the third paragraph of text.

Page 9-82 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-83 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-86 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-87 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-90 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-91 Corrected the RTL. Revised the third paragraph of text.

Page 9-94 Corrected the RTL.

Page 9-95 Corrected the RTL. Revised the third paragraph of text.

Page 9-96 Corrected the RTL. Revised the third paragraph of text.

Page 9-97 Corrected the RTL.

Page 9-98 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-99 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-100 Corrected the RTL.

Page 9-101 Corrected the RTL.

Page 9-102 Corrected the RTL.

Page 9-103 Corrected the RTL.

Page 9-104 Corrected the RTL. Revised the third paragraph of text.

Page 9-105 Corrected the RTL. Revised the third paragraph of text.

Page 9-106 Corrected the RTL.

Page 9-108 Revised the first paragraph of text.

Page 9-113 Corrected the RTL.

Page 9-115 Corrected the RTL.

Page 9-117 Corrected the RTL. Added Table 9-22 Simplified Mnemonics
for mtcrf Instruction.
RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -3

Page 9-121 Revised the first paragraph of text.

Page 9-123 Corrected the RTL and instruction encoding.

Page 9-125 Corrected the RTL.

Page 9-126 Corrected the RTL.

Page 9-127 Corrected the RTL.

Page 9-128 Corrected the RTL. Revised the first paragraph of text.

Page 9-130 Revised the first paragraph of text.

Page 9-142 Corrected the RTL. Revised the first paragraph of text.

Page 9-143 Corrected the RTL.

Page 9-144 Corrected the RTL.

Page 9-145 Corrected the RTL.

Page 9-146 Corrected the RTL.

Page 9-147 Corrected the RTL. Revised the third paragraph of text.

Page 9-148 Corrected the RTL. Revised the third paragraph of text.

Page 9-151 Corrected the RTL. Revised the third paragraph of text.

Page 9-152 Corrected the RTL. Revised the third paragraph of text.

Page 9-154 Corrected the RTL. Revised the second paragraph of text.

Page 9-156 Corrected the RTL. Revised the third paragraph of text.

Page 9-157 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-161 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-162 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-165 Corrected the RTL. Revised the third paragraph of text.

Page 9-166 Corrected the RTL. Revised the third and fourth paragraphs of
text.

Page 9-170 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-171 Corrected the RTL. Revised the fourth paragraph of text.

Page 9-180 Corrected the RTL. Corrected Table 9-31 Simplified Mnemon-
ics for Instructions.

Page 9-181 Corrected the RTL.
 MOTOROLA RCPU

-4 Revised 1 February 1999 REFERENCE MANUAL

Appendix A Instruction Set Listings

A-1 to A-6 Corrected Table A-1 Complete Instruction List Sorted by Mne-
monic.

Appendix E Simplified Mnemonics

E-2 Added caution note to section E.3.

E-9 Corrected Table E-8 Operands for Simplified Branch Mne-
monics with Comparison Conditions.

E-14 Corrected encoding for no-op instruction.
RCPU MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 -5

 MOTOROLA RCPU

-6 Revised 1 February 1999 REFERENCE MANUAL

INDEX
–A–

AA operand 4-49, 4-50, 4-51, 4-52, 9-2
add 4-6, 9-7
addc 4-6, 9-8
adde 4-7, 9-9
addi 4-6, 9-10, E-16
addic 4-6, 9-11, 9-12
addic. 4-6
addis 4-6, 9-13, E-16
addme 4-7, 9-14
Address calculation

branch instructions 4-49
Addressing

branch conditional relative 4-50
branch conditional to absolute 4-52
branch conditional to count register 4-53
branch conditional to link register 4-52
branch relative 4-49
branch to absolute 4-51
immediate index, floating-point 4-41
register indirect with immediate index, integer 4-30
register indirect with index, integer 4-31
register indirect, floating-point 4-41
register indirect, integer 4-32

Addressing modes 4-1
addze 4-8, 9-15
ADR field (in ICADR) 5-5
ALE 8-60
ALEE 8-62
Alignment exception 6-23
ALU-BFU 1-8, 7-5
and 4-13, 9-16
andc 4-14, 9-17
andi 4-13, 9-18
andis 4-13
andis. 9-19
Arithmetic instructions

floating point 4-19
integer 4-5

Asynchronous exceptions 6-4, 6-8
Atomic memory references

lwarx 9-101
stwcx. 4-65, 9-169, D-1

Atomic memory refernces
lwarx D-1

–B–

b 4-56, 9-20
ba 4-56
Back trace 8-9
RCPU INDE

REFERENCE MANUAL Revised 1 Feb
bc 4-57, 9-21
bca 4-57
bcctr 4-57, 9-25
bcctrl 4-57
bcl 4-57
bcla 4-57
bclr 4-57, 9-27
bclrl 4-57
BD operand 4-50, 9-2
BE bit 2-15, 6-15
BI operand 4-56, 9-2, E-5
Big-endian mode 3-2, 3-3
bl 4-56
bla 4-56
Blockage 7-11
BO operand 9-2, E-5
BO operand encodings 4-54
BPU 1-7
Branch

prediction 4-54
Branch folding 1-5, 7-1

example 7-22
Branch instructions 4-48

address calculation 4-49
condition register logical 4-57
description 4-56
EA generation 4-3
simplified mnemonics 4-59, E-4

Branch prediction E-11
and instruction cache 5-6
example 7-23

Branch processing unit 1-7
Branch trace enable 2-15, 6-15
Breakpoint counter A value and control register 8-58
Breakpoint counter B value and control register 8-59
Breakpoints 8-12

data 6-47
instruction 6-48
maskable external 6-49
non-maskable external 6-49

BRKNOMSK 8-57
Bus error 6-21
Byte ordering 3-2
BYTES field 2-11

–C–

C bit 2-6
CA bit 2-11, 4-5
Cache, instruction. See Instruction cache
Carry 2-11
X MOTOROLA

ruary 1999 Index-1

Carry bit 4-5
CCER 5-4
CGBMSK 8-55
CHBMSK 8-55
Checkstop enable 6-21
Checkstop state 6-22

and debug mode 8-40
CHSTP bit 8-60
CHSTPE 8-62
CHSTPE bit 6-21
Clock mode, development port 8-27
CMD field 5-4
cmp 4-12, 9-30
CMPA–CMPD 8-51
CMPE–CMPF 8-51
CMPG–CMPH 8-52
cmpi 4-12, 9-31
cmpl 4-12, 9-32
cmpli 4-12, 9-33
CNTC 8-58
cntlzw 4-14, 9-34
CNTV 8-58
Comparator A–D value registers 8-51
Comparator E–F value registers 8-51
Comparator G–H value registers 8-52
Compare and swap D-3
Compare instructions

and condition register 2-10
floating point 4-27
integer 4-11
simplified mnemonics E-2

