SynDEx v7 User Manual

Julien Forget, Christophe Gensoul, Maxence Guesdon
Christophe Lavarenne, Christophe Macabiau,
Yves Sorel, Cécile Stentzel

April 8, 2011

Contents

21

22

22

23

23

23

26

26

26

26

26

27

27

27

27

27

27

28

28

28

29

29

29

29

29

31

5.4 To modify an algorithm definition or a referencd 31
B.41 Modify a definitiond 31
.42 Modify areferencd 31
b5.5__To delete an algorithm definitiod L L 31
i i i itiod 33

i INdowl e e e e e 33

£.6.2 The code editor macro languagd 33
[Names translation macrod 34

Quoting macrod 34

5.63 The code editor shorteutd 34
5.7 To build multi-periodic applicationd 35
DMultiple or equal periodd 35
[Hierarchical referenced 35

[Edit the period of an operatiod 36
Adequation o o v oo 36
6__Architecturd 37
Bl Operatol . . . oo 37
I6.1.1 _To create an operator definitiod 37
6.1.2 To modify an operator definitior 37
Gated 38

Duationd 38

ICode generationphased L 38

.13 To delete an operator definitiod 38

6.2 Communication medinmd 39
6.2.1 To create a medinm definitiod 39
6.2.2 To modify a medinm definitiod 39

Introduction

This manual uses some writing conventions:

e menus, buttons etc. are written in bold

(e.g. File menu, OK button, Definition list, Launch Adequation option),

e SynDEx directories and files, examples etc. are written in Computer Modern

(e.g. libs directory, examples/tutorial/example7/example7_sdc.sdx file, ! int o port definition),

e notions, windows, etc. are written in italic:
(e.g. AAA methodology, reference, definition mode, algorithm window).

Chapter 1

Overview

1.1 The AAA methodology

SynDEXx is based on the AAA methodology (cf. chapter [2).
A SynDEx application is made of:

e algorithm graphs (definitions of operations that the application may execute),

e architecture graphs (definitions of multicomponents: set of interconnected processors and specific
integrated circuits).

Performing an adequation means to execute heuristics, seeking for an optimized implementation of a
given algorithm onto a given architecture.

An implementation consists in:

e distributing the algorithm onto the architecture (allocate parts of algorithm onto components),

e scheduling the algorithm onto the architecture (give a total order for the operations distributed
onto a component).

1.2 SynDEx distributions

SynDEx runs under Linux, Windows, and Mac OS X platforms. SynDEx is written in Objective Caml.
The Graphical User Interface is written in Tcl/Tk with the OCaml library CamlTk. See chapter [for
web links.

Chapter 2

Getting started

2.1 Application workspace

2.1.1 Launching SynDEx

SynDEx is launched by running the SynDEx executable, located in the directory bin of your installation
directory. Some options can be specified on the command line, for example :

e -1libs adds a directory where to find libraries to include (see chapter Bl),

e -html specifies the path of the internet browser that displays the manual and tutorial html docu-
mentations from the Help menu. The url to open is appended at the end of the specified command.
You can also try to use %s in the specifed command to make SynDEx replace this %s by the url in
the command. In this case do not forget to put the command between “” .

The complete list of options can be obtained by running the SynDEx executable with the --help
option.

For example write the command line:
> /syndex-7.0.x/bin/syndex-7.0.x -libs /syndex-7.0.x/libs -html /usr/bin/firefox appli.sdx

In this example the libraries directory and the web browser used to display the manuals are specified
on the command line. In addition, the name of an application to open is also specified, otherwise only
the main window is opened.

2.1.2 SynDEx main window

To create an application workspace, run the SynDEx executable without the name of an application. It
opens the main window of SynDEx (c¢f. figure EZTI).

2.1.3 Load a SynDEx application

To load an existing application in the workspace, from the File menu, choose the Open option and select
a SynDEXx file (¢f. figure Z2). For example load the /syndex-7.0.x/examples/basic/basic.sdx example.

2.1.4 Algorithm and architecture windows

Loading a SynDEx application will open:

e the algorithm window on the main algorithm if it have been defined (c¢f. figure Z3]),

e the main architecture window if the main architecture have been defined (cf. figure B4).

File Options Algorithm Architecture Constraints Adequation Code Help

Figure 2.1: SynDEx main window

Opening another application will replace the current one by the new one in the workspace.

‘Warning: some application may require libraries (cf. Chapter Bl).

2.2 Modes

In the algorithm window, the adress bar displays AlgorithmMain (main) meaning that the main algorithm
is viewed in the main mode (cf. section EEI). Double click on AlgorithmMain in the Definition list.
The algorithm is now viewed in its definition mode and the adress bar displays [Function] AlgorithmMain.
See section BTl for more information.

Note that one can be several algorithms and architectures but only one main algorithm and one main
architecture on which the adequation will be applied.

2.3 Adequation and code generation

To launch the adequation of the main algorithm (c¢f. Main mode in section BIl) onto the main archi-
tecture (cf. section B33), from the Adequation menu, choose the Launch Adequation option. To
view the computed schedule, from the Adequation menu, choose the Display Schedule option. See
chapter [for more information.

To generate the code of the application, from the Code menu, choose the Generate Executive(s)
option. The generated .m4 files are saved in the example’s directory. To view theses files from the
SynDEx workspace, from the Code menu, choose the Display Executive(s) option. See chapter [
for more information.

2.4 Save, Close, Quit

To save the current application, from the File menu, choose the Save option. To save it with a new
name, choose the Save as option and type the new name in the dialog window. The file will be suffixed
by .sdx.

10

File | Options Algorithm Architecture Constraints Adequation Code Help

Open Ctr-0
Save Cti-3
Save as

Close

Included Libraries -
Specify Library Directories

Quit Ctd-Q

=~

=~

Figure 2.2: Open a file

To close the current application, from the File menu, choose the Close option. It closes all the
application windows and leaves the workspace empty.
To quit SynDEx, from the File menu, choose the Quit option.

11

|Algorithmbdain (main)

Definition list:

Double-click to open | & &) [A]

Drag and drop to reference

| Algorithmain K

Up In Main | Main | History

finput
foutput

calc
bt {ora

- i
Definition Properties:
Hame m =
Description |
Parameters
Values
i

Figure 2.3: Algorithm window in examples/basic/basic.sdx

Window Edit |
[medium_sammp (MediumSamivtiFoing B
ut (Uiny (main) u2 (Liny u3 {Uoufy
3 3 »
¥ ¥ g
Z Z

Sy
K =

Figure 2.4: Main architecture window in examples/basic/basic.sdx

Chapter 3

Libraries

3.1 To use libraries

To create a new application you may want to use pre-defined algorithm or architecture definitions. These
are global definitions (vs. local definitions from the current application).

From the File menu of the main window, choose the Specify Library Directories option. Then
click on the Add button of the dialog window and select the target directory. For example, specify the
SynDEx 1ibs directory and the examples/basic_with_library/basicLibraries directory.

To include a library in an application in order to make references to the objects it contains, from the
File menu of the main window, choose the Included Libraries option. Then check the target library.
Uncheck an already included library to un-include it, provided there are no references in your application
on definitions from this library.

3.2 To create a library
To create a library of algorithm or architecture definitions, you must create a .sdx file containing the

definitions you need. Libraries may be located in the 1libs directory, at the root of your installation
directory. Or you will have to specify their location to the SynDEx application (c¢f. section BI).

13

Chapter 4

Using the interface

4.1 Selection

Selection may be applied to vertices or edges of both algorithm or architecture graphs.

Click on a vertex (resp. an edge). Red squares appear on its borders, meaning that the vertex (resp.
the edge) is selected. To select multiple vertices and/or edges, use the shift key. To select a set of
vertices and/or edges, use the left button of the mouse while dragging it, in order to draw a square when
the button is released. Vertices inside or intersecting the square are selected.

To move a selection, click on a vertex of the selection. Then drag it until the target position and
release the mouse. To cancel a selection click outside the selection.

Contextuals menus are available on selections (cf. section E3).

4.2 Zoom

Zoom may be applied to architecture (cf. chapter @) and schedule windows (cf. section @6) by moving
the zoom cursor on the border of these windows.

4.3 Contextual menus

Some contextual menus are available in SynDEx. Contextual menus mainly include edition commands
(Copy, Cut, Paste, Delete).

Algorithm window

In the algorithm window, right click on the background of an algorithm definition window. It opens a
contextual menu on the target definition. Click on a vertex (function, delay, sensor, actuator, constant)
of an algorithm graph. Red squares appear. Then right click the mouse. It opens a contextual menu
on the target reference.

The Activate Info Bubbles option displays additionnal information when pointing the cursor at a
vertex of any algorithm graph.

Architecture window

In an architecture window, right click on the background or click on the Edit menu. It opens a contextual
menu on the target definition. Click on a vertex (operator, communication medium) of an architecture
graph. Red squares appear. Then right click the mouse. It opens a contextual menu on the target
reference.

14

4.4 Contextual information

When the cursor points at an object of an algorithm (cf. chapter H), an architecture (cf. chapter Bl) or
a schedule window (cf. section [LH), information is displayed in the main window.

By default information is not kept when switching between objects. The new information overwrites
the older one. To change this behaviour and keep all the information, from the Options menu of the
main window, check Keep Information in the Main Window. This is for instance useful when the
information displayed does not fit in the window, which requires to scroll the main window.

4.5 To find an object

Looking for a vertex, from which you now the name, in a complex graph can become rather tedious.

Architecture window

In the architecture window (cf. chapter@l), from the Edit menu, choose the Find Operator Reference
or Find Medium Reference option to locate a vertex of your graph by its name. It opens a window
listing all the vertices of your graph. Double clicking on one of them will select it.

Schedule window

In the schedule window (cf. section LH), from the Edit menu, choose the Find Operation option to
locate an operation of your graph by its name. It opens a window listing all the operations of your graph.
Double clicking on one of them will select it.

