
SynDEx v7 User ManualJulien Forget, Christophe Gensoul, Maxen
e GuesdonChristophe Lavarenne, Christophe Ma
abiau,Yves Sorel, Cé
ile StentzelSeptember 24, 2009

2

Contents
1 Overview 61.1 The AAA methodology . 61.2 SynDEx distributions . 62 Getting started 72.1 Appli
ation workspa
e . 72.1.1 Laun
hing SynDEx . 72.1.2 SynDEx main window . 72.1.3 Load a SynDEx appli
ation . 82.1.4 Algorithm and ar
hite
ture windows . 82.2 Modes . 82.3 Adequation and
ode generation . 82.4 Save, Close, Quit . 93 Libraries 103.1 To use libraries . 103.2 To
reate a library . 104 Using the interfa
e 114.1 Sele
tion . 114.2 Zoom . 114.3 Contextual menus . 114.4 Contextual information . 124.5 To �nd an obje
t . 124.6 Refresh . 125 Algorithm 135.1 To
reate an algorithm de�nition . 145.1.1 De�nition mode and main mode . 165.1.2 To add a port to a de�nition . 175.1.3 To add a referen
e to a de�nition . 205.1.4 To add a dependen
e to a de�nition . 235.1.5 To
reate a superblo
k . 235.1.6 To
reate an abstra
t referen
e . 235.2 To
ondition an algorithm de�nition . 235.3 To repeat an algorithm de�nition . 245.3.1 Di�use, Fork, and Join . 245.3.2 Iterate . 265.4 To modify an algorithm de�nition or a referen
e . 285.4.1 Modify a de�nition . 285.4.2 Modify a referen
e . 285.5 To delete an algorithm de�nition . 285.6 To asso
iate
ode with an algorithm de�nition . 305.6.1 The
ode editor window . 303

5.6.2 The
ode editor ma
ro language . 305.6.3 The
ode editor short
uts . 315.7 To build multi-periodi
 appli
ations . 326 Ar
hite
ture 346.1 Operator . 346.1.1 To
reate an operator de�nition . 346.1.2 To modify an operator de�nition . 346.1.3 To delete an operator de�nition . 356.2 Communi
ation medium . 366.2.1 To
reate a medium de�nition . 366.2.2 To modify a medium de�nition . 366.2.3 To delete a medium de�nition . 366.3 Ar
hite
ture . 366.3.1 To
reate an ar
hite
ture de�nition . 366.3.2 To set the main ar
hite
ture . 376.3.3 To modify an ar
hite
ture de�nition . 386.3.4 To delete an ar
hite
ture de�nition . 387 Chara
teristi
s 397.1 Exe
ution durations . 397.1.1 Operation durations . 397.1.2 Operator durations . 397.2 Communi
ation durations . 407.3 Libraries . 408 Constraints 418.1 To
reate an operation group . 418.2 To atta
h referen
es to operation groups . 418.3 To
onstraint operation groups on operators . 428.4 To delete an operation group . 429 Adequation 439.1 Main algorithm and main ar
hite
ture . 439.2 Chara
terization . 439.3 To laun
h the adequation . 439.4 Multi-periodi
 appli
ations . 439.5 Flattening . 449.6 S
hedule . 449.6.1 To display the s
hedule . 449.6.2 The s
hedule window . 4410 Code generation 4610.1 To generate the
ode . 4610.2 To view generated �les . 4610.3 Overview . 4610.4 To
ompile an exe
utive . 4710.5 To load the
ompiled exe
utive . 4710.6 To automate the
ompilation/load pro
ess . 4711 SynDEx downloader spe
i�
ation 4911.1 Context . 4911.2 Boot and download pro
ess . 4911.3 Common download format . 5011.4 Downloader ma
ros . 5012 Links 524

Introdu
tionThis manual uses some writing
onventions:
• menus, buttons et
. are written in bold(e.g. File menu, OK button, De�nition list, Laun
h Adequation option),
• SynDEx dire
tories and �les, examples et
. are written in Computer Modern(e.g. libs dire
tory, examples/tutorial/example7/example7_sd
.sdx �le, ! int o port de�nition),
• notions, windows, et
. are written in itali
:(e.g. AAA methodology, referen
e, de�nition mode, algorithm window).

5

Chapter 1Overview1.1 The AAA methodologySynDEx is based on the AAA methodology (
f.
hapter 12).A SynDEx appli
ation is made of:
• algorithm graphs (de�nitions of operations that the appli
ation may exe
ute),
• ar
hite
ture graphs (de�nitions of multi
omponents: set of inter
onne
ted pro
essors and spe
i�
integrated
ir
uits).Performing an adequation means to exe
ute heuristi
s, seeking for an optimized implementation of agiven algorithm onto a given ar
hite
ture.An implementation
onsists in:
• distributing the algorithm onto the ar
hite
ture (allo
ate parts of algorithm onto
omponents),
• s
heduling the algorithm onto the ar
hite
ture (give a total order for the operations distributedonto a
omponent).1.2 SynDEx distributionsSynDEx runs under Linux, Windows, and Ma
 OS X platforms. SynDEx is written in Obje
tive Caml.The Graphi
al User Interfa
e is written in T
l/Tk with the OCaml library CamlTk. See
hapter 12 forweb links.

6

Chapter 2Getting started2.1 Appli
ation workspa
e2.1.1 Laun
hing SynDExSynDEx is laun
hed by running the SynDEx exe
utable, lo
ated in the dire
tory bin of your installationdire
tory. Some options
an be spe
i�ed on the
ommand line, for example :
• -libs adds a dire
tory where to �nd libraries to in
lude (see
hapter 3),
• -tdir spe
i�es the dire
tory where the html version of the tutorial is, to display it from the Helpmenu.The
omplete list of options
an be obtained by running the SynDEx exe
utable with the �help option.2.1.2 SynDEx main window

Figure 2.1: SynDEx main windowTo
reate an appli
ation workspa
e, run the SynDEx exe
utable. It opens the main window ofSynDEx (
f. �gure 2.1). 7

2.1.3 Load a SynDEx appli
ation

Figure 2.2: Open a �leTo load an existing appli
ation in the workspa
e, from the File menu,
hoose the Open option andsele
t a SynDEx �le (
f. �gure 2.2). For example load the examples/basi
/basi
.sdx example.2.1.4 Algorithm and ar
hite
ture windowsLoading a SynDEx appli
ation will open:
• the algorithm window on the main algorithm if it have been de�ned (
f. �gure 2.3),
• the main ar
hite
ture window if the main ar
hite
ture have been de�ned (
f. �gure 2.4).Opening another appli
ation will repla
e the
urrent one by the new one in the workspa
e.2.2 ModesIn the algorithm window, the adress bar displays AlgorithmMain (main) meaning that the main algorithmis viewed in the main mode (
f. se
tion 5.1.1). Double
li
k on AlgorithmMain in the De�nition list.The algorithm is now viewed in its de�nition mode and the adress bar displays [Fun
tion℄ AlgorithmMain.See se
tion 5.1.1 for more information.Noti
e that there
an be several algorithms and ar
hite
tures but only one main algorithm and onemain ar
hite
ture on whi
h the adequation will be applied.2.3 Adequation and
ode generationTo laun
h the adequation of the main algorithm (
f. Main mode in se
tion 5.1.1) onto the main ar
hi-te
ture (
f. se
tion 6.3.2), from the Adequation menu,
hoose the Laun
h Adequation option. Toview the
omputed s
hedule, from the Adequation menu,
hoose the Display S
hedule option. See
hapter 9 for more information. 8