Compare size 8-55
Compare type 8-53, 8-55
Compare types 8-16
Complement register, simplified mnemonic E-17
Completed instructions 6-1
Condition register 1-12, 2-8

and compare instructions 2-10
logical instructions, simplified mnemonics E-12

Context synchronization 7-10
Conversions, floating point 4-25, C-1
Count register 2-11
COUNTA 8-58
COUNTB 8-59
CPU exception encoding 8-36
CR 1-12, 2-8, 2-11

and compare instructions 2-10
Move to/from 4-60

CR0 field 2-9
CR1 field 2-9
crand 4-58, 9-35
crandc 4-58, 9-36
crbA 9-2
crbB 9-2
crbD 9-2
creqv 4-58, 9-37
crfD 9-2
crfS 9-2
CRM 9-2
crnand 4-58, 9-38

crnor 4-58, 9-39
cror 4-58, 9-40
crorc 4-58, 9-41
CRWE 8-55
CRWF 8-55
crxor 4-58, 9-42
CSG 8-55
CSH 8-55
CTA 8-53
CTB 8-53
CTC 8-53
CTD 8-53
CTE 8-55
CTF 8-55
CTG 8-55
CTH 8-55

–D–

DAE/source instruction service register 2-16, 6-24
settings for alignment exception 6-25

DAR 2-16
DAT field (in ICSDAT) 5-5
Data address register 2-16
Data alignment 3-1
Data breakpoint exception 6-47
Debug enable register 6-1, 8-61
Debug mode 6-1, 8-37

checkstop state 8-40
enabling 8-37
entering 8-38
exiting 8-40
program trace 8-7

DEC 2-17
DECE 8-60
DECEE 8-62
Decrementer exception 6-29
Decrementer register 2-17
Denormalization 3-17
Denormalized numbers 3-14
DER 6-1, 8-61
Development Port

trap enable selection 8-53
Development port 8-23

clock mode selection 8-27
input transmissions 8-33
ready bit 8-36
registers 8-26
serial data out 8-34
shift register 8-27
signals 8-24
transmission sequence 8-41
transmissions 8-32

Development serial clock 8-24
Development serial data in 8-25
Development serial data out 8-26
Development Support

SPRs 4-64
Development support 8-1

I-bus support 8-17
instruction cache 5-12
 MOTOROLA INDEX RCPU

Index-2 Revised 1 February 1999 REFERENCE MANUAL

L-bus support 8-18
registers 8-47

Dispatch stage 1-9, 7-4
divw 4-10, 9-43
divwu 4-11, 9-45
DIW0EN 8-53
DIW1EN 8-53
DIW2EN 8-53
DIW3EN 8-53
DLW0EN 8-57
DLW1EN 8-57
DPI 8-61
DPIR/DPDR input transmissions 8-33
DSCK 8-24
DSDI 8-25
DSDO 8-26
DSE 8-60
DSEE 8-62
DSISR 2-16, 6-24

settings for alignment exception 6-25

–E–

EA 4-2
EBRK 8-61
ECR 8-59
EE bit 2-15, 2-20, 6-5, 6-10, 6-15
Effective address calculation 4-2

branches 4-49
loads and stores 4-30, 4-41

EID 2-21, 6-10
EIE 2-21, 6-10
eieio 4-65, 4-67, 9-46
Enabling debug mode 8-37
Entering debug mode 8-38
eqv 4-14, 9-47
Exception cause register 8-59
Exception little endian mode 6-15
Exception prefix 2-15, 6-5, 6-15
Exceptions 1-15, 6-1

alignment 6-23
asynchronous 6-4, 6-8
classes 6-2
data breakpoint 6-47
decrementer 6-29
enabling and disabling 6-16
external interrupt 6-22
floating-point assist 6-31
floating-point unavailable 6-28
instruction breakpoint 6-48
little endian mode 2-15
machine check 6-21
maskable 6-5, 6-16

external breakpoint 6-49
non-maskable 6-5

external breakpoint 6-49
order and priority 6-10
ordered and unordered 6-2
precise 6-7
processing 6-13
program 6-26

recovery from 6-9
reset 6-20
software emulation 6-46
synchronous and precise 6-2
system call 6-29
timing 6-18
trace 6-30
vector table 6-5

Execute stage 1-9, 7-4
Execution serialization 7-9
Execution units 1-6
Exiting debug mode 8-40
EXP field 3-11
External interrupt 6-22

disable 2-21, 6-10
enable 2-15, 2-20, 2-21, 6-5, 6-10, 6-15

EXTI 8-60
EXTIE 8-62
extsb 4-14, 9-48
extsh 4-14, 9-49

–F–

fabs 4-48, 9-50
fadd 4-19, 9-51, 9-52
fadds 4-20
fcmpo 4-28, 9-53
fcmpu 4-28, 9-54
fctiw 4-26, 9-55
fctiwz 4-27, 9-56
fdiv 4-21, 9-57, 9-58
fdivs 4-22
FE bits 2-15, 2-16, 6-15, 6-16
FE flag 2-6
Fetch and add D-2
Fetch and AND D-3
Fetch and no-op D-2
Fetch and store D-2
Fetch serialization 7-10
Fetch serialized 8-2
FEX bit 2-5, 6-36
FG bit 2-6
FI bit 2-6, 3-20, 6-37
FL bit 2-6
Floating-point

arithmetic instructions 4-19
assist exception 6-31, 6-32
available 2-15, 6-15
compare instructions 4-27
condition code 2-6
conversions C-1
data 3-10
data handling and precision 3-17
denormalized numbers 3-14
enabled exception summary 2-5, 6-36
enabled exceptions 6-36
equal or zero 2-6
exception mode 2-15, 2-16, 6-15, 6-16
exception summary 2-5, 6-36
exceptions cause register 6-34
execution models 3-21
RCPU INDEX MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 Index-3

FPSCR instructions 4-28
fraction inexact 2-6, 6-37
fraction rounded 2-6, 6-37
greater than or positive 2-6
IEEE operations 3-22
inexact exception 2-6, 6-37

enable 2-7, 6-38
infinities 3-15
invalid operation exception

conditions 6-42
enable 2-7, 6-38
for ×*0 2-6, 6-37
for ×/× 2-6, 6-37
for ×-× 2-6, 6-37
for 0/0 2-6, 6-37
for invalid compare 2-6, 6-37
for invalid integer convert 2-7, 6-38
for invalid square root 2-7, 6-37
for SNaN 2-6, 6-37
for software request 2-7, 6-37
inexact 6-45
overflow 6-44
summary 2-5, 6-36
underflow 6-44
zero divide 6-43

less than or negative 2-6
load instructions 4-42
models C-1
move instructions 4-47
multiply-add instructions 3-24, 4-22
non-IEEE operation 3-25
normalization and denormalization 3-17
normalized numbers 3-13
overflow exception 2-6, 6-36

enable 2-7, 6-38
registers 2-3
result class descriptor 2-6
result flags 2-6, 6-37
round to single-precision 3-19
rounding 3-19
rounding and conversion instructions 4-25
rounding control 2-7, 6-38
sign of result 3-16
single precision 3-18
software envelope 3-25, 6-31
status and control register 1-12, 2-4, 6-36
store instructions 4-44
unavailable exception 6-28
underflow exception 2-6, 6-36
unit 1-8, 7-6
unordered or NaN 2-6
zero divide exception 2-6, 6-37

enable 2-7, 6-38
zero values 3-14

Flow control instructions 4-48
branch instructions 4-56
condition register logical 4-57
system linkage 4-58