4.6 Refresh

To refresh an architecture window, from its Window menu, choose the Refresh option. If necessary,
re-open the algorithm window (cf. Algorithm window in chapter H) to refresh it.

15

Chapter 5

Algorithm

A AA methodology

In the AAA methodology, an algorithm is specified as a directed acyclic graph (DAG) infinitely repeated.
Directed means that for each edge representing a relation between vertices, the vertices tuple is ordered,
i.e. its first element is the source vertex and the other one(s) is(are) the destination vertex(vertices).

Still in AAA, SynDEx algorithm vertices are operations; operation stands for a sequence of instruc-
tions which starts after all its input data are available and produces all its output data at the end of the
sequence. Edges are dependences between two vertices.

Definition vs. reference

In SynDEx there is a distinction between algorithm definition and algorithm reference. To each reference
corresponds one and only one definition. To a given definition may correspond several references. A
definition is a DAG similar to those in AAA, except that vertices are references or ports.

To a given reference contained in a definition corresponds a definition which may contain itself several
references and so on.

Atomic or hierarchical definitions

In SynDEx, algorithms can be defined through hierarchy. A definition is said hierarchical when it
defines an algorithm which contains at least one dependence (and possibly references), otherwise it is
said atomic.

There are five types of atomic definitions: functions read data on input ports, execute instructions
without any side-effect, write data on output ports, sensors are input vertices of the DAG producing
data from a physical sensor, actuators are output vertices of the DAG consuming data for a physical
actuator, constants are input vertices of the DAG, with null execution time, delays memorize data
during one or several infinite repetition of the DAG, for use in next repetitions. These types are detailed
in section Bl

A definition is said explicitly hierarchical when the algorithm contains at least one dependence (and
possibly references). This includes conditioning (cf. section B2, repetitions (cf. section B3) of hier-
archical definitions, and more generally definitions defined through several levels of hierarchy. Only a
function may be defined through ezplicit hierarchy.

A definition is said implicitly hierarchical when the algorithm does not contain any dependence and
yet will be transformed by SynDEx, for the adequation, into a graph which contains dependences. This
happens only with repetitions (cf. section BE3) of atomic definitions.

Warning: A hierarchical definition does not have to wait for all its input data to be available before
starting some computations. Indeed, parts of the algorithm graph of a hierarchical algorithm definition
may only require parts of the input data of the definition and therefore can start as soon as this part
is available (and not all the data). In the same way, some data may be produced before the end of the
complete sequence of computations.

16

Dependences

There are two types of dependences:

e data dependence: data communication and execution precedence,

e precedence dependence: execution precedence only.

A data dependence imposes that the reference at the source of the dependence, produces data and
is executed before the reference at the destination of the dependence, which consumes the data. A
precedence dependence only imposes an execution order between references, no data is produced or
consumed.

Algorithm window

Definitions and references are managed through an algorithm window. If necessary it is possible to open
several algorithm windows.

File Options Algorithm | Architecture Constraints Adequation Code Help
Hew Algorithm Window CtH-H

Define Operation Group

Figure 5.1: Algorithm / New Algorithm Window

From the Algorithm menu, choose the New Algorithm Window option (¢f. figure Bl). It
opens the edition window for algorithm definitions (c¢f. figure B2). Click on the background of a
definition window: the algorithm window shows its Definition Properties. Click on a reference in
this definition window: the algorithm window shows its Reference Properties. These definition or
reference properties appear in the left bottom part of the algorithm window (¢f. figure B4 for definition
properties and figure 1 for reference properties).

5.1 To create an algorithm definition

Types of definitions
SynDEx distinguishes five types of definitions with different edition rules:

e a function is a general abstraction with no edition restriction: it can contain dependences, references
and ports;

17

Up In Main | Main | History
Definition list: (A

Double-click to open @@

Drag and drop to reference

=~

Empty selection

=~

Figure 5.2: Algorithm Window

e a sensor is an abstraction of a physical device producing data: it can only contain output ports;

an actuator is an abstraction of a physical device consuming data: it can only contain input ports;

a constant is a an abstraction of a typed value: it can only contain one output port producing that
value. For convenience, the value hold by the constant can be given as a parameter to the constant
definition. Note that this is only possible for values that are representable within the parameter
language: integer, float, string and list of such values. SynDEx standard library uses this trick
to define constants for the library base types (int, float, ...). For example, the cst definition of
the int library has one parameter: List0fValues;

a delay is an abstraction of a memory region: it must contain one input port (the write port) and
one output port (the read port) of the same type, but nothing more. Delays hold the state of a
SynDEx application. Using delays is the only way to propagate data from one iteration of the
application to the next. A delay must be initialized, either by using a parameter (as suggested
above for constant definitions) or lately in the real world code (as for constant definitions, doing it
in the code is the only alternative for delays holding values of complex types). SynDEx standard
library defines delays for its base types as shift registers with two parameters: the first one is a
list of initial values and the second one is the delay range. The delay range is the size (in number
of items) of the register. For example, the delay definition of the int library has two parameters:
listInit and nbDelay.

New definition

To create a new definition, in the algorithm window, click on the 4+ green button. It opens a dialog
window in which you can select the definition’s type. For example check Sensor (c¢f. figure E3). Type
the name of the new sensor and optionally a list of parameters. For example type input. Then click
OK. It creates a definition of sensor named input.

Parameters are local to the scope of a definition. Often, parameters are used to create more generic

definitions. For example, to parameterized the size of a definition’s ports, we can create a parameterized
definition with one parameter standing for the port size. Parameter names are given as a semi-colon

18

Hew Sensor Definition

syntax help

«- Function .. Delay 4% Sensor .. Actuator .. Constant

5 | &= |

Figure 5.3: Definition of a sensor

separated list between < and >, following the definition’s name. The user can also edit the parameters
list in the Definition Properties. Only the main algorithm (cf. section EETIl) can instanciate its
parameters thanks to its field Values in its Definition Properties (cf. figure BJ).

5.1.1 Definition mode and main mode

This section refers to section

Definition mode

|
[Function Up In Main | Main | History
Definition list: S

Double-click to open @@

Drag and drop to reference

1A

B

fidain
intiArit_add
intiArit_div

B\
int/Arit_minus EH
int/Arit_mod
intiArit_mul EH {o]
intiArit_sub

int/Bit_and EH

int/Bit_Ish
int/Bit_not
int/Bit_or c
int/Bit_rsh

int/Bit_xor

int/Log_and
int!l nnn Pn /
] -
Definition Properties:

Hame C

Y=l

Description
Parameters

-~

Figure 5.4: C definition in examples/hierarchy/hierarchy.sdx

Double click on a definition name in the Definition list (e.g. open the examples/hierarchy/hierarchy.sdx
application and double click on ¢ in the Definition list). You are now in a definition mode (cf. figure
B)). From a definition mode, to open the definition corresponding to a reference in order to inspect and
possibly modify its content, click on the target reference to select it. Red squares appear on its borders
(¢f. figure BEH). Then double click on it. It displays the definition of the target reference (cf. figure

BE5).

Main mode

To define an algorithm as main, right click on the background of the target definition window. Choose
the Set As Main Definition option (¢f. figure BT). The color of the background changes and the

19

[[Function] ¢ Up In Main | Main | History
Definition list: (A

Double-click to open @@

Drag and drop to reference

IA

/B

frain
int/Arit_add
intiArit_div
int/Arit_minus
int/Arit_mod
int/Arit_mul
int/Arit_sub
int/Bit_and
int/Bit_Ish
int/Bit_not
int/Bit_or
int/Bit_rsh
int/Bit_xzor
int/Log_and
int/l nn Ao Y

~

Reference Properties:

o[]
EH t

ViV
:

=~

Hame Bl
Parameters

Repeat 1
Period 0
Ahstract |

=~

Figure 5.5: Opening B1 reference in examples/hierarchy/hierarchy.sdx

adress is changed from a [Function] to a (main), meaning that you are now in the main mode on the
main algorithm (cf. figure BF). Note that the main algorithm must be at the root level of a hierarchy; it
can not contain unconnected ports. Only the main algorithm can instanciate its parameters (cf. section
B thanks to its field Values in its Definition Properties (cf. figure BJ).

Click on the Main button of the algorithm window. It displays the main algorithm in the main mode.
Click on a hierarchical reference to browse down the main algorithm (e.g. click on the ¢ reference of
Main then click on the B2 reference of). Then click on Up In Main to browse up the main algorithm.

Hierarchy

Now you may construct a graph with references to constants, sensors, actuators, delays and functions.
If this definition is intended to be referenced in an explicit hierarchy, i.e. this reference will belong to
a certain level of hierarchy (possibly a leaf), you must use input and output ports. If this definition
is intended to be referenced at the root level of the hierarchy, input ports are replaced by sensors and
output ports are replaced by actuators.

References to an explicitly hierarchical definition are displayed with a double-border (in the figure B4l
B1 is a reference on an ezxplicitly hierarchical definition contrary to add).

5.1.2 To create a port in a definition

Ports are communication interface of a definition with the outside world.

Types of ports
SynDEx distinguishes three types of ports:

e an input port represents a data that is provided by the outside world to the definition;

e an output port represents a data that is provided by the definition to the outside world;

20

[[Function] B Up In Main | Main | History
Definition list: (A

Double-click to open @@

Drag and drop to reference

IA

e |
iC

frain

int/Arit_add

intiArit_div

int/Arit_minus

int/Arit_mod

int/Arit_mul

int/Arit_sub

int/Bit_and

int/Bit_Ish

int/Bit_not

int/Bit_or

int/Bit_rsh [1o]
int/Bit_xzor
int/Log_and
int/l nn Ao /
]

Definition Properties:
Hame B

=~

Description
Parameters

=~

Figure 5.6: B definition in examples/hierarchy/hierarchy.sdx

e an input/output port can be seen as a reference (or pointer) to a data provided by the outside
world that the definition can modify in place. This explains the name of input/output ports: we
can read the value of the port and replace it by a new one.