Figure 2.3: Algorithm window in examples/basi
/basi
.sdx

Figure 2.4: Main ar
hite
ture window in examples/basi
/basi
.sdxTo generate the
ode of the appli
ation, from the Code menu,
hoose the Generate Exe
utive(s)option. The generated .m4 �les are saved in the example's dire
tory. To view theses �les from theSynDEx workspa
e, from the Code menu,
hoose the Display Exe
utive(s) option. See
hapter 10for more information.2.4 Save, Close, QuitTo save the
urrent appli
ation, from the File menu,
hoose the Save option. To save it with a newname,
hoose the Save as option and type the new name in the dialog window. The �le will be su�xedby .sdx.To
lose the
urrent appli
ation, from the File menu,
hoose the Close option. It
loses all theappli
ation windows and leaves the workspa
e empty.To quit SynDEx, from the File menu,
hoose the Quit option.
9

Chapter 3Libraries3.1 To use librariesTo
reate a new appli
ation you may want to use pre-de�ned algorithm or ar
hite
ture de�nitions. Theseare global de�nitions (vs. lo
al de�nitions from the
urrent appli
ation).From the File menu of the main window,
hoose the Spe
ify Library Dire
tories option. Then
li
k on the Add button of the dialog window and sele
t the target dire
tory. For example, spe
ify theSynDEx libs dire
tory and the examples/basi
_with_library/basi
Libraries dire
tory.To in
lude a library in an appli
ation in order to make referen
es to the obje
ts it
ontains, from theFile menu of the main window,
hoose the In
luded Libraries option. Then
he
k the target library.Un
he
k an already in
luded library to un-in
lude it, provided there are no referen
es in your appli
ationon de�nitions from this library.3.2 To
reate a libraryTo
reate a library of algorithm or ar
hite
ture de�nitions, you must
reate a .sdx �le
ontaining thede�nitions you need. Libraries may be lo
ated in the libs dire
tory, at the root of your installationdire
tory. Or you will have to spe
ify their lo
ation to the SynDEx appli
ation (
f. se
tion 3.1).

10

Chapter 4Using the interfa
e4.1 Sele
tionSele
tion may be applied to verti
es or edges of both algorithm or ar
hite
ture graphs.Cli
k on a vertex (resp. an edge). Red squares appear on its borders, meaning that the vertex (resp.the edge) is sele
ted. To sele
t multiple verti
es and/or edges, use the shift key. To sele
t a set ofverti
es and/or edges, use the left button of the mouse while dragging it, in order to draw a square whenthe button is released. Verti
es inside or interse
ting the square are sele
ted.To move a sele
tion,
li
k on a vertex of the sele
tion. Then drag it until the target position andrelease the mouse. To
an
el a sele
tion
li
k outside the sele
tion.Contextuals menus are available on sele
tions (
f. se
tion 4.3).4.2 ZoomZoom may be applied to ar
hite
ture (
f.
hapter 6) and s
hedule windows (
f. se
tion 9.6) by movingthe zoom
ursor on the border of these windows.4.3 Contextual menusSome
ontextual menus are available in SynDEx. Contextual menus mainly in
lude edition
ommands(Copy, Cut, Paste, Delete).Algorithm windowIn the algorithm window, right
li
k on the ba
kground of an algorithm de�nition window. It opens a
ontextual menu on the target de�nition. Cli
k on a vertex (fun
tion, delay, sensor, a
tuator,
onstant)of an algorithm graph. Red squares appear. Then right
li
k the mouse. It opens a
ontextual menuon the target referen
e.The A
tivate Info Bubbles option displays additionnal information when pointing the
ursor at avertex of any algorithm graph.Ar
hite
ture windowIn an ar
hite
ture window, right
li
k on the ba
kground or
li
k on the Editmenu. It opens a
ontextualmenu on the target de�nition. Cli
k on a vertex (operator,
ommuni
ation medium) of an ar
hite
turegraph. Red squares appear. Then right
li
k the mouse. It opens a
ontextual menu on the targetreferen
e. 11

4.4 Contextual informationWhen the
ursor points at an obje
t of an algorithm (
f.
hapter 5), an ar
hite
ture (
f.
hapter 6) ora s
hedule window (
f. se
tion 9.6), information is displayed in the main window.By default information is not kept when swit
hing between obje
ts. The new information overwritesthe older one. To
hange this behaviour and keep all the information, from the Options menu of themain window,
he
k Keep Information in the Main Window. This is for instan
e useful when theinformation displayed does not �t in the window, whi
h requires to s
roll the main window.4.5 To �nd an obje
tLooking for a vertex, from whi
h you now the name, in a
omplex graph
an be
ome rather tedious.Ar
hite
ture windowIn the ar
hite
ture window (
f.
hapter 6), from the Edit menu,
hoose the Find Operator Referen
eor Find Medium Referen
e option to lo
ate a vertex of your graph by its name. It opens a windowlisting all the verti
es of your graph. Double
li
king on one of them will sele
t it.S
hedule windowIn the s
hedule window (
f. se
tion 9.6), from the Edit menu,
hoose the Find Operation option tolo
ate an operation of your graph by its name. It opens a window listing all the operations of your graph.Double
li
king on one of them will sele
t it.4.6 RefreshTo refresh an ar
hite
ture window, from its Window menu,
hoose the Refresh option. If ne
essary,re-open the algorithm window (
f. Algorithm window in
hapter 5) to refresh it.

12

Chapter 5AlgorithmThe AAA methodologyIn the AAA methodology, an algorithm is spe
i�ed as a dire
ted a
y
li
 graph (DAG) in�nitely repeated.Dire
ted means that for ea
h edge representing a relation between verti
es, the verti
es tuple is ordered,i.e. its �rst element is the sour
e vertex and the other one(s) is(are) the destination vertex(verti
es).Still in AAA, SynDEx algorithm verti
es are operations; operation stands for a sequen
e of instru
-tions whi
h starts after all its input data are available and produ
es all its output data at the end of thesequen
e. Edges are dependen
es between two verti
es.De�nition vs. referen
eIn SynDEx there is a distin
tion between algorithm de�nition and algorithm referen
e. To ea
h referen
e
orresponds one and only one de�nition. To a given de�nition may
orrespond several referen
es. Ade�nition is a DAG similar to those in AAA, ex
ept that verti
es are referen
es or ports.To a given referen
e
ontained in a de�nition
orresponds a de�nition whi
h may
ontain itself severalreferen
es and so on.Hierar
hyIn SynDEx, algorithms
an be de�ned through hierar
hy. A de�nition is said hierar
hi
al when itde�nes an algorithm whi
h
ontains at least one dependen
e (and possibly referen
es), otherwise it issaid atomi
.There are �ve types of atomi
 de�nitions :
• fun
tions read data on input ports, exe
ute instru
tions without any side-e�e
t, write data onoutput ports,
• sensors are input verti
es of the DAG produ
ing data from a physi
al sensor,
• a
tuators are output verti
es of the DAG
onsuming data for a physi
al a
tuator,
•
onstants are input verti
es of the DAG, with null exe
ution time,
• delays memorize data during one or several in�nite repetition of the DAG, for use in next repeti-tions.A de�nition is said expli
itly hierar
hi
al when the algorithm
ontains at least one dependen
e (andpossibly referen
es). This in
ludes
onditioning (
f. se
tion 5.2), repetitions (
f. se
tion 5.3) of hier-ar
hi
al de�nitions, and more generally de�nitions de�ned through several levels of hierar
hy. Only afun
tion may be de�ned through expli
it hierar
hy.A de�nition is said impli
itly hierar
hi
al when the algorithm does not
ontain any dependen
e andyet will be transformed by SynDEx, for the adequation, into a graph whi
h
ontains dependen
es. Thishappens only with repetitions (
f. se
tion 5.3) of atomi
 de�nitions.13