FM 9-2
fmadd 4-22, 9-59, 9-60

fmadds 4-23
fmr 4-48, 9-61
fmsub 4-23, 9-62, 9-63
fmsubs 4-23
fmul 4-21, 9-64, 9-65
fmuls 4-21
fnabs 4-48, 9-66
fneg 4-48, 9-67
fnmadd 4-24, 9-68, 9-69
fnmadds 4-24
fnmsub 4-25, 9-70, 9-71
fnmsubs 4-25
formats 9-1
FP 6-15
FP bit 2-15
FPASE 8-60
FPASEE 8-62
FPCC bit 2-6
FPECR 6-34
FPRF 6-37
FPRF field 2-6
FPRs 2-3
FPSCR 1-12, 2-4, 6-36
FPSCR instructions 4-28
FPSCRXX bit 3-25
FPUVE 8-60
FPUVEE 8-62
FR 2-6
FR bit 3-20, 6-37
frA 9-2
FRACTION field 3-11
frB 9-2
frC 9-2
frD 9-2
Freeze 8-40
frpsx 3-19
frS 9-2
frsp 4-26, 9-72
fsub 4-20, 9-73, 9-74
fsubs 4-20
FU bit 2-6
FX bit 2-5, 6-36

–G–

G bit 3-22
General SPRs 2-19
General-purpose registers 1-12, 2-3
GPRs 1-12, 2-3
Guard bit 3-22

–H–

History buffer 1-5, 6-7, 7-1
flush status pins 8-7
full, example 7-20

Hit, I-cache 5-6

–I–

IBRK 8-61
 MOTOROLA INDEX RCPU

Index-4 Revised 1 February 1999 REFERENCE MANUAL

I-bus
watchpoint programming 8-53

I-bus support 8-17
control register 8-52

I-cache. See Instruction cache
ICADR 2-21, 5-3, 5-5, 5-10
icbi 4-68, 5-7, 9-75
ICCST 2-21, 5-3
ICDAT 2-21, 5-3, 5-5, 5-11
ICTRL 8-52
IEEE operations, floating point 3-22
IEN bit 5-4
Ignore first match 8-53
IIFM 8-53
ILE bit 2-15, 6-15
IMM 9-2
IMUL-IDIV 1-8, 7-5
Inexact bit 3-25
Infinities 3-15
Input/output in little-endian mode 3-10
Instruction 9-1

blockage 7-11
breakpoint exception 6-48
cache 1-9

management instruction 4-68
completed 6-1
fields 9-1
flow 1-5, 7-1
issue 7-3
latency 7-11
memory addressing in little-endian mode 3-8
pipeline 1-9, 7-3
queue status pins 8-5
retired 1-5, 1-9, 6-7, 7-1
sequencer 1-5, 7-1
set 1-14
set summary 4-1
timing 1-9, 7-1, 7-3

Instruction cache 5-1
address register 2-21, 5-3, 5-5, 5-10
and branch prediction 5-6
and zero-wait-state memories 5-11
block invalidate 5-7
coherency 5-11
command field 5-4
commands 5-7
control and status register 2-21, 5-3
data path 5-3
data port 2-21, 5-3
data register 5-5, 5-11
debugging support 5-12
disable command 5-9
enable command 5-9
enable status bit 5-4
error types 5-4
hit 5-6
invalidate all 5-8
load & lock 5-8
miss 5-6
operation 5-5

organization 5-1
reading 5-10
reset sequence 5-11
SPRs 5-3
unlock all 5-9
unlock line 5-9

Instruction fetch
show cycle control 8-2, 8-54
show cycles 8-4

Instructions 4-58, 9-1
add 4-6, 9-7
addc 4-6, 9-8
adde 4-7, 9-9
addi 4-6, 9-10, E-16
addic 4-6, 9-11, 9-12
addic. 4-6
addis 4-6, 9-13, E-16
addme 4-7, 9-14
addze 4-8, 9-15
and 4-13, 9-16
andc 4-14, 9-17
andi 4-13, 9-18
andis 4-13
andis. 9-19
b 4-56, 9-20
ba 4-56
bc 4-57, 9-21
bca 4-57
bcctr 4-57, 9-25
bcctrl 4-57
bcl 4-57
bcla 4-57
bclr 4-57, 9-27
bclrl 4-57
bl 4-56
bla 4-56
branch 4-56
cmp 4-12, 9-30
cmpi 4-12, 9-31
cmpl 4-12, 9-32
cmpli 4-12, 9-33
cntlzw 4-14, 9-34
condition register logical 4-57
crand 4-58, 9-35
crandc 4-58, 9-36
creqv 4-58, 9-37
crnand 4-58, 9-38
crnor 4-58, 9-39
cror 4-58, 9-40
crorc 4-58, 9-41
crxor 9-42
divw 4-10, 9-43
divwu 4-11, 9-45
eieio 4-65, 4-67, 9-46
eqv 4-14, 9-47
extsb 4-14, 9-48
extsh 4-14, 9-49
fabs 4-48, 9-50
fadd 4-19, 9-51, 9-52
fadds 4-20
RCPU INDEX MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 Index-5

fcmpo 4-28, 9-53
fcmpu 4-28, 9-54
fctiw 4-26, 9-55
fctiwz 4-27, 9-56
fdiv 4-21, 9-57, 9-58
fdivs 4-22
floating-point

arithmetic 4-19
compare 4-27
double-precision conversion, store 4-46
FP status and control register 4-28
move 4-47
multiply-add 4-22
rounding and conversion 4-25

flow control 4-48
fmadd 4-22, 9-59, 9-60
fmadds 4-23
fmr 4-48, 9-61
fmsub 4-23, 9-62, 9-63
fmsubs 4-23
fmul 4-21, 9-64, 9-65
fmuls 4-21
fnabs 4-48, 9-66
fneg 4-48, 9-67
fnmadd 4-24, 9-68, 9-69
fnmadds 4-24
fnmsub 4-25, 9-70, 9-71
fnmsubs 4-25
frsp 4-26, 9-72
fsub 4-20, 9-73, 9-74
fsubs 4-20
icbi 4-68, 9-75
instruction cache management 4-68
integer 4-5

compare 4-11
load 4-33
logical 4-12
move string 4-39
rotate and shift 4-14
store 4-36

integer arithmetic 4-5
isync 4-65, 4-67, 9-76
lbz 4-34, 9-77
lbzu 4-34, 9-78
lbzux 4-34, 9-79
lbzx 4-34, 9-80
lfd 4-43, 9-81
lfdu 4-43, 9-82
lfdux 4-43, 9-83
lfdx 4-43, 9-84
lfs 4-42, 9-85
lfsu 4-43, 9-86
lfsux 4-43, 9-87
lfsx 4-42, 9-88
lha 4-35, 9-89
lhau 4-35, 9-90
lhaux 4-35, 9-91
lhax 4-35, 9-92
lhbrx 4-38, 9-93
lhz 4-34, 9-94

lhzu 4-34, 9-95
lhzux 4-35, 9-96
lhzx 4-34, 9-97
lmw 4-39, 9-98
load

floating-point 4-42
load/store 4-30

address generation, floating-point 4-41
address generation, integer 4-30
integer load 4-33
integer multiple 4-38
with byte reversal 4-37