New port

To create a port in an atomic definition (cf. chapter E):

e in the definition mode (cf. section B, right click on the background and choose the Create
port option For example create a new definition named input and create a port in this definition

(cf. figure B3

e it opens a dialog window in which you can type the port direction, type, name and optionally its
size. You can click on the syntax help link for more information. For example type ! int o,
then click OK (c¢f. figure BI0);

e it creates the target port. In this example, the new port is an integer output port named o (cf.
figure BIT)) in the definition window.

You can undo and redo this action, right click on the background and choose the Undo, Redo
options.
A port definition has the following syntax:

port_definition ::= direction type [[size]] name
direction ::=7 | ! | &
where:

e ? specifies an input port,
e ! specifies an output port,

e & specifies an input/output port.

21

[[Function] main Up In Main | Main | History
Definition list: S

Double-click to open @@

Drag and drop to reference
IA
/B
fC

int/Arit_add
intfArit_div
intfArit_minus
intfArit_mod
intfArit_mul

intfArit_sub ©
int/Bit_and Activate Info Bubbles

int/Bit_Ish g i Postscript

int/Bit_not —

A - c
int/Bit_or Create Condition
int/Bit_rsh

int/Bit_xor
int/Log_and
int/Log_eq Add dependence
intfLog_gt
intilog_It fuld reference
int/Log_ne ¥i
] Set As Main Definition
Definition Properties:
o P e— Ports Order
Hame Main
o Description -
Description . /
- Durations LES
Parameters
Edit code pt ii
Values Edition of the associated source code S
/!

Figure 5.7: Set Main definition as main algorithm in examples/hierarchy/hierarchy.sdx

Hint: you can create several ports in one breath by simply putting several port definitions in a row
in the dialog window.

definition ::= { port_definition }

Ports order

If you plan to generate code, it is necessary to specify an order for ports which is consistent with the
declaration of the corresponding executable function. To specify the ports order, right click on the
background and choose the Ports Order option.

Input/output ports

Input-output ports have a very specific behavior concerning data memory allocation in the executives
generated by SynDEx. For any application, SynDEx makes data buffer allocations for (and only for)
the output ports of the atomic references of your algorithm graph. Input-output ports do not cause
an allocation but instead an alias on the output port of its predecessor. The operation containing this
input-output port directly modifies the value of its predecessor port (side-effect). This is useful to avoid
reallocation of big data buffers of the same type (for instances images) by making successive computa-
tions on the same data buffer.

However, as side-effects are not supposed to happen in data-flow graphs, this comes with some
restrictions:

e Ports of delay definitions can not be input/output ports,

e Ports of hierarchical definitions can not be input/output ports,

22

[Main fmainy Up In Main | Main | History
Definition list: j

Double-click to open @@

Drag and drop to reference
1A
B
fC

int/Arit_add
intiArit_div
int/Arit_minus
int/Arit_mod
int/Arit_mul
int/Arit_sub C

int/Bit_and .

int/Bit_lsh

int/Bit_not —

int/Bit_or
int/Bit_rsh
int/Bit_xor
int/Log_and

int/Log_eq
int/Log_gt
int/Log_It
int/Log_ne 7
Definition Properties:
Hame Main

Description
Parameters
Values

V=l

Figure 5.8: Main mode in examples/hierarchy/hierarchy.sdx

e The data of an input/output port can not be diffused: if there is a dependence A.o --> B.io (where
A.o is an output port and B.io is an input/output port), neither A.o nor B.io can be diffused (cf.

section BZTI).

5.1.3 To create a reference in a definition

A reference can be thought as a call to a function in a traditional programming language. Here the called
function is an algorithm definition.

New reference

To reference a definition (e.g. myReferencedDef) into another one (e.g. myDefinition), set the algorithm
window in definition mode on myDefinition (c¢f. section BILT]). Then drag and drop myReferencedDef
from the Definition list to the definition window (or select myReferencedDef in the Definition list,
right click on the background of the definition window, and choose the Create reference option). It
opens a dialog window. Type the name of the reference (e.g. myReference). See figure BT to see the
result.

Parameterized definitions

To reference a parameterized definition, a valued expression is required for each parameter. This can be
done by typing a semi-colon separated list of expressions between < and > after the reference’s name,
in the dialog window. Note that the number of expressions must match the number of parameters of the
referenced definition, and that types must match.

23

|[Zensor] input

Up In Main | Main | History

Definition list:

Double-click to open @@

Drag and drop to reference

pnput [N

Definition Properties:

Hame mput—
Description
Parameters

Undo "Add definitions"
Redo

Cir-2
CtH-Shift-Z2

Copy

Cut

Paste

Delete

Extract as superblock

Cin-C
Cin-X
Cin-v
Delete

Activate Info Bubbles
Postscript

Create Condition
Delete Condition

Add dependence
Add port

Add reference

Set As Main Definition

Forts Order

Description

Durations

Edit code phases

Edition of the associated source code

&

=~

=

Figure 5.9: Contextual menu — Create port

Create Port:

Jlint o

ok |

ayhitax help

Cancel |

Figure 5.10: Name of the new port

24

I|[Sen

0] input

Definition list:

Double-click to open
Drag and drop io reference

ot _________|IN

E(E

V=l

Defini
Name

Description
Parameters

tion Properties:

Up In Main | Main | History

A

input

Figure 5.11: A definition after port creation

I|[Functi

or] myDEfinition

Definition list:

Double-click to open
Drag and drop io reference

‘my Definition S

ImyReferencedDef

Up In Main | Main | History

E(E

|

Hame

Repeat
Period

Parameters

Reference Properties:

myReference

i [o

A

myReference

e

Figure 5.12: A reference to myReferencedDef into myDefinition

25

5.1.4 To create a dependence in a definition

A dependence is a directed edge connecting a producer operation to one or several consumer operations.
As such, it specifies an execution order relation between two references used in a definition.

SynDEx distinguishes two types of dependences: data dependences and precedence dependences
(without data) (¢f. introduction of chapter H). SynDEx automatically creates the right type of depen-
dence depending on the context:

e To create a data dependence in a definition between two references, point the cursor at an output
port (little black rectangle) of the source, middle click (or Ctrl left click), then drag and drop
on an input port (little black rectangle) of the destination (or right click on the background, and
choose the Add dependence option). The source and destination of a data dependence can also
be ports: this is used to read a data from (resp. write a data to) the outside world. Note that for a
given non-atomic definition, all output ports must be in dependence with input ports: all outputs
must be defined;

e To create a precedence dependence in a definition between two references, point the cursor at an
output precedence port (little black rectangle) of the source, middle click (or Ctrl left click), then
drag and drop on an input precedence port (little black rectangle) of the destination. Input (resp.
output) precedence ports are represented by little black squares at the left (resp.right) of the boxes
holding the reference names.

5.1.5 To create a superblock

A superblock is a set of operations, edges and ports extracted as a new definition.

To create a definition as a superblock, select the target set of operations, edges and ports you want
to extract (¢f. section EIl). Then right click and choose the Extract as superblock option. A new
definition is created and a reference to this definition replaces the selected set. The new definition is
available in the Definition list, You can rename both the definition and the reference.

You can undo and redo this action.

5.1.6 To create an abstract reference

An abstract reference is a reference to a hierarchical definition in which the hierarchy is not taken into
account, i.e. the flattening (cf. section H) does not go into the hierarchical referenced definition that
becomes therefore abstract. However, note that to perform the adequation this definition must have a
duration.

To create an abstract reference, select the desired hierarchical reference then, check the option Ab-
stract in the Reference properties of this reference.

You can undo and redo this action.

5.2 To condition an algorithm definition

First make sure that the target definition contains an input port of type int for the conditioning port.
Note that the SynDEx libs directory already provides an int library for operations on integer values.

New condition

Right click on the background of the definition window and choose the Create Condition option. It
opens a dialog window for the new condition. A condition is a port = value expression where port is
the name of the conditioning port and value is an integer. A new tab is created for the given condition.
The conditioning port is now yellow colored (cf. figure BI3)).

If necessary, refresh the algorithm window (cf. section EH).

26

[[Function] switche(cond = 3) Up In Main | Main | History

Definition list:

Double-click to open |g‘g Econd =1 '} { cond = 2 '} J/cond = SVcond = 4\

Drag and drop to reference

A

fconditioned
int/Arit_add
int/Arit_div
int/Art_minus
int/Arit_mod
int/Arit_mul
int/Arit_sub
int/Bit_and o]
int/Bit_Ish] W
int/Bit_not
int/Bit_or EH
int/Bit_rsh
int/Bit_xor -

= 2
int/Log_and
int/Log_eq
intfLog_gt
intfl nn It /|
Definition Properties:
Hame switch

=~

Description
Parameters

=~

Figure 5.13: switch definition mode for cond = 3 in examples/condition/simpleCondition/simpleCondition.sdx

Remarks

Note that there can be only one conditioning port. You have to construct one sub-graph per condition
(¢f. figure BI3)). For each other value of the conditioning port, the result is unspecified and will be
inconsistent.

CondI and CondO vertices

The adequation and the code generation will take into account the expanded graph (cf. section).
SynDEx will introduce new vertices during the expansion: Condl and CondO vertices.

A Condl vertex consumes the conditioning data and connects the input ports of the conditioned
operation according to its value.

A CondO vertex consumes the conditioning data and connects the output ports of the conditioned
operation according to its value.

References

In a definition mode (cf. section BLl), references to conditioned definitions have their conditioning port
yellow colored (cf. figure BI4).

Delete a condition

Right click on the background of the definition window and choose the Delete Condition option.

5.3 To repeat an algorithm definition

5.3.1 Diffuse, Fork, and Join

You can create a reference to a definition, and connect to its input (resp. output) ports some output
(resp. input) ports with different sizes. The pre-condition is to have a unique common multiple between
each pair of ports of different sizes. This multiple is the repetition factor of the reference.