Warning: A hierar
hi
al de�nition does not have to wait for all its input data to be available beforestarting some
omputations. Indeed, parts of the algorithm graph of a hierar
hi
al algorithm de�nitionmay only require parts of the input data of the de�nition and therefore
an start as soon as this partis available (and not all the data). In the same way, some data may be produ
ed before the end of the
omplete sequen
e of
omputations.Dependen
esThere are two types of dependen
es:
• data dependen
e: strong
ommuni
ation and exe
ution pre
eden
e,
• pre
eden
e dependen
e: exe
ution pre
eden
e only.A data dependen
e imposes that the referen
e at the sour
e of the dependen
e, produ
es data and isexe
uted before the referen
e at the destination of the dependen
e, whi
h
onsumes the data. A pre
eden
edependen
e only imposes an exe
ution order between referen
es, no data is produ
ed or
onsumed.Algorithm window

Figure 5.1: Algorithm / New Algorithm WindowIf ne
essary, from the Algorithm menu,
hoose the New Algorithm Window option (
f. �gure5.1). It opens the edition window for algorithm de�nitions (
f. �gure 5.2). Cli
k on the ba
kground ofa de�nition window : the algorithm window shows its De�nition Properties. Cli
k on a referen
e inthis de�nition window : the algorithm window shows its Referen
e Properties. These properties willappear in the left bottom part of the algorithm window (
f. �gures 5.4 and 5.5).5.1 To
reate an algorithm de�nitionTypes of de�nitionsSynDEx distinguishes �ve types of de�nitions with di�erent edition rules:14

Figure 5.2: Algorithm Window
• a fun
tion is a general abstra
tion with no edition restri
tion: it
an
ontain dependen
es, referen
esand ports;
• a sensor is an abstra
tion of a physi
al devi
e produ
ing data: it
an only
ontain output ports;
• an a
tuator is an abstra
tion of a physi
al devi
e
onsuming data: it
an only
ontain input ports;
• a
onstant is a an abstra
tion of a typed value: it
an only
ontain one output port produ
ing thatvalue. For
onvenien
e, the value hold by the
onstant
an be given as a parameter to the
onstantde�nition. Noti
e that this is only possible for values that are representable within the parameterlanguage: integer, float, string and list of su
h values. SynDEx standard library uses this tri
kto de�ne
onstants for the library base types (int, float, ...). For example, the
st de�nition ofthe int library has one parameter: ListOfValues;
• a delay is an abstra
tion of a memory region: it must
ontain one input port (the write port) andone output port (the read port) of the same type, but nothing more. Delays hold the state of aSynDEx appli
ation. Using delays is the only way to propagate data from one iteration of theappli
ation to the next. A delay must be initialized, either by using a parameter (as suggestedabove for
onstant de�nitions) or lately in the real world
ode (as for
onstant de�nitions, doing itin the
ode is the only alternative for delays holding values of
omplex types). SynDEx standardlibrary de�nes delays for its base types as shift registers with two parameters: the �rst one is alist of initial values and the se
ond one is the delay range. The delay range is the size (in numberof items) of the register. For example, the delay de�nition of the int library has two parameters:listInit and nbDelay.New de�nitionTo
reate a new de�nition, in the algorithm window,
li
k on the + green button. It opens a dialogwindow in whi
h you
an sele
t the de�nition's type. For example
he
k Sensor (
f. �gure 5.3). Typethe name of the new sensor and optionally a list of parameters. For example type input. Then
li
kOK. It
reates a de�nition of sensor named input.15

Figure 5.3: De�nition of a sensorParameters are lo
al to the s
ope of a de�nition. Often, parameters are used to
reate more generi
de�nitions. For example, to parameterized the size of a de�nition's ports, we
an
reate a parameterizedde�nition with one parameter standing for the port size. Parameter names are given as a semi-
olonseparated list between < and >, following the de�nition's name. The user
an also edit the parameterslist in the De�nition Properties. Only the main algorithm (
f. se
tion 5.1.1)
an instan
iate itsparameters thanks to its �eld Values in its De�nition Properties (
f. �gure 5.8).5.1.1 De�nition mode and main modeThis se
tion refers to se
tion 2.2.De�nition mode

Figure 5.4: C de�nition in examples/hierar
hy/hierar
hy.sdxDouble
li
k on a de�nition name in theDe�nition list (e.g. open the examples/hierar
hy/hierar
hy.sdxappli
ation and double
li
k on C in the De�nition list). You are now in a de�nition mode (
f. �gure5.4). From a de�nition mode, to open the de�nition
orresponding to a referen
e in order to inspe
t andpossibly modify its
ontent,
li
k on the target referen
e to sele
t it. Red squares appear on its borders(
f. �gure 5.5). Then double
li
k on it. It displays the de�nition of the target referen
e (
f. �gure5.6). 16

Figure 5.5: Opening B1 referen
e in examples/hierar
hy/hierar
hy.sdxMain modeTo de�ne an algorithm as main, right
li
k on the ba
kground of the target de�nition window. Choosethe Set As Main De�nition option (
f. �gure 5.7). The
olor of the ba
kground
hanges and theadress is
hanged from a [Fun
tion℄ to a (main), meaning that you are now in the main mode on the mainalgorithm (
f. �gure 5.8). Noti
e that the main algorithm must be at the root level of a hierar
hy ; it
an not
ontain un
onne
ted ports. Only the main algorithm
an instan
iate its parameters (
f. se
tion5.1) thanks to its �eld Values in its De�nition Properties (
f. �gure 5.8).Cli
k on theMain button of the algorithm window. It displays the main algorithm in the main mode.Cli
k on a hierar
hi
al referen
e to browse down the main algorithm (e.g.
li
k on the C referen
e ofMain then
li
k on the B2 referen
e of C). Then
li
k on Up In Main to browse up the main algorithm.Hierar
hyNow you may
onstru
t a graph with referen
es to
onstants, sensors, a
tuators, delays and fun
tions.If this de�nition is intended to be referen
ed in an expli
it hierar
hy, i.e. this referen
e will belong toa
ertain level of hierar
hy (possibly a leaf), you must use input and output ports. If this de�nitionis intended to be referen
ed at the root level of the hierar
hy, input ports are repla
ed by sensors andoutput ports are repla
ed by a
tuators.Referen
es to an expli
itly hierar
hi
al de�nition are displayed with a double-border (in the �gure 5.4B1 is a referen
e on an expli
itly hierar
hi
al de�nition
ontrary to add).5.1.2 To add a port to a de�nitionPorts are
ommuni
ation interfa
e of a de�nition with the outside world.Types of portsSynDEx distinguishes three types of ports: 17