lswi 4-40, 9-99
lswx 4-40, 9-100
lwarx 4-67, 9-101
lwbrx 4-38, 9-102
lwz 4-35, 9-103
lwzu 4-35, 9-104
lwzux 4-36, 9-105
lwzx 4-35, 9-106
mcrf 4-58, 9-107
mcrfs 4-29, 9-108
mcrxr 4-61, 9-109
memory control 4-68
memory synchronization 4-65
mfcr 4-61, 9-110
mffs 4-29, 9-111
mfmsr 4-61, 9-112
mfspr 4-62, 9-113
move to/from MSR and CR 4-60
move to/from SPR 4-61
mtcrf 4-61, 9-115, 9-117
mtfsb0 4-29, 9-118
mtfsb1 4-29, 9-119
mtfsf 4-29, 9-120, 9-137
mtfsfi 4-29, 9-121
mtmsr 4-61, 9-122
mtspr 4-62, 9-123
mulhw 4-9, 9-125
mulhwu 4-9, 9-126
mulli 4-8, 9-127
mullw 4-9, 9-128
nand 4-13, 9-129
neg 4-8, 9-130
no-op E-16
nor 4-13, 9-131
or 4-13, 9-132
orc 4-14, 9-133
ori 4-13, 9-134
oris 4-13, 9-135
processor control 4-60
rfi 4-59, 9-136
rlwimi 4-17
rlwinm 4-16, 9-138
rlwnm 9-140
sc 4-59, 9-141
slw 4-18, 9-142
sraw 4-18, 9-143
srawi 4-18, 9-144
srw 4-18, 9-145
 MOTOROLA INDEX RCPU

Index-6 Revised 1 February 1999 REFERENCE MANUAL

stb 4-37, 9-146
stbu 4-37, 9-147
stbux 4-37, 9-148
stbx 4-37, 9-149
stfd 9-150
stfdu 9-151
stfdux 9-152
stfdx 9-153, 9-154
stfs 9-155
stfsu 9-156
stfsux 9-157
stfsx 9-158
sth 4-37, 9-159
sthbrx 4-38, 9-160
sthu 4-37, 9-161
sthux 4-37, 9-162
sthx 4-37, 9-163
stmw 4-39, 9-164
store

floating-point 4-44
stswi 4-40, 9-165
stswx 4-40, 9-166
stw 4-37, 9-167
stwbrx 4-38, 9-168
stwcx 4-67
stwcx. 4-66, 9-169
stwu 4-37, 9-170
stwux 4-37, 9-171
stwx 4-37, 9-172
subf 4-6, 9-173
subfc 4-7, 9-174
subfe 4-7, 9-175
subfic 4-6, 9-176
subfme 4-7, 9-177
subfze 4-8, 9-178
sync 4-65, 4-68, 9-179
system linkage 4-58
trap 4-59
tw 4-60, 9-180
twi 4-60, 9-181
xor 4-13, 9-182
xori 4-13, 9-183
xoris 4-13, 9-184

Integer
instructions 4-5

arithmetic 4-5
compare 4-11
load 4-33
load/store 4-33
logical 4-12
move string 4-39
rotate and shift 4-14
store 4-36

Integer exception register 2-10
Invalidate all 5-8
IP bit 2-15, 6-5, 6-15
IRQ 6-22
ISCTL 8-2, 8-54
ISE 8-60
ISEE 8-62

Issued instructions 7-3
isync 4-65, 4-67, 9-76
IW 8-53

–L–

Latency 7-11
LBRK 8-61
L-bus support 8-18

control register 1 8-54
control register 2 8-56

lbz 4-34, 9-77
lbzu 4-34, 9-78
lbzux 4-34, 9-79
lbzx 4-34, 9-80
LCTRL1 8-54
LCTRL2 8-56
LE bit 2-15, 6-15
lfd 4-43, 9-81
lfdu 4-43, 9-82
lfdux 4-43, 9-83
lfdx 4-43, 9-84
lfs 3-18, 4-42, 9-85
lfsu 4-43, 9-86
lfsux 4-43, 9-87
lfsx 4-42, 9-88
lha 4-35, 9-89
lhau 4-35, 9-90
lhaux 4-35, 9-91
lhax 4-35, 9-92
lhbrx 4-38, 9-93
lhz 4-34, 9-94
lhzu 4-34, 9-95
lhzux 4-35, 9-96
lhzx 4-34, 9-97
LI 9-2
LI operand 4-49
Link register 2-11
List insertion D-4
Little endian mode 2-15
Little-endian mode 3-2, 6-15

input/output 3-10
instruction memory addressing 3-8
load and store multiple instructions 3-7
misaligned operands 3-6
misaligned scalars 3-6
string operations 3-7

LK 9-2
lmw 4-39, 9-98
Load

address, simplified mnemonic E-16
immediate, simplified mnemonic E-16
instructions 4-30

floating point 4-42
integer 4-33

Load & lock 5-8
Load floating-point single-precision 3-18
Load/store

address generation 4-30
integer 4-30

byte reverse instructions 4-37
RCPU INDEX MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 Index-7

multiple instructions, integer 4-38
Load/store multiple instructions

in little-endian mode 3-7
Loadstore

address generation 4-2
Logical instructions, integer 4-12
LR 2-11
lswi 4-40, 9-99
lswx 4-40, 9-100
LW0EN 8-56
LW0IA 8-56
LW0IADC 8-56
LW0LA 8-56
LW0LADC 8-56
LW0LD 8-56
LW0LDDC 8-56
LW1EN 8-56
LW1IA 8-57
LW1IADC 8-57
LW1LA 8-57
LW1LADC 8-57
LW1LD 8-57
LW1LDDC 8-57
lwarx 4-67, 9-101, D-1
lwbrx 4-38, 9-102
lwz 4-35, 9-103
lwzu 4-35, 9-104
lwzux 4-36, 9-105
lwzx 4-35, 9-106

–M–

Machine check
enable 2-15, 6-15, 6-21
exception 6-21

machine check
exception

enable 6-21
Machine state register 1-12, 2-13, 6-14
Machine status save/restore register 0 2-18
Machine status save/restore register 1 2-19
Maskable

exceptions 6-5
external breakpoints 6-49

Maskable exceptions 6-16
MB 9-2
MCE 8-60
MCEE 8-62
MCIE bit 6-21
mcrf 4-58, 9-107
mcrfs 4-29, 9-108
mcrxr 4-61, 9-109
ME bit 2-15, 6-15, 6-21, 9-2
Memory

control instructions 4-68
operands 4-2
organization 3-1
synchronization

eieio 4-65
isync 4-65
stwcx. 4-66

sync 4-65
mfcr 4-61, 9-110
mffs 4-29, 9-111
mfmsr 4-61, 9-112
mfspr 4-62, 9-113
Misaligned operands

little-endian mode 3-6
Miss, instruction cache 5-6
Move

instructions, floating point 4-47
register, simplified mnemonic E-16
string instructions, integer 4-39
to/from SPR Instructions 4-61

MSR 1-12, 2-13, 6-14
Move to/from 4-60

mtcrf 4-61, 9-115, 9-117
mtfsb0 4-29, 9-118
mtfsb1 4-29, 9-119
mtfsf 4-29, 9-120, 9-137
mtfsfi 4-29, 9-121
mtmsr 4-61, 9-122
mtspr 4-62, 9-123
mulhw 4-9, 9-125
mulhwu 4-9, 9-126
mulli 4-8, 9-127
mullw 4-9, 9-128
Multiple-precision shifts B-1
Multiply-add instructions, floating point 3-24, 4-22