27

[[Function] conditioned Up In Main | Main | History
Definition list: (A

Double-click to open @@

Drag and drop to reference

‘conditioned

swilch
cond [0 [F——— =

Definition Properties:
Hame conditioned

Description |A simply cor
Parameters
Values

=~

Figure 5.14: conditioned definition mode in examples/condition/simpleCondition/simpleCondition.sdx

Multiplication of a vector by a scalar

Suppose that you want to specify the multiplication of a vector by a scalar giving a vector as result
(¢f. AlgorithmMainl in examples/tutorial/example4). You can specify it by repeating the multiplication
between two scalars instead of defining a new one. For example for N length vectors, you may specify
the repetition by N multiplications between scalars giving a scalar as a result (¢f. figure B2TH).

You have to:

create a definition parameterized by N,

e reference the multiplication on scalars mul,

e connect the output port of a scalar (e.g. s_input) to one of its input ports (e.g. mul.a),
e connect the output port of a vector (e.g. v_input) to the other input port (e.g. mul.b),
e connect its output port (mul.o) to the input port of a vector (e.g. v_output),

e set the repetition factor of mul to N: click on the mul reference, then type N in its Reference
Properties (¢f. Algorithm window in chapter H).
Repetition factor
The common multiple between each pair of ports with different sizes is N. It is the repetition factor that
you have to set explicitely by using a symbolic numbered expression.
Diffuse the scalar

Since the output port of s_input has the same size as its connected input port of the multiplication
function, it is replicated N times in order to be multiplicated by each element of v_input. This is a
Diffuse operation.

28

Function] Algorithmkdaind Up In Main Main | Histo
Lt P ry
Definition list: (A

Double-click to open @@

Drag and drop to reference

lralgorithmMain1 (A

fAlgorithmMain2
IAlgorithmMain3

fdp
fdpacc
finm

-
fonul 2 [0

fouty h |

fprodmatvec

floatsarit_add

float/Arit_div

float/Arit_minus
floatfArit_mul

float/fwit_sub

float/Bit_and

finat/Rit_Ish /|

\

=~

Definition Properties:
Hame Algarithmbda

Description |First algarithi
Parameters |

=~

Figure 5.15: AlgorithmMainl definition mode in examples/tutorial/exampled/exampled.sdx

Fork the vector

Since the function operates on scalars and the v_input vector has N elements, each of its elements are
provided separately in order to be multiplicated. This is a Fork operation.

Join the internal results

Since the function operates on scalars and the v_output vector has N elements, each repetition of the
multiplication is taken in order to be provided as a N elements vector. This is a Join operation.

Representation

The repetition factor is displayed next to the name of the reference (e.g. in the figure BT mul is repeated
N times). The main algorithm (e.g. AlgorithmMain3) instanciates its parameters (c¢f. figure i¥)). From
the main mode in examples/tutorial/exampled/exampled.sdx (cf. section BIl), double click on the
matprodvec reference, the dotprod reference is repeated three times (cf. figure BLI0).

Explode and Implode vertices

The adequation and the code generation will take into account the expanded graph (cf. section).
SynDEx will introduce new vertices during the expansion: Ezplode and Implode vertices.

An Ezplode vertex extracts for each repetition of a definition each element of the data it receives (cf.
subsections Diffuse and Fork).

An Implode vertex builds the data it sends by concatenating each separated element produced by
each repetition of the definition (cf. subsection Join).

5.3.2 Iterate

In some cases, you may want to repeat a reference but have no difference between port sizes.

29

Figure

examples/tutorial/example4/example4.sdx

|AIgor\thmMainSfmalpmdvec (main)

Up In Main | Main | History

Definition list: @@

Double-click to open
Drag and drop to reference
fAlgorithmMain
fAlgorithmMain2
fdp
fdpacc

fmul

fouty
fprodmatvec
float/Arit_add
float/Arit_div
float/Arit_minus
floatsArit_mul
float/Arit_sub
float/Bit_and
floatfBit_lIsh
float/Bit_not /

] -
Reference Properties:
Hame dotprod

daotprod(*3)

vl |dp
Ve

S

A

FParameters b

Y=l

Repeat a
Period 0
fAbstract |

Group Hone

-~

5.16:

matprodvec

main

mode

from

AlgorithmMain3

main algorithm

|[Function] dp

Up In Main | Main | History

Definition list:
Double-click to open
Drag and drop to reference

fAlgorithmMain
fAlgorithmMain2
fAlgorithmMain3

ap |
fdpacc

finm

fins

finv

fonul

fouty

fprodmatvec

floatsarit_add

floatfArit_div

float/Arit_minus

floatfArit_mul

float/Arit_sub

float/Bit_and

float/Bit_lsh

float/Bit_not ¥i

Definition Properties:
Hame dp

[e]e]

dpacc{®dp..)

A

Description |Multiplicatior

Y=l

Parameters |dpaccn

=~

Figure 5.17: dp definition mode in examples/tutorial/example4/example4.sdx

30

in

Multiplication of two vectors

Suppose that you want to specify the multiplication of two vectors giving a scalar as a result (¢f. figure
BETT). You can specify it by repeating the multiplication between two scalars, that used an accumulator
to store the partial sum. For example if for dpaccn length vectors, you may specify the repetition by
dpaccn multiplications between three scalars (the i element of the first vector, the i element of the second
one, and the accumulator, initialized to 0).

You have to:

e reference the multiplication on scalars with accumulator (e.g. dp),

e connect two vectors (e.g. vi and v2) to the scalar input ports of the multiplication,

e connect a {0} constant to the acc input port of the multiplication,

e connect the output port of the multiplication to a scalar (e.g. dp),

e connect the acc output port of the multiplication to its acc input port choosing an Iterate edge,

e repeat dpaccn times the multiplication (in the Reference Properties of the dpacc reference).

The accumulator is initialized with {0}. Then the output of the repetition i becomes the accumulator
of the repetition i+1. The output of the last repetition is the output of the repeated definition. This is
an [Iterate operation.

5.4 To modify an algorithm definition or a reference

5.4.1 Modify a definition

Double click on the definition name in the Definition List or double click on a reference from a
definition mode (cf. section BELLT]). It opeuns its definition window. Right click on the background of the
definition window. Choose the Create dependence option (¢f. section BIl), Create port (¢f. section
BET3), Create reference (c¢f. section ET3), Create Condition or Delete Condition (c¢f. section
B2) to modify the definition. Click on the background of a definition window (cf. Algorithm window in
chapter[). Use its Definition Properties to modify its Name, Description, Parameters or Values.

Note: You can modify local and global definitions (cf. sectionBl). Modifications on a global definition
impact only the current application and the library remains unchanged. To modify a global definition

over-all, open the corresponding SynDEx library file (e.g. libs/int.sdx). Modifications on a definition
in a library may have consequences on all the applications using this library.

5.4.2 Modify a reference

Click on a reference in a definition window (cf. Algorithm window in chapter H). Use its Reference
Properties to modify its Name, Parameters, Repeat or Period. For the period see the section 1
“To build mutli-periodic applications”.

5.5 To delete an algorithm definition
To delete a definition, in the algorithm window, click on the - red button.

Note: Deleting a global definition (cf. section Bl) impacts only the current application.

31

|[Functi0n] cany Up In Main | Main | History

Definition list: [A
Double-click to open @@ Undo "Set as main" CtH-7
Drag and drop to reference .
Redo CtH-Shift-£
falgo
falgoZ
Co CtH-C
har Py
Con Cut Cir-X
intiArit_add Pasie Cin-v
intfarit_div Delete Delete
intifuit_minus Extract as superblock
int/Arit_mod
int/firit_mul Activate Info Bubbles
int/Arit_sub j
int/Bit_and — i Postscript
int/Bit_lsh
int/Bit_not Create Condition
int/Bit_or Delete Condition
int/Bit_rsh
int/Bit_xor Add dependence
int/Log_and Add port
!nt.l'Lug_eq Add reference
int/Log_gt 7
}:| — Set As Main Definition
Definition Properties:
——— Ports Order —
Hame cony v
o Description =
Description . .~
tors [P Durations :T
elers 7 Edit code phases
Edition of the associated source code
/!
Figure 5.18: Edition of the conv code phases in examples/tutorial/example7/example7.sdx
|[Functi0n] cony Up In Main | Main | History
Definition list: (A
Double-click to open ol|le 7 - X
Dray and drop to reference DD Undo "Set as main CiH-Z)
Falgo Redo Cirl-Shift-Z2
ralgoz
har Copy Cird-C
cut cutx
intfArit_add Paste Cir-v
int/Arit_div Delete Delete
int/Arit_minus
int/Arit_mod Extract as superblock
intfArit_mul)
intiArit_sub Activate Info Bubbles
int/Bit_and — D Postscript
int/Bit_Ish
int/Bit_not Create Condition
int/Bit_or Delete Condition
int/Bit_rsh
int!Bit_xor Add dependence
int/Log_and Add port
intfLog_eq
intfLog_gt 7 Add reference
Set As Main Definition
Definition Properties:
Hame cany Ports Order
Description Lescrption]
P eters [PT Durations
Edit code phases
Edition of the associated source code
/!

Figure 5.19: Edition of the code associated with conv in examples/tutorial/example7/example? .sdx

32

Window Edit Type of Processor

init phase loop phase | end phase

ROUT (o) [0]=RIN{i) [0] *GPARANM (T) +APARAM (B ;
printf {"Loop phase of function $0 for default processor = %1i.%wn", BOUT{a) [0])]

QK Cancel

Figure 5.20: Code associated with conv in loop phase in examples/tutorial/example7/example7.sdx

5.6 To associate code with an algorithm definition

5.6.1 The code editor window

Right click on the background of a definition window. Choose the Edit code phases option (cf. figure
BETIR). Check init (resp. end) to generate code in the initialization phase (resp. ending phase).