Figure 5.6: B de�nition in examples/hierar
hy/hierar
hy.sdx
• an input port represents a data that is provided by the outside world to the de�nition;
• an output port represents a data that is provided by the de�nition to the outside world;
• an input/output port
an be seen as a referen
e (or pointer) to a data provided by the outsideworld that the de�nition
an modify in pla
e. This explains the name of input/output ports: we
an read the value of the port and repla
e it by a new one.New portTo add a port to an atomi
 de�nition (
f.
hapter 5):
• in the de�nition mode (
f. se
tion 5.1.1), right
li
k on the ba
kground and
hoose the Add portoption For example
reate a new de�nition named input and add a port to this de�nition (
f.�gure 5.9);
• it opens a dialog window in whi
h you
an type the port dire
tion, type, name and optionally itssize. You
an
li
k on the syntax help link for more information. For example type ! int o,then
li
k OK (
f. �gure 5.10);
• it
reates the target port. In this example, the new port is an integer output port named o (
f.�gure 5.11) in the de�nition window.You
an undo and redo this a
tion.A port de�nition has the following syntax:port_definition ::= dire
tion type [[size ℄ ℄ namedire
tion ::= ? | ! | &where:
• ? spe
i�es an input port,
• ! spe
i�es an output port, 18

Figure 5.7: Set Main de�nition as main algorithm in examples/hierar
hy/hierar
hy.sdx
• & spe
i�es an input/output port.Hint: you
an
reate several ports in one breath by simply putting several port de�nitions in a rowin the dialog window.definition ::= { port_definition }Ports orderIf you plan to generate
ode, it is ne
essary to spe
ify an order for ports whi
h is
onsistent with thede
laration of the
orresponding exe
utable fun
tion. To spe
ify the ports order, right
li
k on theba
kground and
hoose the Ports Order option.Input/output portsInput-output ports have a very spe
i�
 behavior
on
erning data memory allo
ation in the exe
utivesgenerated by SynDEx. For any appli
ation, SynDEx makes data bu�er allo
ations for (and only for)the output ports of the atomi
 referen
es of your algorithm graph. Input-output ports do not
ausean allo
ation but instead an alias on the output port of its prede
essor. The operation
ontaining thisinput-output port dire
tly modi�es the value of its prede
essor port (side-e�e
t). This is useful to avoidreallo
ation of big data bu�ers of the same type (for instan
es images) by making su

essive
omputa-tions on the same data bu�er.However, as side-e�e
ts are not supposed to happen in data-�ow graphs, this
omes with somerestri
tions:
• Ports of delay de�nitions
an not be input/output ports,19

Figure 5.8: Main mode in examples/hierar
hy/hierar
hy.sdx
• Ports of hierar
hi
al de�nitions
an not be input/output ports,
• The data of an input/output port
an not be di�used: if there is a dependen
e A.o �> B.io (whereA.o is an output port and B.io is an input/output port), neither A.o nor B.io
an be di�used (
f.se
tion 5.3.1).5.1.3 To add a referen
e to a de�nitionA referen
e
an be thought as a
all to a fun
tion in a traditional programming language. Here the
alledfun
tion is an algorithm de�nition.New referen
eTo referen
e a de�nition (e.g. myReferen
edDef) into another one (e.g. myDefinition), set the algorithmwindow in de�nition mode on myDefinition (
f. se
tion 5.1.1). Then drag and drop myReferen
edDeffrom the De�nition list to the de�nition window (or sele
t myReferen
edDef in the De�nition list,right
li
k on the ba
kground of the de�nition window, and
hoose the Add referen
e option). Itopens a dialog window. Type the name of the referen
e (e.g. myReferen
e). See �gure 5.12 to see theresult.Parameterized de�nitionsTo referen
e a parameterized de�nition, a valued expression is required for ea
h parameter. This
an bedone by typing a semi-
olon separated list of expressions between < and > after the referen
e's name, inthe dialog window. Please noti
e that the number of expressions must mat
h the number of parametersof the referen
ed de�nition, and that types must mat
h.20

Figure 5.9: Contextual menu → Add port

Figure 5.10: Name of the new port
21

Figure 5.11: A de�nition after port
reation

Figure 5.12: A referen
e to myReferen
edDef into myDefinition22

5.1.4 To add a dependen
e to a de�nitionA dependen
e is an exe
ution order relation between two referen
es.SynDEx distinguishes two types of dependen
es (
f. Dependen
es): data dependen
es and pre
eden
edependen
es (without data). SynDEx automati
ally
reates the right type of dependen
e depending onthe
ontext:
• data dependen
esTo
reate a data dependen
e between two referen
es, point the
ursor at an output port of thesour
e, middle
li
k (or Ctrl left
li
k), then drag and drop on an input port of the destination(or right
li
k on the ba
kground, and
hoose the Add dependen
e option). The sour
e anddestination of a data dependen
e
an also be ports: this is used to read a data from (resp. writea data to) the outside world. Noti
e that for a given non-atomi
 de�nition, all output ports mustbe in dependen
e with input ports: all outputs must be de�ned;
• pre
eden
e dependen
esTo
reate a pre
eden
e dependen
e between two referen
es, point the
ursor at an output pre
eden
eport of the sour
e,middle
li
k, then drag and drop on an input pre
eden
e port of the destination.Input (resp. output) pre
eden
e ports are represented by little bla
k squares at the left (resp.right)of the boxes holding the referen
e names.5.1.5 To
reate a superblo
kA superblo
k is a set of operations, edges and ports extra
ted as a new de�nition.To
reate a de�nition as a superblo
k, sele
t the target set of operations, edges and ports you wantto extra
t (
f. se
tion 4.1). Then right
li
k and
hoose the Extra
t as superblo
k option. A newde�nition is
reated and a referen
e to this de�nition repla
es the sele
ted set. The new de�nition isavailable in the De�nition list, You
an rename both the de�nition and the referen
e.You
an undo and redo this a
tion.5.1.6 To
reate an abstra
t referen
eAn abstra
t referen
e is a referen
e to a hierar
hi
al de�nition in whi
h the hierar
hy is not taken intoa

ount, i.e. the �attening (
f. se
tion 9.5) does not go into the hierar
hi
al referen
ed de�nition thatbe
omes therefore abstra
t. However, noti
e that to perform the adequation this de�nition must have aduration.To
reate an abstra
t referen
e, sele
t the desired hierar
hi
al referen
e then,
he
k the option Ab-stra
t in the Referen
e properties of this referen
e.You
an undo and redo this a
tion.5.2 To
ondition an algorithm de�nitionFirst make sure that the target de�nition
ontains an input port of type int for the
onditioning port.Noti
e that the SynDEx libs dire
tory already provides an int library for operations on integer values.New
onditionRight
li
k on the ba
kground of the de�nition window and
hoose the Create Condition option. Itopens a dialog window for the new
ondition. A
ondition is a port = value expression where port isthe name of the
onditioning port and value is an integer. A new tab is
reated for the given
ondition.The
onditioning port is now yellow
olored (
f. �gure 5.13).If ne
essary, refresh the algorithm window (
f. se
tion 4.6).RemarksNoti
e that there
an be only one
onditioning port. You have to
onstru
t one sub-graph per
ondition(
f. �gure 5.13). For ea
h other value of the
onditioning port, the result is unspe
i�ed and will bein
onsistent. 23