–N–

nand 4-13, 9-129
NANs 3-15
NB 9-3
neg 4-8, 9-130
NI bit 2-7, 3-25, 6-38
Non-IEEE floating-point operation 2-7, 3-25, 6-38
Non-maskable

exceptions 6-5
external breakpoint 6-49

Non-recoverable interrupt 2-21, 6-10
No-op E-16
nor 4-13, 9-131
Normalized numbers 3-13, 3-17
Not a Numbers 3-15
NRI 2-21, 6-10
Null output encoding 8-36

–O–

OE bit 2-7, 6-38, 9-3
or 4-13, 9-132
orc 4-14, 9-133
Ordered exceptions 6-2
ori 4-13, 9-134
oris 4-13, 9-135
OV (overflow) bit 2-11, 4-5
OX bit 2-6, 6-36
 MOTOROLA INDEX RCPU

Index-8 Revised 1 February 1999 REFERENCE MANUAL

–P–

Pipeline, instruction 1-9, 7-3
PR 2-1
PR bit 2-15, 6-15
PRE 8-60
Precise exceptions 6-2, 6-7
PREE 8-62
Privilege level 2-1
Privilege levels 2-15, 6-15
Process switching 6-18
Processor control instructions 4-60
Processor version register 2-20
Program 6-26

exception 6-26
flow tracking 8-1
flow-tracking

status pins 8-5
trace

back 8-9
in debug mode 8-7
window 8-9

Programming models 2-1
PVR 2-20

–R–

R bit 3-22
rA 9-3
rB 9-3
Rc 9-3
RCPU

execution units 1-6
registers 2-1

rD 9-3
RE bit 6-15
Ready bit, development port 8-36
Recoverable exception 2-15, 2-20, 6-5, 6-9, 6-10, 6-15
Register transfer language 9-3
Registers 2-1

CMPA–CMPD 8-51
CMPE–CMPF 8-51
CMPG–CMPH 8-52
COUNTA 8-58
COUNTB 8-59
CR 2-8, 2-11
DAR 2-16
DEC 2-17
DER 6-1, 8-61
development port 8-26
development support 8-47
development support shift register 8-27
DSISR 6-24
ECR 8-59
FPRs 2-3
FPSCR 2-4, 6-36
GPRs 2-3
ICADR 2-21, 5-3, 5-10
ICCST 2-21, 5-3
ICDAT 2-21, 5-3, 5-11
ICTRL 8-52

LCTRL1 8-54
LCTRL2 8-56
LR 2-11
MSR 2-13, 6-14
PVR 2-20
SPRGs 2-19
SRR0 2-18
SRR1 2-19
supervisor level 2-13
TB 2-12
TECR 8-27
user level 2-3
XER 2-10

Reset exception 6-20
and instruction cache 5-11

Retired instructions 1-5, 1-9, 6-7, 7-1
Retirement stage 1-9, 7-4
rfi 4-59, 6-18, 9-136
RI bit 2-15, 2-20, 6-5, 6-9, 6-10
rlwimi 4-17
rlwinm 4-16, 9-138
rlwnm 9-140
RN field 2-7, 6-38
Rotate and shift instructions 4-14

simplified mnemonics E-3
Round bit 3-22
Round to floating-point single-precision 3-18
Rounding, floating point 3-19, 4-25
rS 9-3
RTL 9-3

–S–

S (sign bit) 3-11
sc 4-59, 9-141
SE bit 2-15, 6-15
SEE 8-60
Sequencer 1-5, 7-1
Sequencing error encoding 8-35
Serialization 7-9

execution 7-9
fetch 7-10, 8-2

SH 9-3
Shift instructions, integer 4-14
Shifts, multiple precision B-1
Show cycles 8-4
SIE mode 6-34
SIMM 9-3
Simplified mnemonics 4-68, E-1

branch instructions E-4
compare instructions E-2
condition register logical instructions E-12
miscellaneous 4-68
rotate and shift instructions E-3
special-purpose registers E-14
SPRs E-15
subtract instructions E-2
trap instructions E-13

Single-precision floating point 3-18
Single-step trace enable 2-15, 6-15
SIW0EN 8-53
RCPU INDEX MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 Index-9

SIW1EN 8-53
SIW2EN 8-53
SIW3EN 8-53
slw 4-18, 9-142
SLW0EN 8-57
SLW1EN 8-57
SO bit 2-11, 4-5
Software emulation exception 6-46
Software envelope 3-25, 6-31
Software monitor support 8-47
Software trap enable selection 8-53
Special-purpose registers 1-12

general 2-19
simplified mnemonics E-14
supervisor level 1-13, 4-63
user level 1-12, 4-62

Split field notation 9-1
SPR 9-3
SPRG0–SPRG3 2-19
SPRGs 2-19
SPRs

development support 4-64
general 2-19
instruction cache 5-3
simplified mnemonics E-15

SPRs. See Special-purpose registers
sraw 4-18, 9-143
srawi 4-18, 9-144
SRR0 2-18
SRR1 2-19
srw 4-18, 9-145
stb 4-37, 9-146
stbu 4-37, 9-147
stbux 4-37, 9-148
stbx 4-37, 9-149
stfd 9-150
stfdu 9-151
stfdux 9-152
stfdx 9-153, 9-154
stfs 3-18, 9-155
stfsu 9-156
stfsux 9-157
stfsx 9-158
sth 4-37, 9-159
sthbrx 4-38, 9-160
sthu 4-37, 9-161
sthux 4-37, 9-162
sthx 4-37, 9-163
Sticky bit 3-22
stmw 4-39, 9-164
Store

floating-point single-precision 3-18
Store instructions 4-30

floating point 4-44
integer 4-36

String instructions, timing 7-8
String operations

in little-endian mode 3-7
stswi 4-40, 9-165
stswx 4-40, 9-166

stw 4-37, 9-167
stwbrx 4-38, 9-168
stwcx 4-67
stwcx. 4-66, 9-169, D-1
stwu 4-37, 9-170
stwux 4-37, 9-171
stwx 4-37, 9-172
subf 4-6, 9-173
subfc 4-7, 9-174
subfe 4-7, 9-175
subfic 4-6, 9-176
subfme 4-7, 9-177
subfze 4-8, 9-178
Subtract instructions, simplified mnemonics E-2
Summary overflow 2-11, 4-5
Supervisor

privilege level 2-1
Supervisor level

registers 2-13
returning from 6-18
SPRs 1-13

Supervisor-Level
SPRs 4-63

SUSG 8-55
SUSH 8-55
sync 4-65, 4-68, 9-179
Synchronization

context 7-10
primitives D-2
programming examples D-1

Synchronized ignore exceptions 6-34
Synchronous exceptions 6-2

ordering 6-12
SYSE 8-60
SYSEE 8-62
System call exception 6-29
System linkage instructions 4-58