Right click on the background of a definition window. Choose the Edition of the associated
source code option (¢f. figure ET9). It opens the code editor window on the initialization phase for
the selected definition. Click on loop phase (resp. end phase) to edit the code associated in the loop

phase (resp. ending phase) (c¢f. figure B20).

5.6.2 The code editor macro language

define (" example cors', " conw')
define (" conw', "1felse(
processorType , processorType , " 1felse(
MGG, " INIT', "~ printf ("Init phase of function $0 for default processor.wn"j;}''.
MGG, "LOOP', " " 34 [0]=83[0] *32+51;
printf ("Loop phase of function $0 for default processor = %i.%wn", $4[0]):'",
MGG, "END', " " printf {"End phase of function $0 for default processor. wn");:''1')')

Figure 5.21: M4 macro code for conv in examples/tutorial/example7/example7_sdc.sdx

From the Code menu of the main window, check Generate mdx files. At code generation
time, the code written in the code editor will be wrapped into Mj macro code, and outputed into

33

an application_name sdc.mdx file. These files contain one M4 macro definition per algorithm definition
(¢f. figure BEZI)). The code editor offers several macros to abstract away the M4 nature of the output
file. These macros are of two kinds: port and parameter names translation macros, and quoting macros
(¢f. macros directory).

Names translation macros

Parameter and port names of an algorithm definition are encoded as parameters of the corresponding
M4 macro. Because the M/ language uses positional parameters, when the user wants to refer to a
parameter or port in the associated code he has to know its position in the M/ macro parameters list.
More than being not very handy, this is fragile relatively to creation or deletion of ports and parameters
in the definition: when the user creates a port or a parameter to a definition, he has to adjust (replace
$n by $n+1 in) all references to parameters or ports coming after the created one in the parameters list
of the M/ macro. To overcome this difficulty, the code editor recognizes the following macros (cf. figure

B20):
e QIN(prt) refers to the input port named prt,
e QOUT(prt) refers to the output port named prt,

@INOUT (prt) refers to the input/output port named prt,

@PARAM(prm) refers to the parameter named prm,

ONAME (pr) refers to the port or parameter named pr. When using this macro, you should be careful
that the port or parameter you want to refer to has a unique name in the definition.

Quoting macros

Quoting macros are used to wrap or unwrap code by M/ quote. The code editor recognizes the following
quoting macros:

e QQUOTE(txt) will be put as ‘txt’ in the output file,

e QTEXT(‘txt’) will be put as txt in the output file.

5.6.3 The code editor shortcuts

The code editor supports various keyboard shortcuts that could be handy when editing source code.

Ctr-Tab | Insert a tabulation.

Tab Complete a port name. Type the beginning of a port name, then press Tab
and as many times as necessary for the editor to find the wanted completion.
Ctr-1 Insert the @IN macro at cursor position.
Ctr-O Insert the @OUT macro at cursor position.

Ctr-N Insert the @INOUT macro at cursor position.
Ctr-P Insert the @PARAM macro at cursor position.
Ctr-T Insert the @TEXT macro at cursor position.
Ctr-Q Insert the @QUOTE macro at cursor position.
Ctr-W Cut the selected text into the clipboard.

Ctr-K Cut text from cursor position to the end of the line.
Alt-W Copy the selected text into the clipboard.
Ctr-Y Paste the clipboard content at cursor position.

Ctr-A Jump to the beginning of the line.

Ctr-E Jump to the end of the line.

Ctr-up Jump to the beginning of the buffer.
Ctr-down | Jump to the end of the buffer.

34

5.7 To build multi-periodic applications

Until version 6 of SynDEx, a unique timing information (execution duration) is associated to each
operation (resp. each data type of a dependence) relatively to the operators (resp. media) it may be
distributed to. This timing information, which depends on the hardware, is associated to the definition of
every operation. Applications specified by the user with version 6 are implicitely mono-periodic, meaning
that all the operations of the algorithm graph have the same period which is equal to the total execution
time of all the operations executed on the different components of the architecture, taking into account
the duration of data communications through the media. This total execution time is displayed as the
value of the “Cycle time” in the schedule window resulting from the adequation.

Version 7 of SynDEx allows the user to specify, in addition to a duration, a period to each operation.
The period is a timing information associated to the reference of an operation instead of its definition,
which does not depend on the hardware. This feature allows the user to specify an operation definition
with the same execution duration each time it is referenced, whereas this operation may be referenced
with several periods. Note that for a given operation it is necessary that its execution duration is
smaller than its period to be schedulable.

As soon as a period is associated to at least one operation reference, the application becomes multi-
periodic. In other words, an application is mono-periodic if no period is associated to operation references.
In both cases execution durations must be associated to operation definitions and data type of depen-
dences. A multi-periodic application has a global period equal to the LCM (Least Common Multiple)
of all the periods associated to the operation references. That global period corresponds to the total
execution time of all the operations executed on the different components of the architecture, taking into
account the duration of data communications through the media. This total execution time is displayed
as the value of the “Cycle time” in the schedule window resulting from the adequation.

Version 7 of SynDEx, using the period and the execution duration of every operation, performs a
distributed real-time schedulability analysis to determine if the multi-periodic application is schedulable.
If it is the case it will generate the corresponding macro-code.

Multiple or equal periods

Operations related by a dependence must have multiple or equal periods. While creating a de-
pendence between operations which have inconsistent periods, an error message appears to help the
user (e.g. Can not create dependence input.o -> compute.in in definition basicAlgorithm Error #1
[Inconsistent periods]).

While creating a dependence between operations which have multiple periods, there are two cases:

e the producer operation has a period p smaller than the period n of the consumer operation. In
this case the producer operation executes n/p times more than the consumer operation and con-
sequently, produces n/p data for the consumer operation involving that these data are memo-
rized. SynDEx displays a warning message indicating that the destination port’s size will be in-
creased (e.g. #1 Warning about dependence input.o -> compute.in in definition basicAlgorithm
[The size of destination compute.in will increase to 2 times the original sizel). In addition,
it creates a new operation called with the data type of the dependence prefixed by “Implode_” (e.g.
Implode_int). This new operation is in charge of collecting the n/p data for the consumer opera-
tion. Note that the user must give a duration to this new operation. In case he forgot it a warning
message will ask for during the adequation ;

e the producer operation has a period p greater than the period n of the consumer operation. In this
case the producer operation executes n/p times less than the consumer operation and consequently,
the consumer operation consumes n/p the same data.

Hierarchical references

Verifications on periods are propagated to hierarchical references.

While setting the period to a hierarchical reference, SynDEx verifies that the new period is compatible
with the periods of the references it contains. Actually, the period of a hierarchical reference must be
equal (or multiple) to the Least Common Multiple (LCM) to the periods of the references it contains.

35

While setting the period to a reference contained in a hierarchical reference, SynDEx verifies that
the new period is compatible with the period of the hierarchical reference. Actually, the period of a
reference contained in a hierarchical reference must be equal (or must be a divisor) to the period of the
hierarchical reference.

Edit the period of an operation

The user can edit the period of an operation only in its reference properties (cf. paragraph “Algorithm
window” in section Hl) unlike its name, its parameters and its repeat factor which can also be edited
during the reference creation.

By default the period of an operation is equal to 0. Note that, as soon as an operation has a period
equal to 0, the application is mono-periodic whatever the other periods are. In other words, to obtain a
multi-periodic application the period of all the references must be edited.

Adequation

See the section (4] for details about the adequation process in case of mutli-periodic applications.

36

Chapter 6

Architecture

An architecture is specified as a non directed graph where vertices are of two types: operator or commu-
nication medium, and each edge is a connection between an operator and a communication medium.

6.1 Operator

6.1.1 To create an operator definition

File Options Algorithm Architecturel(:onstraints Adequation Code Help

Define Operator
Edit Operator Definitioh

Define Medium
Edit Medium Definition

Define Architecture
Edit Architecture Definition
Edit Main Architecture Ctr-Shift-A

b=

Figure 6.1: Definition of an operator

From the Architecture menu of the main window, choose the Define Operator option (c¢f. figure
BE). It opens a dialog window. Type the name of the new operator (e.g. U). Then click OK. It opens
the new operator definition window (cf. figure B2). By default the code will be generated only for the
loop phase of the operator. See the section to set its gates, durations and code phases.

6.1.2 To modify an operator definition

From the Architecture menu of the main window, Choose the Edit Operator Definition option. It
opens a browse window. Select the target operator. It opens its definition window with Modify gates,

37

Modify gates | Modify durations | Modify code generation phases

Figure 6.2: New U operator definition window

Modify durations, and Modify code generation phases buttons.

Gates

Click on the Modify gates button. It opens a dialog window in which you can set the gates, one per
line. For example type

TCP x
TCP y

A gate has the following syntax:
gate_definition ::= medium_definition_name gate_name
where:

e medium definition_name specifies a communication medium to connect with,

e gate name. specifies the new gate.

Durations

Click on the Modify durations button to specify durations by operation (c¢f. chapter [).

Code generation phases

Click on the Modify code generation phases button. Check init (resp. end) to generate code in the
initialization phase (resp. ending phase).

Note: You can modify local and global operators (cf. section BIl). Modifications on a global operator
impact only the current application and the library remains unchanged. To modify a global operator

over-all, open the corresponding SynDEx library file (e.g. libs/u.sdx to modify u/U). Modifications on
a definition in a library may have consequences on all the applications using this library.

6.1.3 To delete an operator definition

From the Architecture menu of the main window, choose the Delete Operator option. It lists the
local operator definitions (cf. section Bl). Select the target operator.

Note: Deleting a global operator (cf. section Bl impacts only the current application.

38

6.2 Communication medium

6.2.1 To create a medium definition

From the Architecture menu of the main window, choose the Define Medium option. It opens a
dialog window. Type the name of the new communication medium. Then click OK. It opens the new
communication medium definition window. By default a new communication medium has type SAM
point-to-point. See the section B2 to set its type and durations.