Figure 5.13: swit
h de�nition mode for
ond = 3 in examples/
ondition/simpleCondition/simpleCondition.sdxCondI and CondO verti
esThe adequation and the
ode generation will take into a

ount the expanded graph (
f. se
tion 9.5).SynDEx will introdu
e new verti
es during the expansion: CondI and CondO verti
es.A CondI vertex
onsumes the
onditioning data and
onne
ts the input ports of the
onditionedoperation a

ording to its value.A CondO vertex
onsumes the
onditioning data and
onne
ts the output ports of the
onditionedoperation a

ording to its value.Referen
esIn a de�nition mode (
f. se
tion 5.1.1), referen
es to
onditioned de�nitions have their
onditioning portyellow
olored (
f. �gure 5.14).Delete a
onditionRight
li
k on the ba
kground of the de�nition window and
hoose the Delete Condition option.5.3 To repeat an algorithm de�nition5.3.1 Di�use, Fork, and JoinYou
an
reate a referen
e to a de�nition, and
onne
t to its input (resp. output) ports some output(resp. input) ports with di�erent sizes. The pre-
ondition is to have a unique
ommon multiple betweenea
h pair of ports of di�erent sizes. This multiple is the repetition fa
tor of the referen
e.Multipli
ation of a ve
tor by a s
alarSuppose that you want to spe
ify the multipli
ation of a ve
tor by a s
alar giving a ve
tor as result(
f. AlgorithmMain1 in examples/tutorial/example4). You
an spe
ify it by repeating the multipli
ationbetween two s
alars instead of de�ning a new one. For example for N length ve
tors, you may spe
ify24

Figure 5.14:
onditioned de�nition mode in examples/
ondition/simpleCondition/simpleCondition.sdx

Figure 5.15: AlgorithmMain1 de�nition mode in examples/tutorial/example4/example4.sdx25

the repetition by N multipli
ations between s
alars giving a s
alar as a result (
f. �gure 5.15).You have to:
•
reate a de�nition parameterized by N,
• referen
e the multipli
ation on s
alars mul,
•
onne
t the output port of a s
alar (e.g. s_input) to one of its input ports (e.g. mul.a),
•
onne
t the output port of a ve
tor (e.g. v_input) to the other input port (e.g. mul.b),
•
onne
t its output port (mul.o) to the input port of a ve
tor (e.g. v_output),
• set the repetition fa
tor of mul to N:
li
k on the mul referen
e, then type N in its Referen
eProperties (
f. Algorithm window in
hapter 5).Repetition fa
torThe
ommon multiple between ea
h pair of ports with di�erent sizes is N. It is the repetition fa
tor thatyou have to set expli
itely by using a symboli
 numbered expression.Di�use the s
alarSin
e the output port of s_input has the same size as its
onne
ted input port of the multipli
ationfun
tion, it is repli
ated N times in order to be multipli
ated by ea
h element of v_input. This is aDi�use operation.Fork the ve
torSin
e the fun
tion operates on s
alars and the v_input ve
tor has N elements, ea
h of its elements areprovided separately in order to be multipli
ated. This is a Fork operation.Join the internal resultsSin
e the fun
tion operates on s
alars and the v_output ve
tor has N elements, ea
h repetition of themultipli
ation is taken in order to be provided as a N elements ve
tor. This is a Join operation.RepresentationThe repetition fa
tor is displayed next to the name of the referen
e (e.g. in the �gure 5.15 mul is repeatedN times). The main algorithm (e.g. AlgorithmMain3) instan
iates its parameters (
f. �gure 5.8). Fromthe main mode in examples/tutorial/example4/example4.sdx (
f. se
tion 5.1.1), double
li
k on thematprodve
 referen
e, the dotprod referen
e is repeated three times (
f. �gure 5.16).Explode and Implode verti
esThe adequation and the
ode generation will take into a

ount the expanded graph (
f. se
tion 9.5).SynDEx will introdu
e new verti
es during the expansion: Explode and Implode verti
es.An Explode vertex extra
ts for ea
h repetition of a de�nition ea
h element of the data it re
eives (
f.subse
tions Di�use and Fork).An Implode vertex builds the data it sends by
on
atenating ea
h separated element produ
ed byea
h repetition of the de�nition (
f. subse
tion Join).5.3.2 IterateIn some
ases, you may want to repeat a referen
e but have no di�eren
e between port sizes.26

Figure 5.16: matprodve
 main mode from AlgorithmMain3 main algorithm inexamples/tutorial/example4/example4.sdx

Figure 5.17: dp de�nition mode in examples/tutorial/example4/example4.sdx27

Multipli
ation of two ve
torsSuppose that you want to spe
ify the multipli
ation of two ve
tors giving a s
alar as a result (
f. �gure5.17). You
an spe
ify it by repeating the multipli
ation between two s
alars, that used an a

umulatorto store the partial sum. For example if for dpa

n length ve
tors, you may spe
ify the repetition bydpa

n multipli
ations between three s
alars (the i element of the �rst ve
tor, the i element of the se
ondone, and the a

umulator, initialized to 0).You have to:
• referen
e the multipli
ation on s
alars with a

umulator (e.g. dp),
•
onne
t two ve
tors (e.g. v1 and v2) to the s
alar input ports of the multipli
ation,
•
onne
t a {0}
onstant to the a

 input port of the multipli
ation,
•
onne
t the output port of the multipli
ation to a s
alar (e.g. dp),
•
onne
t the a

 output port of the multipli
ation to its a

 input port
hoosing an Iterate edge,
• repeat dpa

n times the multipli
ation (in the Referen
e Properties of the dpa

 referen
e).The a

umulator is initialized with {0}. Then the output of the repetition i be
omes the a

umulatorof the repetition i+1. The output of the last repetition is the output of the repeated de�nition. This isan Iterate operation.5.4 To modify an algorithm de�nition or a referen
e5.4.1 Modify a de�nitionDouble
li
k on the de�nition name in the De�nition List or double
li
k on a referen
e from ade�nition mode (
f. se
tion 5.1.1). It opens its de�nition window. Right
li
k on the ba
kground ofthe de�nition window. Choose the Add dependen
e option (
f. se
tion 5.1.4), Add port (
f. se
-tion 5.1.2), Add referen
e (
f. se
tion 5.1.3), Create Condition or Delete Condition (
f. se
tion5.2) to modify the de�nition. Cli
k on the ba
kground of a de�nition window (
f. Algorithm window in
hapter 5). Use itsDe�nition Properties to modify itsName, Des
ription, Parameters orValues.Note:You
an modify lo
al and global de�nitions (
f. se
tion 3.1). Modi�
ations on a global de�nitionimpa
t only the
urrent appli
ation and the library remains un
hanged. To modify a global de�nitionover-all, open the
orresponding SynDEx library �le (e.g. libs/int.sdx). Modi�
ations on a de�nitionin a library may have
onsequen
es on all the appli
ations using this library.5.4.2 Modify a referen
eCli
k on a referen
e in a de�nition window (
f. Algorithm window in
hapter 5). Use its Referen
eProperties to modify its Name, Parameters, Repeat or Period. For the period see the se
tion 5.7�To build mutli-periodi
 appli
ations�.5.5 To delete an algorithm de�nitionTo delete a de�nition, in the algorithm window,
li
k on the - red button.Note: Deleting a global de�nition (
f. se
tion 3.1) impa
ts only the
urrent appli
ation.28

Figure 5.18: Edition of the
onv
ode phases in examples/tutorial/example7/example7.sdx

Figure 5.19: Edition of the
ode asso
iated with
onv in examples/tutorial/example7/example7.sdx29