–T–

TB 2-12
TBL 2-13, 2-17
TBU 2-13, 2-17
TEA 6-21
TECR 8-27
Test and set D-3
Time base 2-12
Timing, instruction 1-9
TO 9-3
TO operand 4-60
TR 8-60
Trace 8-9

window 8-9
Trace exception 6-30
Trap enable

input transmissions 8-33
programming 8-21

Trap enable control register 8-27
Trap instructions 4-59

simplified mnemonics E-13
TRE 8-62
 MOTOROLA INDEX RCPU

Index-10 Revised 1 February 1999 REFERENCE MANUAL

tw 4-60, 9-180
twi 4-60, 9-181

–U–

UIMM 9-3
UISA register set 2-3
Unlock all 5-9
Unlock line 5-9
Unordered exceptions 6-2
User

privilege level 2-1
User level

registers 2-3
SPRs 1-12, 4-62

UX bit 2-6, 6-36

–V–

Valid data encoding 8-35
VE bit 2-7, 6-38
Vector table, exceptions 6-5
VF signals 8-5
VFLS signals 8-7
VSYNC 8-11
VX 6-36
VX bit 2-5
VXCVI bit 2-7, 6-38
VXIDI 2-6
VXIDI bit 6-37
VXIMZ bit 2-6, 6-37
VXISI 2-6
VXISI bit 6-37
VXSNAN 2-6
VXSNAN bit 6-37
VXSOFT bit 2-7, 6-37
VXSQRT bit 2-7, 6-37
VXVC bit 2-6, 6-37
VXZDZ bit 2-6, 6-37

–W–

Watchpoints 8-12
Window trace 8-9
Writeback stage 1-9, 6-1, 7-4

–X–

X bit 3-22
XE bit 2-7, 6-38
XER 2-10
XO 9-3
xor 4-13, 9-182
xori 4-13, 9-183
xoris 4-13, 9-184
XX bit 2-6, 6-37

–Z–

ZE bit 2-7, 6-38
Zero values 3-14
ZX bit 2-6, 6-37
RCPU INDEX MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 Index-11

 MOTOROLA INDEX RCPU

Index-12 Revised 1 February 1999 REFERENCE MANUAL

	TABLE OF CONTENTS
	OVERVIEW
	1.1 RCPU Overview
	1.1.1 RCPU Features
	1.1.2 RCPU Block Diagram
	1.1.3 Instruction Sequencer
	1.1.4 Independent Execution Units
	1.1.4.1 Branch Processing Unit (BPU)
	1.1.4.2 Integer Unit (IU)
	1.1.4.3 Floating-Point Unit (FPU)
	1.1.4.4 Load/Store Unit (LSU)

	1.1.5 Instruction Cache
	1.1.6 Instruction Pipeline
	1.1.7 Development Support

	1.2 Levels of the PowerPC Architecture
	1.3 The RCPU as a PowerPC Implementation
	1.3.1 PowerPC Registers and Programming Model
	1.3.1.1 General-Purpose Registers (GPRs)
	1.3.1.2 Floating-Point Registers (FPRs)
	1.3.1.3 Condition Register (CR)
	1.3.1.4 Floating-Point Status and Control Register (FPSCR)
	1.3.1.5 Machine State Register (MSR)
	1.3.1.6 Special-Purpose Registers (SPRs)
	1.3.1.7 User-Level SPRs
	1.3.1.8 Supervisor-Level SPRs

	1.3.2 Instruction Set and Addressing Modes
	1.3.2.1 PowerPC Instruction Set
	1.3.2.2 PowerPC Addressing Modes
	1.3.2.3 RCPU Instruction Set

	1.3.3 PowerPC Exception Model

	REGISTERS
	2.1 Programming Models
	2.2 PowerPC UISA Register Set
	2.2.1 General Purpose Registers (GPRs)
	2.2.2 Floating-Point Registers (FPRs)
	2.2.3 Floating-Point Status and Control Register (�FPSCR)
	2.2.4 Condition Register (CR)
	2.2.4.1 Condition Register CR0 Field Definition
	2.2.4.2 Condition Register CR1 Field Definition
	2.2.4.3 Condition Register CRn Field — Compare Instruction

	2.2.5 Integer Exception Register (XER)
	2.2.6 Link Register (LR)
	2.2.7 Count Register (CTR)

	2.3 PowerPC VEA Register Set — Time Base
	2.4 PowerPC OEA Register Set
	2.4.1 Machine State Register (MSR)
	2.4.2 DAE/Source Instruction Service Register (DSISR)
	2.4.3 Data Address Register (DAR)
	2.4.4 Time Base Facility (TB) — OEA
	2.4.5 Decrementer Register (DEC)
	2.4.6 Machine Status Save/Restore Register 0 (SRR0)
	2.4.7 Machine Status Save/Restore Register 1 (SRR1)
	2.4.8 General SPRs (SPRG0–SPRG3)
	2.4.9 Processor Version Register (PVR)
	2.4.10 Implementation-Specific SPRs
	2.4.10.1 EIE, EID, and NRI Special-Purpose Registers
	2.4.10.2 Instruction-Cache Control Registers
	2.4.10.3 Development Support Registers
	2.4.10.4 Floating-Point Exception Cause Register (FPECR)

	OPERAND CONVENTIONS
	3.1 Data Alignment and Memory Organization
	3.2 Byte Ordering
	3.2.1 Structure Mapping Examples
	3.2.1.1 Big-Endian Mapping
	3.2.1.2 Little-Endian Mapping

	3.2.2 Data Memory in Little-Endian Mode
	3.2.2.1 Aligned Scalars
	3.2.2.2 Misaligned Scalars
	3.2.2.3 String Operations
	3.2.2.4 Load and Store Multiple Instructions

	3.2.3 Instruction Memory Addressing in Little-Endian Mode
	3.2.4 Input/Output in Little-Endian Mode

	3.3 Floating-Point Data
	3.3.1 Floating-Point Data Format
	3.3.2 Value Representation
	3.3.3 Normalized Numbers (±NORM)
	3.3.4 Zero Values (±0)
	3.3.5 Denormalized Numbers (±DENORM)
	3.3.6 Infinities (±°)
	3.3.7 Not a Numbers (NaNs)
	3.3.8 Sign of Result
	3.3.9 Normalization and Denormalization
	3.3.10 Data Handling and Precision
	3.3.11 Rounding

	3.4 Floating-Point Execution Models
	3.4.1 Execution Model for IEEE Operations
	3.4.2 Execution Model for Multiply-Add Type Instructions
	3.4.3 Non-IEEE Operation
	3.4.4 Working Without the Software Envelope

	ADDRESSING MODES AND INSTRUCTION SET SUMMARY
	4.1 Memory Addressing
	4.1.1 Memory Operands
	4.1.2 Addressing Modes and Effective Address Calculation

	4.2 Classes of Instructions
	4.2.1 Definition of Boundedly Undefined
	4.2.2 Defined Instruction Class
	4.2.3 Illegal Instruction Class
	4.2.4 Reserved Instruction Class

	4.3 Integer Instructions
	4.3.1 Integer Arithmetic Instructions
	4.3.2 Integer Compare Instructions
	4.3.3 Integer Logical Instructions
	4.3.4 Integer Rotate and Shift Instructions
	4.3.4.1 Integer Rotate Instructions
	4.3.4.2 Integer Shift Instructions