6.2.2 To modify a medium definition

From the Architecture menu of the main window, Choose the Edit Medium Definition option. It
opens a browse window. Select the target communication medium. It opens its definition window with
Modify type, and Modify durations buttons.

Type

Click on the Modify type button. It opens a dialog window in which you can change the type of the
commaunication medium. For example, check SAM MultiPoint (resp. RAM).

Durations

Click on the Modify durations button to specify durations by data type (c¢f. chapter [).

Note: You can modify local and global media (cf. section BIl). Modifications on a global commu-
nication medium impact only the current application and the library remains unchanged. To modify a
global communication medium over-all, open the corresponding SynDEx library file (e.g. 1ibs/u.sdx to
modify u/TCP). Modifications on a definition in a library may have consequences on all the applications
using this library.

6.2.3 To delete a medium definition

From the Architecture menu of the main window, choose the Delete Medium option. It lists the
local communication medium definitions (cf. section BIl). Select the target communication medium.

Note: Deleting a global communication medium (cf. section Bl impacts only the current application.

6.3 Architecture

6.3.1 To create an architecture definition

From the Architecture menu of the main window, choose the Define Architecture option. It opens
a dialog window. Type the name of the new architecture. Then click OK. It opens the new architecture
definition window. Now you may construct a graph with references to operators and media.

New operator reference

To reference an operator into an architecture, from the Edit menu of the architecture window choose the
Reference Operator option. It opens a browse window. Select the target operator. It opens a dialog
window. Type the name of the reference. Then click OK.

New medium reference

To reference a communication medium into an architecture, from the Edit menu of the architecture
window choose the Reference Medium option. It opens a browse window. Select the target operator.
It opens a dialog window. Type the name of the reference. Then click OK. In case of a SAM multipoint
medium, it opens a dialog window. Check Broadcast or No Broadcast for the mode of the reference.

39

Then click OK.

Note for a SAM multipoint medium reference: In case of a SAM multipoint medium in Broad-
cast mode, all operators connected to this communication medium will receive each and every message
sent on the communication medium. In case of SAM multipoint medium in No Broadcast mode, each
message will be received by only one operator: the destination operator of the message. Right click on
a medium reference and choose Broadcast Mode to change it.

New connection

To connect an operator and a communication medium, point the cursor at a gate of the operator reference,
middle click, then drag and drop on the communication medium reference.

6.3.2 To set the main architecture

Window Edit
topl (WTCP)
ol () /\
%
y Copy CtH-C
Cut CtH-X
Paste CtH-v
Delete Delete =
Postscript File
Jpeq File
Options

Find Operator Reference
Find Medium Reference

Set As Main Architecture CtH-M

Figure 6.3: Set u/biProc as main architecture in examples/tutorial/example7/example7.sdx

Set the main operator

To define an operator of an architecture as main, click on the target operator, right click, then choose
the Set As Main Operator option.

Set the main architecture

To define an architecture as main, right click on the background of the target architecture. Choose
the Set As Main Architecture option (¢f. figure E3). The architecture window is now labelled with

(main).

Edit the main architecture

To open the main architecture, from the Architecture menu of the main window, choose the Edit
Main Architecture option.

40

6.3.3 To modify an architecture definition

From the Architecture menu of the main window, Choose the Edit Architecture Definition option.
It opens a browse window. Select the target architecture. It opens its definition window.

Note: You can modify local and global architectures (cf. section B)). Modifications on a global
architecture impact only the current application and the library remains unchanged. To modify a global
architecture over-all, open the corresponding SynDEx library file (e.g. libs/u.sdx to modify u/biProc).
Modifications on a definition in a library may have consequences on all the applications using this library.

6.3.4 To delete an architecture definition

From the Architecture menu of the main window, choose the Delete Architecture option. It lists
the local architecture definitions (cf. section Bl). Select the target architecture.

Note: Deleting a global architecture (cf. section Bl) impacts only the current application.

41

Chapter 7

Characteristics

The heuristics performed by the adequation use the characteristics of each operation and each data
dependence relatively to the operators and media it may be distributed to. Presently we are mainly
interested in real-time performances. Therefore the operations of algorithm graphs must be characterized
in terms of duration relatively to the operators and media of architecture graphs.

7.1 Execution durations

7.1.1 Operation durations
In the algorithm window, right click on the background of an algorithm definition window. Choose
the Durations option. It opens a dialog window in which you can set the execution durations of the
operation by operator (e.g. u/U = 3 specifies the duration required to execute the target operation on
an u/U operator).
An operation duration has the following syntax:
operation_duration ::= operator_definition_name = value

where:

e operator_definition_name specifies an operator,

e value specifies the duration as an integer time unit.

7.1.2 Operator durations
In an operator definition window, click on the Modify durations button. It opens a dialog window in
which you can set the execution durations on the operator by operation (e.g. bool/AND = 2 specifies the
duration required to execute a bool/AND operation on the target operator).
An operator duration has the following syntax:
operator_duration ::= operation_definition_name = value

where:

e operation definition.name specifies an operation,

e value specifies the duration as an integer time unit.

42

7.2 Communication durations

In a medium definition window, click on the Modify durations button. It opens a dialog window in
which you can set the communication durations on the communication medium by data type (e.g. u/bool
= 1 specifies the duration required to transfer one element of type u/bool on the target communication
medium).

A medium duration has the following syntax:
medium_duration ::= data_type = value
where:

e data_type specifies a basic data type,

e value specifies the duration as an integer time unit.

7.3 Libraries

Timings of ufl:

int/Arit_mod
int/Arit_mul
int/Arit_sub
int/Bit_and = 2
int/Bit_lsh = 2
int/Bit_not = 2
int/Bit_or = 2

2

2

2

oo
Laro

int/Bit_rsh =
int/Bit_xor =
int/Log_and =
int/Log_eq
int/Log_gt
int/Log_lt
int/Log_ne
int/Log_ngt
int/Log_nlt
int/Log or = 2
int/cst = 2
int/delay = 1
int/dotProduct = 2
int/equalize = 2
int/equalizel = 1
int/input = 3
int/int2bool = 1

syntax: operation_definition_name = duration
example: calcul = 5
intfant_add = 3

oK Apply Cancel

Figure 7.1: uw/U durations window in examples/basic_with_library/basicBiProc/basicBiProc.sdx

In case of a duration already specified in a library, a 1ib/operator_definition_name = value Or
lib/operation_definition_name = value or lib/data_type = value line will appear in the corresponding
duration windows (cf. figure [TI).

You can modify durations of local and global definitions. Modifications on a duration of a global
definition impact only the current application and will not be saved with the current application.

43

Chapter 8

Constraints

Some operations of the main algorithm graph may be constrained to be executed on specific operators
of the architecture graphs. In this case the heuristics will not have the choice in distributing them.
These constraints are specified through operation groups. All the operations of an operation group will
be distributed on the same operator.

8.1 To create an operation group
To create a new operation group, from the Algorithm menu of the main window, choose the Define

Operation Group option. It opens a dialog window. Type the name of the new operation group. Then
click OK.

8.2 To attach references to operation groups

[aiga gmain Up In Main | Main | History
Definition list: S

Double-click to open @@

Drag and drop to reference
e |IN
falgo2
fhar

fcony

intiArit_add —
intArit_div onRoot

int/Art_minus o 2 o e
int/Arit_mod b

int/Arit_mul
int/Arit_sub

int/Bit_and
int/Bit_Ish mul
!n !_s cste? cany_ref mnv_rer-’-:ﬁ‘m anP1
int/Bit_not \
int/Bit_or o i [0 i [0 EH
int/Bit_rsh
int/Bit_xor
int/Log_and
int/Log_eq
ittt s eet /]
] -

Reference Properties:

=~

Hame add =
FParameters |1

Repeat 1
Period 0

Group onRoot

|

Figure 8.1: algo as main algorithm in examples/tutorial/example7/example?.sdx

44

From the main mode of the algorithm window (cf. section L)) click on the target reference. In its
Reference Properties (c¢f. Algorithm window in chapter B) click on the Group button and select the
target operation group (cf. figure BI).

If it references a hierarchical definition, all the references of this hierarchy will be attached to this
operation group (except references of this hierarchy that may be explicitly attached to another operation
group).

In particular, in case of a reference to a conditioned (resp. repeated) definition its Condl and CondO
(resp. Explode and Implode) vertices created by SynDEx when flattening the algorithm graph (¢f. section
BH). will be attached to the operation group.

8.3 To constraint operation groups on operators

Absolute Constraints

onP1 | onF1 P
onRoot | root onRoot root

Create |
Remove |

ox | cmen |

Figure 8.2: Constraints on the main architecture in examples/tutorial/example7/example?.sdx

To constraint the references attached to a given operation group to be distributed on a specific
operator, you will constraint the operation groups on operators. From the Constraints menu, choose
the Absolute Constraints option. Then select the target architecture.

The Absolute Constraints on Main option does not allow you to choose the target architecture
which, of course, is the architecture defined as main.

To constraint an operation group on an operator, click on the target group in the left list, then click
on the target operator in the middle and finally click on the Create button. It adds the new constraint
in the right list (¢f. figure B2). Click on the OK button to confirm your new constraint list, otherwise
click on the Cancel button.

8.4 To delete an operation group

To delete an operation group, from the Algorithm menu of the main window, choose the Delete
Operation Group option. It lists all the operation groups. Select the target group.

45

Chapter 9

Adequation

Performing an adequation means to execute heuristics, seeking for an optimized implementation of a
given algorithm onto a given architecture, both set as “Main”.

9.1 Main algorithm and main architecture

There can be several algorithms and architectures but only one main algorithm (cf. Main mode in section
BETT) and one main architecture (cf. section 3 on which the adequation will be performed.