Figure 5.20: Code asso
iated with
onv in loop phase in examples/tutorial/example7/example7.sdx5.6 To asso
iate
ode with an algorithm de�nition5.6.1 The
ode editor windowRight
li
k on the ba
kground of a de�nition window. Choose the Edit
ode phases option (
f. �gure5.18). Che
k init (resp. end) to generate
ode in the initialization phase (resp. ending phase).Right
li
k on the ba
kground of a de�nition window. Choose the Edition of the asso
iatedsour
e
ode option (
f. �gure 5.19). It opens the
ode editor window on the initialization phase forthe sele
ted de�nition. Cli
k on loop phase (resp. end phase) to edit the
ode asso
iated in the loopphase (resp. ending phase) (
f. �gure 5.20).5.6.2 The
ode editor ma
ro language
Figure 5.21: M4 ma
ro
ode for
onv in examples/tutorial/example7/example7_sd
.sdxFrom the Code menu of the main window,
he
k Generate m4x �les. At
ode generationtime, the
ode written in the
ode editor will be wrapped into M4 ma
ro
ode, and outputed into30

an appli
ation_name _sd
.m4x �le. These �les
ontain one M4 ma
ro de�nition per algorithm de�nition(
f. �gure 5.21). The
ode editor o�ers several ma
ros to abstra
t away the M4 nature of the output�le. These ma
ros are of two kinds: port and parameter names translation ma
ros, and quoting ma
ros(
f. ma
ros dire
tory).Names translation ma
rosParameter and port names of an algorithm de�nition are en
oded as parameters of the
orrespondingM4 ma
ro. Be
ause the M4 language uses positional parameters, when the user wants to refer to aparameter or port in the asso
iated
ode he has to know its position in the M4 ma
ro parameters list.More than being not very handy, this is fragile relatively to adds or deletions of ports and parameters inthe de�nition: when the user adds a port or a parameter to a de�nition, he has to adjust (repla
e $n by$n+1 in) all referen
es to parameters or ports
oming after the added one in the parameters list of theM4 ma
ro. To over
ome this di�
ulty, the
ode editor re
ognizes the following ma
ros (
f. �gure 5.20):
• �IN(prt) refers to the input port named prt,
• �OUT(prt) refers to the output port named prt,
• �INOUT(prt) refers to the input/output port named prt,
• �PARAM(prm) refers to the parameter named prm,
• �NAME(pr) refers to the port or parameter named pr. When using this ma
ro, you should be
arefulthat the port or parameter you want to refer to has a unique name in the de�nition.Quoting ma
rosQuoting ma
ros are used to wrap or unwrap
ode by M4 quote. The
ode editor re
ognizes the followingquoting ma
ros :
• �QUOTE(txt) will be put as `txt' in the output �le,
• �TEXT(`txt') will be put as txt in the output �le.5.6.3 The
ode editor short
utsThe
ode editor supports various keyboard short
uts that
ould be handy when editing sour
e
ode.Ctr-Tab Insert a tabulation.Tab Complete a port name. Type the begining of a port name, then press Taband as many times as ne
essary for the editor to �nd the wanted
ompletion.Ctr-I Insert the �IN ma
ro at
ursor position.Ctr-O Insert the �OUT ma
ro at
ursor position.Ctr-N Insert the �INOUT ma
ro at
ursor position.Ctr-P Insert the �PARAM ma
ro at
ursor position.Ctr-T Insert the �TEXT ma
ro at
ursor position.Ctr-Q Insert the �QUOTE ma
ro at
ursor position.Ctr-W Cut the sele
ted text into the
lipboard.Ctr-K Cut text from
ursor position to the end of the line.Alt-W Copy the sele
ted text into the
lipboard.Ctr-Y Paste the
lipboard
ontent at
ursor position.Ctr-A Jump to the beginning of the line.Ctr-E Jump to the end of the line.Ctr-up Jump to the beginning of the bu�er.Ctr-down Jump to the end of the bu�er. 31

5.7 To build multi-periodi
 appli
ationsUntil version 6 of SynDEx, a unique timing information (exe
ution duration) is asso
iated to ea
hoperation (resp. ea
h data type of a dependen
e) relatively to the operators (resp. media) it may bedistributed to. This timing information whi
h depends on the hardware is asso
iated to the de�nition ofevery operation. Appli
ations spe
i�ed by the user with version 6 are impli
itely mono-periodi
, meaningthat all the operations of the algorithm graph have the same period whi
h is equal to the total exe
utiontime of all the operations exe
uted on the di�erent
omponents of the ar
hite
ture, taking into a

ountthe duration of data
ommuni
ations through the media. This information is depi
ted as the value ofthe �Cy
le time� in the s
hedule window resulting from the adequation.Version 7 of SynDEx allows the user to spe
ify, in addition to a duration, a period to ea
h operation.The period is a timing information asso
iated to the referen
e of an operation instead of its de�nition.This feature allows the user to spe
ify an operation de�nition with the same exe
ution duration ea
htime it is referen
ed, whereas this operation may be referen
ed with several periods. Noti
e that for agiven operation its period must me greater than its exe
ution duration to be s
hedulable.As soon as a period is asso
iated to at least one operation referen
e, the appli
ation be
omes multi-periodi
. In other words, an appli
ation is mono-periodi
 if no period is asso
iated to operation referen
es.In both
ases exe
ution durations must be asso
iated to operation de�nitions and data type of depen-den
es. A multi-periodi
 appli
ation has a global period equal to the LCM (Least Common Multiple)of all the periods asso
iated to the operation referen
es. This information is depi
ted as the value of the�Cy
le time� in the s
hedule window resulting from the adequation.Version 7 of SynDEx, using the period and the exe
ution duration of every operation, performs adistributed real-time s
hedulability analysis to determine if the multi-periodi
 appli
ation is s
hedulable.If it is the
ase it will generate the
orresponding ma
ro-
ode.Multiple or equal periodsOperations related by a dependen
e must have multiple or equal periods. While
reating a dependen
e be-tween operations whi
h have in
onsistent periods, an error message appears to help the user (e.g. Can not
reate dependen
e input.o ->
ompute.in in definition basi
Algorithm Error #1 [In
onsistent periods℄).While
reating a dependen
e between operations whi
h have multiple periods, there are two
ases:
• the produ
er operation has a period p lower than the period n of the
onsumer operation. Inthis
ase the produ
er operation exe
utes n/p times more than the
onsumer operation and
on-sequently, produ
es n/p data for the
onsumer operation involving that these data are memo-rized. SynDEx displays a warning message indi
ating that the destination port's size will be in-
reased (e.g. #1 Warning about dependen
e input.o ->
ompute.in in definition basi
Algorithm[The size of destination
ompute.in will in
rease to 2 times the original size℄). In addition,it
reates a new operation
alled with the data type of the dependen
e pre�xed by �Implode_�(e.g. Implode_int). This new operation is in
harge of
olle
ting the n/p data for the
onsumeroperation. Noti
e that the user must give a duration to this new operation. In
ase he forgot it awarning message will ask for during the adequation ;
• the produ
er operation has a period p greater than the period n of the
onsumer operation. In this
ase the produ
er operation exe
utes n/p times less than the
onsumer operation and
onsequently,the
onsumer operation
onsumes n/p the same data.Hierar
hi
al referen
esVeri�
ations on periods are propagated to hierar
hi
al referen
es.While setting the period to a hierar
hi
al referen
e, SynDEx veri�es that the new period is
ompatiblewith the periods of the referen
es it
ontains. A
tually, the period of a hierar
hi
al referen
e must beequal (or multiple) to the Least Common Multiple (LCM) to the periods of the referen
es it
ontains.While setting the period to a referen
e
ontained in a hierar
hi
al referen
e, SynDEx veri�es thatthe new period is
ompatible with the period of the hierar
hi
al referen
e. A
tually, the period of areferen
e
ontained in a hierar
hi
al referen
e must be equal (or must be a divisor) to the period of thehierar
hi
al referen
e. 32

AdequationSee the se
tion 9.4 for details about the adequation pro
ess in
ase of mutli-periodi
 appli
ations.