	4.4 Floating-Point Instructions
	4.4.1 Floating-Point Arithmetic Instructions
	4.4.2 Floating-Point Multiply-Add Instructions
	4.4.3 Floating-Point Rounding and Conversion Instructions
	4.4.4 Floating-Point Compare Instructions
	4.4.5 Floating-Point Status and Control Register Instructions

	4.5 Load and Store Instructions
	4.5.1 Integer Load and Store Address Generation
	4.5.1.1 Register Indirect with Immediate Index Addressing
	4.5.1.2 Register Indirect with Index Addressing
	4.5.1.3 Register Indirect Addressing

	4.5.2 Integer Load Instructions
	4.5.3 Integer Store Instructions
	4.5.4 Integer Load and Store with Byte Reversal Instructions
	4.5.5 Integer Load and Store Multiple Instructions
	4.5.6 Integer Move String Instructions
	4.5.7 Floating-Point Load and Store Address Generation
	4.5.7.1 Register Indirect with Immediate Index Addressing
	4.5.7.2 Register Indirect with Index Addressing

	4.5.8 Floating-Point Load Instructions
	4.5.8.1 Double-Precision Conversion for Floating-Point Load Instructions
	4.5.8.2 Floating-Point Load Single Operands

	4.5.9 Floating-Point Store Instructions
	4.5.9.1 Double-Precision Conversion for Floating-Point Store Instructions
	4.5.9.2 Floating-Point Store-Single Operands

	4.5.10 Floating-Point Move Instructions

	4.6 Flow Control Instructions
	4.6.1 Branch Instruction Address Calculation
	4.6.1.1 Branch Relative Address Mode
	4.6.1.2 Branch Conditional Relative Address Mode
	4.6.1.3 Branch to Absolute Address Mode
	4.6.1.4 Branch Conditional to Absolute Address Mode
	4.6.1.5 Branch Conditional to Link Register Address Mode
	4.6.1.6 Branch Conditional to Count Register

	4.6.2 Conditional Branch Control
	4.6.2.1 BO Operand and Branch Prediction
	4.6.2.2 BI Operand
	4.6.2.3 Simplified Mnemonics for Conditional Branches

	4.6.3 Branch Instructions
	4.6.4 Condition Register Logical Instructions
	4.6.5 System Linkage Instructions
	4.6.6 Simplified Mnemonics for Branch and Flow Control Instructions
	4.6.7 Trap Instructions

	4.7 Processor Control Instructions
	4.7.1 Move to/from Machine State Register and Condition Register Instructions
	4.7.2 Move to/from Special Purpose Register Instructions
	4.7.3 Move from Time Base Instruction

	4.8 Memory Synchronization Instructions
	4.9 Memory Control Instructions
	4.10 Recommended Simplified Mnemonics

	INSTRUCTION CACHE
	5.1 Instruction Cache Organization
	5.2 Programming Model
	5.2.1 I-Cache Control and Status Register (ICCST)
	5.2.2 I-Cache Address Register (ICADR)
	5.2.3 I-Cache Data Register (ICDAT)

	5.3 Instruction Cache Operation
	5.3.1 Cache Hit
	5.3.2 Cache Miss
	5.3.3 Instruction Fetch on a Predicted Path

	5.4 Cache Commands
	5.4.1 Instruction Cache Block Invalidate
	5.4.2 Invalidate All
	5.4.3 Load and Lock
	5.4.4 Unlock Line
	5.4.5 Unlock All
	5.4.6 Cache Enable
	5.4.7 Cache Disable
	5.4.8 Cache Inhibit
	5.4.9 Cache Read

	5.5 I-Cache and On-Chip Memories with Zero Wait States
	5.6 Cache Coherency
	5.7 Updating Code and Attributes of Memory Regions
	5.8 Reset Sequence
	5.9 Debugging Support
	5.9.1 Running a Debug Routine from the I-Cache
	5.9.2 Instruction Fetch from the Development Port

	EXCEPTIONS
	6.1 Exception Classes
	6.1.1 Ordered and Unordered Exceptions
	6.1.2 Synchronous, Precise Exceptions
	6.1.3 Asynchronous Exceptions
	6.1.3.1 Asynchronous, Maskable Exceptions
	6.1.3.2 Asynchronous, Non-Maskable Exceptions

	6.2 Exception Vector Table
	6.3 Precise Exception Model Implementation
	6.4 Implementation of Asynchronous Exceptions
	6.5 Recovery from Exceptions
	6.5.1 Recovery from Ordered Exceptions
	6.5.2 Recovery from Unordered Exceptions
	6.5.3 Commands to Alter MSR[EE] and MSR[RI]

	6.6 Exception Order and Priority
	6.7 Ordering of Synchronous, Precise Exceptions
	6.8 Exception Processing
	6.8.1 Enabling and Disabling Exceptions
	6.8.2 Steps for Exception Processing
	6.8.3 DAR, DSISR, and BAR Operation
	6.8.4 Returning from Supervisor Mode

	6.9 Process Switching
	6.10 Exception Timing
	6.11 Exception Definitions
	6.11.1 Reset Exception (0x0100)
	6.11.2 Machine Check Exception (0x00200)
	6.11.2.1 Machine Check Exception Enabled
	6.11.2.2 Checkstop State
	6.11.2.3 Machine-Check Exceptions and Debug Mode

	6.11.3 External Interrupt (0x00500)
	6.11.4 Alignment Exception (0x00600)
	6.11.4.1 Interpretation of the DSISR as Set by an Alignment Exception

	6.11.5 Program Exception (0x00700)
	6.11.6 Floating-Point Unavailable Exception (0x00800)
	6.11.7 Decrementer Exception (0x00900)
	6.11.8 System Call Exception (0x00C00)
	6.11.9 Trace Exception (0x00D00)
	6.11.10 Floating-Point Assist Exception (0x00E00)
	6.11.10.1 Floating-Point Software Envelope
	6.11.10.2 Floating-Point Assist for Denormalized Operands
	6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode
	6.11.10.4 Floating-Point Exception Cause Register
	6.11.10.5 Floating-Point Enabled Exceptions
	6.11.10.6 Invalid Operation Exception Conditions
	6.11.10.7 Zero Divide Exception Condition
	6.11.10.8 Overflow Exception Condition
	6.11.10.9 Underflow Exception Condition
	6.11.10.10 Inexact Exception Condition

	6.11.11 Software Emulation Exception (0x01000)
	6.11.12 Data Breakpoint Exception (0x01C00)
	6.11.13 Instruction Breakpoint Exception (0x01D00)
	6.11.14 Maskable External Breakpoint Exception (0x01E00)
	6.11.15 Non-Maskable External Breakpoint Exception (0x01F00)

	INSTRUCTION TIMING
	7.1 Instruction Flow
	7.1.1 Instruction Sequencer Data Path
	7.1.2 Instruction Issue
	7.1.3 Basic Instruction Pipeline

	7.2 Execution Unit Timing Details
	7.2.1 Integer Unit (IU)
	7.2.1.1 Update of the XER During Divide Instructions

	7.2.2 Floating Point Unit (FPU)
	7.2.3 Load/Store Unit (LSU)
	7.2.3.1 Load/Store Instruction Issue
	7.2.3.2 Load/Store Synchronizing Instructions
	7.2.3.3 Load/Store Instruction Timing Summary
	7.2.3.4 Bus Cycles for String Instructions
	7.2.3.5 Stalls During Floating-Point Store Instructions