To define an algorithm as main, right click on the background of the target definition window.
Choose the Set As Main Definition option. To define an architecture as main, right click on the
background of the target architecture. Choose the Set As Main Architecture option

9.2 Characterization

To be able to perform an adequation, each operation and each data type of a dependence must be
associated with a duration (¢f. chapter [).
You will also have to characterize additional operations generated by SynDEx in case of conditioning

(¢f. section B2) or repetition (cf. section BE3).

9.3 To launch the adequation

To launch the adequation of the main algorithm onto the main architecture, from the Adequation menu,
choose the Launch Adequation option.
The adequation process is preceded by:

e a flattening process (cf. [@3),

e a verification process on the flattened graph (i.e. non existence of dependence cycles).

9.4 Multi-periodic applications
In case of a multi-periodic application, the flattening process is preceded by:

e an assignment process which performs a schedulability analysis: in case of a non-schedulable ap-
plication, SynDEx displays an error message (e.g. ABORTING: The system is not schedulable!).

e an unroll process: operations are repeated in accordance with their periods, dependences are added,
Implode vertices are added to group data sent by several instances of a given producer operation to
a consumer operation when the period of the producer is smaller than the period of the consumer.
Note that this new operation created by SynDEx must have an execution duration. If the user
omits to set this value SynDEx will ask for by displaying a warning window.

46

9.5 Flattening

Hierarchy

The main algorithm graph is transformed for the adequation to obtain a graph with a unique level
of hierarchy, where each vertex is an operation in the sense of AAA (which is the same as an atomic
definition in SynDEXx). This transformation consists in replacing references by corresponding definitions,
and paths of dependences connected along the hierarchy through ports by direct dependences between
corresponding ports of the transformed operations.

Abstract references

In case of abstract references (cf. section BZLH), the hierarchy is not taken into account, i.e. the flattening
does not go into the hierarchical referenced definitions. All the abstract references are directly replaced
by operations containing the same ports as their definition. References or dependences included in those
definitions are ignored.

9.6 Schedule

The schedule is displayed as sets of ordered operations infinitely repeated.
In case of a multi-periodic application, the schedule may have one or two parts. In the first case it is
a permanent part displayed as sets of ordered operations infinitely repeated and in the second case it is:

e a transient part displayed as sets of ordered operations executed only one time,

e then a permanent part displayed as sets of ordered operations infinitely repeated.

SynDEx adds some Wait vertices to force the operators to satisfy the start time dates of every
operation computed by the adequation according to their period.

9.6.1 To display the schedule

To view the computed distribution and schedule, from the Adequation menu, choose the Display
Schedule option. It opens a window for the diagram of the real-time simulation of the algorithm
executed on the architecture.

9.6.2 The schedule window

In the schedule window you will find one schedule for each operator and for each communication medium
of the architecture. Each operation or communication (send/receive) is represented by a box the length
of which is proportional to its duration. The operations of the transient part have a red left edge whereas
the operations of the permanent part have a green left edge. Furthermore, the operations of the transient
part are dashed boxes.

Operator

Each schedule for an operator describes a scheduling of constants, sensors, actuators, functions and
delays. By default constants are not displayed. From the Window menu, choose Schedule Display
Options. Then check Show Constants to change this setting.

Medium

Each schedule for a communication medium describes a scheduling of inter-operator communications,
sending (resp. receiving) data from (resp. to) an operator. Note that although a communication is
called “Send procl proc2” it is represented by a unique operation which represents the duration of the
communication (send/receive) on the medium.

47

Start and end dates

The start date (resp. the end date) is displayed on the left edge (resp. right) of each box.

Scale

In case of big duration differences, you can disable the scale. From the Window menu, choose Schedule
Display Options. Then uncheck Scale to change this setting.

Colors

When the cursor points at an operation, its box is highlighted in orange. The predecessors of the target
operation have their boxes highlighted in green and its successors in red.

Schedule position

Position the pointer inside the small space between two schedules of operators or between the schedule
of an operator and the schedule of a communication medium then, click left and before releasing
the button, drag and drop that schedule to change its position.

‘Warning: This feature is operational only in Vertical Display mode.

Other options

From the Window menu, choose Schedule Display Options. Check Horizontal Display to change
the orientation of the display. Check Show Arrows to draw arrows between boxes which are in relation
of execution precedence Uncheck Labels to not draw the names of the operations.

48

Chapter 10

Code generation

When the adequation has been performed, code may be generated for the main architecture.
Warning: To generate code, it is mandatory to define a processor of the main architecture as the
main operator (cf. section B32).

10.1 To generate the code

From the Code menu, choose the Generate Executive(s) option. The generated .m4 files are saved
in the application’s directory, one file per processor.

10.2 To view generated files

From the Code menu, choose the Display Executive(s) option.
If the option Generate m4x Files of the Code menu is checked, SynDEx also produces macro files:

e an application_name.mdx file (if not already existing),

e an application_name _sdc.méx file.

The .m4x file is the only user macro file which the M/ machinery is aware of. Thus, it should include
the _sdc.m4x file. The _sdc.m4x file contains M4 macro definitions corresponding to algorithm definitions
that have been associated with a source code via the SynDEx code editor. This file should not be edited
by hand because it is overwritten each time the user triggers code generation.

The user should put its hand-written macro definitions in the .m4x which is automatically created by
SynDEx only if not already existing. If this file is created by hand, the user should be careful to include
the _sdc.m4x at the beginning of the file.

10.3 Overview

In this section we give a brief summary of files you will require to generate and compile your executive
files. Code generation principles will be detailed in next sections. Files required are:

e application_name.mdx which may be empty, and optionally some processor_name.mdx,
® application_name.mém,
® GNUmakefile,

e application_name.m4, and one processor_name.mé file per processor from the main architecture
These files are generated during the executive generation by SynDEx.

49

For the files which are not generated by SynDEx, most of the time you can simply copy existing ones
(for instance from the example directory) and make modifications explained in the comments of these
files. Once you gathered all these files, type make application_name.all in your shell. It compiles the
executive files. Then launch the executable file of the main processor. You can also clean your directory
by typing make clean.

10.4 To compile an executive

Each macro-executive source file must be first translated by the GNU M/ macro-processor, into a text
file in the language preferred for the processor (usually assembler for efficiency, sometimes C or another
high-level language for portability). This translation relies on several files included in the following order:

e the first macro-call of the macro-executive source (include (syndex.m4x)) includes the file syndex.max
which defines all the SynDEx generic (processor-independent) macros which rely on low-level spe-
cific macros expected to be defined by the following included files;

e the second macro-call of the macro-executive source processor_(processor_type, processor_name,
application_name, version, da.te)) includes:

— the file processor_type.midx which defines low-level macros specific to the type of processor,
— the file application_name.m4x which defines application-specific macros,

— optionally the file processor_name.m4x which defines macros specific to the target processor;

e then, after the memory-allocation macro-calls, each communication sequence starts with a
thread _(medium_type, medium_name, comnected_processor_names) macro-call which includes the file
medium_type.mdx which defines low-level communication macros specific to the type of the commu-
nication medium.

These indirected inclusions, through the names specified under SynDEx, provide a very flexible and
powerful mechanism needed to support efficiently heterogeneous architectures, with heterogeneous lan-
guages and compilation chains. Then each macro-processed text file must be compiled with the adequate
compiler, and linked with the adequate linker against separately compatibly-compiled application-specific
files and/or processor-specific libraries, for those macros which cannot simply inline the desired code,
but instead must call separately compiled codes.

10.5 To load the compiled executive

In an heterogeneous architecture, there are different compilation chains, with different executable formats
which have to be transfered through different types of intermediate media and processors to be finally
loaded by different boot loaders. For these reasons, a post-processor is required for each type of processor,
in order to encapsulate this heterogeneity into a common download format. This is explained in more
details in the downloader specification (cf. chapter [LTI).

10.6 To automate the compilation/load process
All processor types require the same compilation sequence, but with different compilation tools:
e macro-processing of the macro-executive generated by SynDEx,
e compilation into processor-specific object code,
e linking into processor-memory-map-specific executable code,
e post-processing into common downloadable format.
This compilation sequence may be automatically generated for each processor by macro-processing

the macro-makefile generated by SynDEx which includes:

50

e a very first macro-call (include(syndex.m4m)) that includes the file syndex.m4m which generates a
makefile header, and defines the macros architecture _, processor_, connect _, and endarchitecture _
used in the macro-makefile;

e the second macro-call (architecture _(application_name, version, date) that includes the file
application_name.mdm (if it exists) which defines application-specific make-macros;

e a macro-call processor_(processor_type, processor_name, connectors_type_and_name) PEr proces-
sor that includes the file processor_type.mdm which should have for side effect to generate the
required compilation dependences for this processor;

e a macro-call connect_(medium_type, medium_name, connectors_opr_and_name) per communication medium
that includes the file medium_type.mam (if it exists) which should have for side effect to generate any
loader-specific dependences (presently unused).

Although this indirect inclusion mechanism is able to generate most of the core makefile, an application-
specific top makefile is still required to specify how to generate the core makefile, and to specify the
compilation and linking dependencies with application-specific files (include files, separately compiled
files and libraries).

o1

Chapter 11

SynDEx downloader specification

11.1 Context

SynDEx allows the efficient programming of parallel, distributed, heterogeneous architectures, composed
of several different types of processors, and of several different types of communication medium. From a
user specification of an algorithm dataflow graph and of an architecture resources graph, and from algo-
rithm and architecture characterized libraries, SynDEx automatically generates an application specific
executive code for each processor, and provides a makefile to automate the compilation and linking of
each executive, and its downloading into the program memory of the corresponding processor.

Separate programming of non-volatile program memories being unpractical, SynDEx considers that
each processor has, for only non-volatile resident program, a boot-loader (which may be very small and
simple, or may rely on a big and complex operating system) expecting an executive to be downloaded
from a neighbour processor through a communication medium, except for a single host processor, desig-
nated by the name root in the specified architecture graph, which boot-loader expects all executives to
be stored altogether in its local non-volatile memory.