33

Chapter 6Ar
hite
tureAn ar
hite
ture is spe
i�ed as a non dire
ted graph where verti
es are of two types: operator or
ommu-ni
ation medium, and ea
h edge is a
onne
tion between an operator and a
ommuni
ation medium.6.1 Operator6.1.1 To
reate an operator de�nition

Figure 6.1: De�nition of an operatorFrom the Ar
hite
ture menu of the main window,
hoose the De�ne Operator option (
f. �gure6.1). It opens a dialog window. Type the name of the new operator (e.g. U). Then
li
k OK. It opensthe new operator de�nition window (
f. �gure 6.2). By default the
ode will be generated only for theloop phase of the operator. See the se
tion 6.1.2 to set its gates, durations and
ode phases.6.1.2 To modify an operator de�nitionFrom the Ar
hite
ture menu of the main window, Choose the Edit Operator De�nition option. Itopens a browse window. Sele
t the target operator. It opens its de�nition window with Modify gates,34

Figure 6.2: New U operator de�nition windowModify durations, and Modify
ode generation phases buttons.GatesCli
k on the Modify gates button. It opens a dialog window in whi
h you
an set the gates, one perline. For example typeTCP xTCP yA gate has the following syntax:gate_definition ::= medium_definition_name gate_namewhere:
• medium_definition_name spe
i�es a
ommuni
ation medium to
onne
t with,
• gate_name. spe
i�es the new gate.DurationsCli
k on the Modify durations button to spe
ify durations by operation (
f.
hapter 7).Code generation phasesCli
k on theModify
ode generation phases button. Che
k init (resp. end) to generate
ode in theinitialization phase (resp. ending phase).Note: You
an modify lo
al and global operators (
f. se
tion 3.1). Modi�
ations on a global operatorimpa
t only the
urrent appli
ation and the library remains un
hanged. To modify a global operatorover-all, open the
orresponding SynDEx library �le (e.g. libs/u.sdx to modify u/U). Modi�
ations ona de�nition in a library may have
onsequen
es on all the appli
ations using this library.6.1.3 To delete an operator de�nitionFrom the Ar
hite
ture menu of the main window,
hoose the Delete Operator option. It lists thelo
al operator de�nitions (
f. se
tion 3.1). Sele
t the target operator.Note: Deleting a global operator (
f. se
tion 3.1) impa
ts only the
urrent appli
ation.35

6.2 Communi
ation medium6.2.1 To
reate a medium de�nitionFrom the Ar
hite
ture menu of the main window,
hoose the De�ne Medium option. It opens adialog window. Type the name of the new
ommuni
ation medium. Then
li
k OK. It opens the new
ommuni
ation medium de�nition window. By default a new
ommuni
ation medium has type SAMpoint-to-point. See the se
tion 6.2.2 to set its type and durations.6.2.2 To modify a medium de�nitionFrom the Ar
hite
ture menu of the main window, Choose the Edit Medium De�nition option. Itopens a browse window. Sele
t the target
ommuni
ation medium. It opens its de�nition window withModify type, and Modify durations buttons.TypeCli
k on the Modify type button. It opens a dialog window in whi
h you
an
hange the type of the
ommuni
ation medium. For example,
he
k SAM MultiPoint (resp. RAM).DurationsCli
k on the Modify durations button to spe
ify durations by data type (
f.
hapter 7).Note: You
an modify lo
al and global media (
f. se
tion 3.1). Modi�
ations on a global
ommu-ni
ation medium impa
t only the
urrent appli
ation and the library remains un
hanged. To modify aglobal
ommuni
ation medium over-all, open the
orresponding SynDEx library �le (e.g. libs/u.sdx tomodify u/TCP). Modi�
ations on a de�nition in a library may have
onsequen
es on all the appli
ationsusing this library.6.2.3 To delete a medium de�nitionFrom the Ar
hite
ture menu of the main window,
hoose the Delete Medium option. It lists thelo
al
ommuni
ation medium de�nitions (
f. se
tion 3.1). Sele
t the target
ommuni
ation medium.Note:Deleting a global
ommuni
ation medium (
f. se
tion 3.1) impa
ts only the
urrent appli
ation.6.3 Ar
hite
ture6.3.1 To
reate an ar
hite
ture de�nitionFrom the Ar
hite
ture menu of the main window,
hoose the De�ne Ar
hite
ture option. It opensa dialog window. Type the name of the new ar
hite
ture. Then
li
k OK. It opens the new ar
hite
turede�nition window. Now you may
onstru
t a graph with referen
es to operators and media.New operator referen
eTo referen
e an operator into an ar
hite
ture, from the Edit menu of the ar
hite
ture window
hoose theReferen
e Operator option. It opens a browse window. Sele
t the target operator. It opens a dialogwindow. Type the name of the referen
e. Then
li
k OK.New medium referen
eTo referen
e a
ommuni
ation medium into an ar
hite
ture, from the Edit menu of the ar
hite
turewindow
hoose the Referen
e Medium option. It opens a browse window. Sele
t the target operator.It opens a dialog window. Type the name of the referen
e. Then
li
k OK. In
ase of a SAM multipointmedium, it opens a dialog window. Che
k Broad
ast or No Broad
ast for the mode of the referen
e.36

Then
li
k OK.Note for a SAM multipoint medium referen
e: In
ase of a SAM multipoint medium in Broad-
ast mode, all operators
onne
ted to this
ommuni
ation medium will re
eive ea
h and every messagesent on the
ommuni
ation medium. In
ase of SAM multipoint medium in No Broad
ast mode, ea
hmessage will be re
eived by only one operator : the destination operator of the message. Right
li
k ona medium referen
e and
hoose Broad
ast Mode to
hange it.New
onne
tionTo
onne
t an operator and a
ommuni
ation medium, point the
ursor at a gate of the operator referen
e,middle
li
k, then drag and drop on the
ommuni
ation medium referen
e.6.3.2 To set the main ar
hite
ture

Figure 6.3: Set u/biPro
 as main ar
hite
ture in examples/tutorial/example7/example7.sdxSet the main operatorTo de�ne an operator of an ar
hite
ture as main,
li
k on the target operator, right
li
k, then
hoosethe Set As Main Operator option.Set the main ar
hite
tureTo de�ne an ar
hite
ture as main, right
li
k on the ba
kground of the target ar
hite
ture. Choosethe Set As Main Ar
hite
ture option (
f. �gure 6.3). The ar
hite
ture window is now labelled with(main).Edit the main ar
hite
tureTo open the main ar
hite
ture, from the Ar
hite
ture menu of the main window,
hoose the EditMain Ar
hite
ture option. 37

6.3.3 To modify an ar
hite
ture de�nitionFrom the Ar
hite
ture menu of the main window, Choose the Edit Ar
hite
ture De�nition option.It opens a browse window. Sele
t the target ar
hite
ture. It opens its de�nition window.Note: You
an modify lo
al and global ar
hite
tures (
f. se
tion 3.1). Modi�
ations on a globalar
hite
ture impa
t only the
urrent appli
ation and the library remains un
hanged. To modify a globalar
hite
ture over-all, open the
orresponding SynDEx library �le (e.g. libs/u.sdx to modify u/biPro
).Modi�
ations on a de�nition in a library may have
onsequen
es on all the appli
ations using this library.6.3.4 To delete an ar
hite
ture de�nitionFrom the Ar
hite
ture menu of the main window,
hoose the Delete Ar
hite
ture option. It liststhe lo
al ar
hite
ture de�nitions (
f. se
tion 3.1). Sele
t the target ar
hite
ture.Note: Deleting a global ar
hite
ture (
f. se
tion 3.1) impa
ts only the
urrent appli
ation.