	7.2.4 Branch Processing Unit (BPU)

	7.3 Serialization
	7.3.1 Execution Serialization
	7.3.2 Fetch Serialization

	7.4 Context Synchronization
	7.5 Implementation of Special-Purpose Registers
	7.6 Instruction Execution Timing
	7.7 Instruction Execution Timing Examples
	7.7.1 Load from Internal Memory Example
	7.7.2 Write-Back Arbitration Examples
	7.7.3 Load with Private Write-Back Bus
	7.7.4 Fastest External Load Example
	7.7.5 History Buffer Full Example
	7.7.6 Store and Floating-Point Example
	7.7.7 Branch Folding Example
	7.7.8 Branch Prediction Example

	DEVELOPMENT SUPPORT
	8.1 Program Flow Tracking
	8.1.1 Indirect Change-of-Flow Cycles
	8.1.1.1 Marking the Indirect Change-of-Flow Attribute
	8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribute

	8.1.2 Instruction Fetch Show Cycle Control
	8.1.3 Program Flow-Tracking Pins
	8.1.3.1 Instruction Queue Status Pins
	8.1.3.2 History Buffer Flush Status Pins
	8.1.3.3 Flow-Tracking Status Pins in Debug Mode
	8.1.3.4 Cycle Type, Write/Read, and Address Type Pins

	8.1.4 External Hardware During Program Trace
	8.1.4.1 Back Trace
	8.1.4.2 Window Trace
	8.1.4.3 Synchronizing the Trace Window to Internal CPU Events
	8.1.4.4 Detecting the Trace Window Starting Address
	8.1.4.5 Detecting the Assertion or Negation of VSYNC
	8.1.4.6 Detecting the Trace Window Ending Address

	8.1.5 Compress

	8.2 Watchpoint and Breakpoint Support
	8.2.1 Watchpoints
	8.2.1.1 Restrictions on Watchpoint Detection
	8.2.1.2 Byte and Half-Word Working Modes
	8.2.1.3 Generating Six Compare Types
	8.2.1.4 I-Bus Support Detailed Description
	8.2.1.5 L-Bus Support Detailed Description
	8.2.1.6 Treating Floating-Point Numbers

	8.2.2 Internal Breakpoints
	8.2.2.1 Breakpoint Counters
	8.2.2.2 Trap-Enable Programming
	8.2.2.3 Ignore First Match

	8.2.3 External Breakpoints
	8.2.4 Breakpoint Masking

	8.3 Development Port
	8.3.1 Development Port Signals
	8.3.1.1 Development Serial Clock
	8.3.1.2 Development Serial Data In
	8.3.1.3 Development Serial Data Out

	8.3.2 Development Port Registers
	8.3.2.1 Development Port Shift Register
	8.3.2.2 Trap Enable Control Register

	8.3.3 Development Port Clock Mode Selection
	8.3.4 Development Port Transmissions
	8.3.5 Trap-Enable Input Transmissions
	8.3.6 CPU Input Transmissions
	8.3.7 Serial Data Out of Development Port — Non-Debug Mode
	8.3.8 Serial Data Out of Development Port — Debug Mode
	8.3.8.1 Valid Data Output
	8.3.8.2 Sequencing Error Output
	8.3.8.3 CPU Exception Output
	8.3.8.4 Null Output

	8.3.9 Use of the Ready Bit

	8.4 Debug Mode Functions
	8.4.1 Enabling Debug Mode
	8.4.2 Entering Debug Mode
	8.4.3 Debug Mode Operation
	8.4.4 Freeze Function
	8.4.5 Exiting Debug Mode
	8.4.6 Checkstop State and Debug Mode

	8.5 Development Port Transmission Sequence
	8.5.1 Port Usage in Debug Mode
	8.5.2 Debug Mode Sequence Diagram
	8.5.3 Port Usage in Normal (Non-Debug) Mode

	8.6 Examples of Debug Mode Sequences
	8.6.1 Prologue Instruction Sequence
	8.6.2 Epilogue Instruction Sequence
	8.6.3 Peek Instruction Sequence
	8.6.4 Poke Instruction Sequence

	8.7 Software Monitor Support
	8.8 Development Support Registers
	8.8.1 Register Protection
	8.8.2 Comparator A–D Value Registers (CMPA–CMPD)
	8.8.3 Comparator E–F Value Registers
	8.8.4 Comparator G–H Value Registers (CMPG–CMPH)
	8.8.5 I-Bus Support Control Register
	8.8.6 L-Bus Support Control Register 1
	8.8.7 L-Bus Support Control Register 2
	8.8.8 Breakpoint Counter A Value and Control Register
	8.8.9 Breakpoint Counter B Value and Control Register
	8.8.10 Exception Cause Register (ECR)
	8.8.11 Debug Enable Register (DER)

	INSTRUCTION SET
	9.1 Instruction Formats
	9.1.1 Split Field Notation
	9.1.2 Instruction Fields
	9.1.3 Notation and Conventions

	9.2 RCPU Instruction Set

	INSTRUCTION SET LISTINGS
	MULTIPLE-PRECISION SHIFTS
	FLOATING-POINT MODELS AND CONVERSIONS
	C.1 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word
	C.2 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word
	C.3 Floating-Point Models
	C.3.1 Floating-Point Round to Single-Precision Model
	C.3.2 Floating-Point Convert to Integer Model

	C.4 Floating-Point Convert from Integer Model

	SYNCHRONIZATION PROGRAMMING EXAMPLES
	D.1 General Information
	D.2 Synchronization Primitives
	D.2.1 Fetch and No-Op
	D.2.2 Fetch and Store

	D.3 Fetch and Add
	D.3.1 Fetch and AND
	D.3.2 Test and Set

	D.4 Compare and Swap
	D.5 List Insertion

	SIMPLIFIED MNEMONICS
	E.1 Symbols
	E.2 Simplified Mnemonics for Subtract Instructions
	E.2.1 Subtract Immediate
	E.2.2 Subtract

	E.3 Simplified Mnemonics for Compare Instructions
	E.4 Simplified Mnemonics for Rotate and Shift Instructions
	E.5 Simplified Mnemonics for Branch Instructions
	E.5.1 BO and BI Fields
	E.5.2 Basic Branch Mnemonics
	E.5.3 Branch Mnemonics Incorporating Conditions
	E.5.4 Branch Prediction

	E.6 Simplified Mnemonics for Condition Register Logical Instructions
	E.7 Simplified Mnemonics for Trap Instructions
	E.8 Simplified Mnemonics for Special-Purpose Registers
	E.9 Recommended Simplified Mnemonics
	E.9.1 No-Op
	E.9.2 Load Immediate
	E.9.3 Load Address
	E.9.4 Move Register
	E.9.5 Complement Register
	E.9.6 Move to Condition Register

	INDEX
	�–A–
	–B–
	–C–
	–D–
	–E–
	–F–
	–G–
	–H–
	–I–
	–L–
	–M–
	–N–
	–O–
	–P–
	–R–
	–S–
	–T–
	–U–
	–V–
	–W–
	–X–
	–Z–