Consequently, SynDEx computes, over the architecture graph, an oriented coverage tree rooted on
the root processor, and generates in each processor ezecutive the code needed to download the compiled
executives through this tree, in a predetermined order which is also used to generate the makefile.

11.2 Boot and download process

This process is the same for all processors, except that the root processor gets executives from its lo-
cal non-volatile memory, whereas all the other processors get executives from their neighbour processor
which is their ascendant towards the root of the download tree. The processors which have the same
ascendant processor are called the descendants of that processor.

When powered on, each processor boots by executing its resident boot-loader which gets the proces-
sor’s executive, loads it into the processor’s program memory, and executes it. During its initialization
phase, the executive gets and forwards executives to all its descendants, before proceeding with applica-
tion data processing.

The root processor, usually an embedded PC or other kind of workstation, bootloads from its disk an
operating system which automatically loads and executes a startup program allowing the user to choose
between different applications. During early developments, this program may be a simple shell (but this
requires a keyboard to be available), and the user enters a make command to compile the executives if
needed, and to execute the root executive, with the other executive files passed as arguments on the com-
mand line. In applications where it is unpractical to use a keyboard permanently connected, the startup
program may use another input device (for example a switch or a touch screen) to let the user choose
between different predefined shell commands, starting different applications through the corresponding

52

make command, or simply launching a shell for interaction with a keyboard. In more deeply embedded
applications, where the root processor has neither a disk nor an operating system, all the executives are
stored in a FLASH memory, and the root processor boots by executing directly its own executive, and
finds the other executives sequentially stored in its FLASH.

The first executive forwarded to a descendant is received, stored, and executed by that descendant’s
boot-loader. Then, while that descendant’s executive asks for executives, the ascendant executive gets
and forwards the next executives to the same descendant, until that descendant’s executive signals that
it has itself no more executives to forward. Then the ascendant may switch to its next descendant, until
it has no more descendant to service, and hence no more executive to forward. This fully sequential
download process boots processors in the order of a depth-first traversal of the download tree.

In the case of a point-to-point medium, the descendant executive may proceed to application data
communications as soon as it has no more executive to forward, whereas in the case of a multipoint
medium, the descendant executive must wait until the ascendant executive signals that it has no more
executive to forward (to avoid communication interferences between descendant application data and
ascendant download data).

11.3 Common download format

Each processor type may have a different compiler (linker) output format, and some processor types may
have a ROM-ed embedded boot-loader (firmware), with its own requirements on the download format.
The SynDEx common download format encapsulates the details and the differences of the compiler
output formats, and of the boot-loaders download formats; it is composed as follows:

e four bytes prefix encoding the 32 bits big-endian total length of the following sequence of bytes,

e a sequence of bytes encoding one complete executive, structured as required by the destination
boot-loader, and padded if needed with null bytes until the total length is a multiple of four.

The first executive forwarded to a descendant being received by that descendant’s boot-loader, that
executive must be sent without its four bytes prefix; the following executives sent to the same descendant
being forwarded by that descendant’s executive, they must be sent with their four bytes prefix.

The sequence of bytes itself must follow the format expected by the destination boot-loader. Therefore
a linker post-processor must be developped for each processor type, to translate the linker output file
into the SynDEx common dowload format described above. All the post-processors’ outputs will be
concatenated by the makefile into a unique contiguous image (file), that the root executive will use as
source.

11.4 Downloader macros

The downloader code is generated by two macros:

e loadFrom_ starts the initialization phase of the communication sequence of the communication
medium connected to the ascendant processor; its first argument is the name of the ascendant
processor, its next arguments, if any, are the names of the other communication medium connected
to descendant processors, if any;

e loadDnto_ starts the initialization phase of the communication sequence of each communication
medium connected to a descendant processor; its first argument is the name of the communication
medium connected to the ascendant processor, its next argument(s) is (are) the name(s) of the
descendant processor(s).

Processor names are usefull to address processors connected to multipoint medium: a processor name
may be suffixed to give the name of a user defined macro, which substitution gives the processor address.

93

As executives data may be forwarded through several communication medium of different bandwidths,
transfers must be synchronized such that data flow at the speed of the slowest communication medium.

Between processors, if flow control is not supported by the communication medium hardware, it must
be implemented by ready to receive control messages sent by the loadFrom_ code for each chunk of data
to be sent by the loadDnto_ code. Inside a processor, the loadFrom_ and loadDnto_ macro cooperation
is based on the order in which the spawn_thread_ macros (one for each communication sequence, i.e.
for each communication media) are generated in the initialization phase of the main_ ... endmain_ se-
quence: the spawn_-thread_ macro corresponding to the thread- macro of the communication sequence
starting with the loadFrom- macro (i.e. of the media connected to the ascendant processor) is called first,
followed by the other spawn_thread_ macros, among which the ones, if any, corresponding to the com-
munication sequences with a loadDnto_ macro (i.e. of the media connected to the descendant processors).

If the processor is a leaf node of the download tree, its loadFrom_ macro has only one argument; in this
case, it directly generates the code sending to the ascendant processor a "null” message meaning that no
more executive is requested, followed, in the case of a multipoint medium, by the code waiting for other
executives to be downloaded to the other processors connected to the communication medium, until the
ascendant processor sends an "empty” executive meaning that the download process is complete on this
communication medium.

Otherwise, before generating the code described in the previous paragraph, the loadFrom_ macro
generates a RETURN instruction (which will return control after the CALL instruction generated by the
spawn_thread_ macro), followed by a loadFrom_end_: label, and the loadFrom_ macro also defines three
macros for use by the loadDnto_ macros:

e the loadFrom req. macro must generate the code that sends a mon-null message requesting the
ascendant processor to download another executive;

e the loadFrom get_ macro must generate the code that receives one word of executive data from the
ascendant processor; word means the size of a processor register, usually 32 bits; if the commu-
nication medium transfers executive data by chunks of N words, then every N calls to the code
generated by the loadFrom_get_ macro receives a full chunk of data and returns its first word, and
the next N-1 calls each return a next word of the chunk;

e the loadFrom next_macro which is called at the end of each loadDnto_ macro, must generate a CALL
loadFrom_end_, but only for the very last loadDnto_ macro.

If the code generated by any of these three macros is limited to a few instructions, it may be generated
inline, otherwise the loadFrom_ macro generates this code as a subroutine (between the RETURN instruction
and the loadFrom end_ label), and a call to that subroutine is generated instead of the inline code.

54

Chapter 12

Links

For more information:
SynDEx : http://wuw.syndex.org
AAA methodology : http://www-rocq.inria.fr/syndex/pub/execvd/execvé.pdf
Objective-Caml : http://caml.inria.fr/
Tecl/Tk : http://www.tcl.tk/

CamlTk : http://pauvillac.inria.fr/camltk/

95

http://www.syndex.org
http://www-rocq.inria.fr/syndex/pub/execv4/execv4.pdf
http://caml.inria.fr/
http://www.tcl.tk/
http://pauillac.inria.fr/camltk/

	Overview
	The AAA methodology
	SynDEx distributions

	Getting started
	Application workspace
	Launching SynDEx
	SynDEx main window
	Load a SynDEx application
	Algorithm and architecture windows

	Modes
	Adequation and code generation
	Save, Close, Quit

	Libraries
	To use libraries
	To create a library

	Using the interface
	Selection
	Zoom
	Contextual menus
	Algorithm window
	Architecture window

	Contextual information
	To find an object
	Architecture window
	Schedule window

	Refresh

	Algorithm
	AAA methodology
	Definition vs. reference
	Atomic or hierarchical definitions
	Dependences
	Algorithm window

	To create an algorithm definition
	Types of definitions
	New definition

	Definition mode and main mode
	Definition mode
	Main mode
	Hierarchy

	To create a port in a definition
	Types of ports
	New port
	Ports order
	Input/output ports

	To create a reference in a definition
	New reference
	Parameterized definitions

	To create a dependence in a definition
	To create a superblock
	To create an abstract reference

	To condition an algorithm definition
	New condition
	Remarks
	CondI and CondO vertices
	References
	Delete a condition

	To repeat an algorithm definition
	Diffuse, Fork, and Join
	Multiplication of a vector by a scalar
	Repetition factor
	Diffuse the scalar
	Fork the vector
	Join the internal results
	Representation
	Explode and Implode vertices

	Iterate
	Multiplication of two vectors

	To modify an algorithm definition or a reference
	Modify a definition
	Modify a reference

	To delete an algorithm definition
	To associate code with an algorithm definition
	The code editor window
	The code editor macro language
	Names translation macros
	Quoting macros

	The code editor shortcuts

	To build multi-periodic applications
	Multiple or equal periods
	Hierarchical references
	Edit the period of an operation
	Adequation

	Architecture
	Operator
	To create an operator definition
	To modify an operator definition
	Gates
	Durations
	Code generation phases

	To delete an operator definition

	Communication medium
	To create a medium definition
	To modify a medium definition
	Type
	Durations

	To delete a medium definition

	Architecture
	To create an architecture definition
	New operator reference
	New medium reference
	New connection

	To set the main architecture
	Set the main operator
	Set the main architecture
	Edit the main architecture

	To modify an architecture definition
	To delete an architecture definition

	Characteristics
	Execution durations
	Operation durations
	Operator durations

	Communication durations
	Libraries

	Constraints
	To create an operation group
	To attach references to operation groups
	To constraint operation groups on operators
	To delete an operation group

	Adequation
	Main algorithm and main architecture
	Characterization
	To launch the adequation
	Multi-periodic applications
	Flattening
	Hierarchy
	Abstract references

	Schedule
	To display the schedule
	The schedule window
	Operator
	Medium
	Start and end dates
	Scale
	Colors
	Schedule position
	Other options

	Code generation
	To generate the code
	To view generated files
	Overview
	To compile an executive
	To load the compiled executive
	To automate the compilation/load process

	SynDEx downloader specification
	Context
	Boot and download process
	Common download format
	Downloader macros

	Links