38

Chapter 7Chara
teristi
sThe heuristi
s performed by the adequation use the
hara
teristi
s of ea
h operation and ea
h datadependen
e relatively to the operators and media it may be distributed to. Presently we are mainlyinterested in real-time performan
es. Therefore the operations of algorithm graphs must be
hara
terizedin terms of duration relatively to the operators and media of ar
hite
ture graphs.7.1 Exe
ution durations7.1.1 Operation durationsIn the algorithm window, right
li
k on the ba
kground of an algorithm de�nition window. Choosethe Durations option. It opens a dialog window in whi
h you
an set the exe
ution durations of theoperation by operator (e.g. u/U = 3 spe
i�es the duration required to exe
ute the target operation onan u/U operator).An operation duration has the following syntax:operation_duration ::= operator_definition_name = valuewhere:
• operator_definition_name spe
i�es an operator,
• value spe
i�es the duration as an integer time unit.7.1.2 Operator durationsIn an operator de�nition window,
li
k on the Modify durations button. It opens a dialog window inwhi
h you
an set the exe
ution durations on the operator by operation (e.g. bool/AND = 2 spe
i�es theduration required to exe
ute a bool/AND operation on the target operator).An operator duration has the following syntax:operator_duration ::= operation_definition_name = valuewhere:
• operation_definition_name spe
i�es an operation,
• value spe
i�es the duration as an integer time unit.39

7.2 Communi
ation durationsIn a medium de�nition window,
li
k on the Modify durations button. It opens a dialog window inwhi
h you
an set the
ommuni
ation durations on the
ommuni
ation medium by data type (e.g. u/bool= 1 spe
i�es the duration required to transfer one element of type u/bool on the target
ommuni
ationmedium).A medium duration has the following syntax:medium_duration ::= data_type = valuewhere:
• data_type spe
i�es a basi
 data type,
• value spe
i�es the duration as an integer time unit.7.3 Libraries

Figure 7.1: u/U durations window in examples/basi
_with_library/basi
BiPro
/basi
BiPro
.sdxIn
ase of a duration already spe
i�ed in a library, a lib/operator_definition_name = value orlib/operation_definition_name = value or lib/data_type = value line will appear in the
orrespondingduration windows (
f. �gure 7.1).You
an modify durations of lo
al and global de�nitions. Modi�
ations on a duration of a globalde�nition impa
t only the
urrent appli
ation and will not be saved with the
urrent appli
ation.
40

Chapter 8ConstraintsSome operations of the main algorithm graph may be
onstrained to be exe
uted on spe
i�
 operatorsof the ar
hite
ture graphs. In this
ase the heuristi
s will not have the
hoi
e in distributing them.These
onstraints are spe
i�ed through operation groups. All the operations of an operation group willbe distributed on the same operator.8.1 To
reate an operation groupTo
reate a new operation group, from the Algorithm menu of the main window,
hoose the De�neOperation Group option. It opens a dialog window. Type the name of the new operation group. Then
li
k OK.8.2 To atta
h referen
es to operation groups

Figure 8.1: algo as main algorithm in examples/tutorial/example7/example7.sdx41

From the main mode of the algorithm window (
f. se
tion 5.1.1)
li
k on the target referen
e. In itsReferen
e Properties (
f. Algorithm window in
hapter 5)
li
k on the Group button and sele
t thetarget operation group (
f. �gure 8.1).If it referen
es a hierar
hi
al de�nition, all the referen
es of this hierar
hy will be atta
hed to thisoperation group (ex
ept referen
es of this hierar
hy that may be expli
itly atta
hed to another operationgroup).In parti
ular, in
ase of a referen
e to a
onditioned (resp. repeated) de�nition its CondI and CondO(resp. Explode and Implode) verti
es
reated by SynDEx when �attening the algorithm graph (
f. se
tion9.5). will be atta
hed to the operation group.8.3 To
onstraint operation groups on operators

Figure 8.2: Constraints on the main ar
hite
ture in examples/tutorial/example7/example7.sdxTo
onstraint the referen
es atta
hed to a given operation group to be distributed on a spe
i�
operator, you will
onstraint the operation groups on operators. From the Constraints menu,
hoosethe Absolute Constraints option. Then sele
t the target ar
hite
ture. To
onstraint an operationgroup on an operator,
li
k on the target group in the left list, then
li
k on the target operator in themiddle and �nally
li
k on the Create button. It adds the new
onstraint in the right list (
f. �gure8.2). Cli
k on the OK button to
on�rm your new
onstraint list, otherwise
li
k on the Can
el button.8.4 To delete an operation groupTo delete an operation group, from the Algorithm menu of the main window,
hoose the DeleteOperation Group option. It lists all the operation groups. Sele
t the target group.

42

Chapter 9AdequationPerforming an adequation means to exe
ute heuristi
s, seeking for an optimized implementation of agiven algorithm onto a given ar
hite
ture.9.1 Main algorithm and main ar
hite
tureThere
an be several algorithms and ar
hite
tures but only onemain algorithm (
f. Main mode in se
tion5.1.1) and one main ar
hite
ture (
f. se
tion 6.3.2) on whi
h the adequation will be performed.To de�ne an algorithm as main, right
li
k on the ba
kground of the target de�nition window.Choose the Set As Main De�nition option. To de�ne an ar
hite
ture as main, right
li
k on theba
kground of the target ar
hite
ture. Choose the Set As Main Ar
hite
ture option9.2 Chara
terizationTo be able to perform an adequation, ea
h type must be asso
iated with a duration (
f.
hapter 7).SynDEx needs
hara
terization for ea
h vertex of the transformed graph to perform the adequation. Youwill also have to
hara
terize additional operations generated by SynDEx in
ase of
onditioning (
f.se
tion 5.2) or repetition (
f. se
tion 5.3).9.3 To laun
h the adequationTo laun
h the adequation of the main algorithm onto the main ar
hite
ture, from the Adequation menu,
hoose the Laun
h Adequation option.The adequation pro
ess in pre
eded by:
• a �attening pro
ess (
f. 9.5),
• a veri�
ation pro
ess on the �attened graph (e.g. non existen
e of dependen
e
y
les).9.4 Multi-periodi
 appli
ationsIn
ase of a multi-periodi
 appli
ation, the �attening pro
ess is pre
eded by:
• an assignment pro
ess ; in
ase of a non-s
hedulable appli
ation, SynDEx displays an error message(e.g. ABORTING: The system is not s
hedulable!).
• an unroll pro
ess ; operations are repeated in a

ordan
e with their periods, dependen
es are added,Implode verti
es are added to group data sent by several instan
es of a given produ
er operation toa
onsumer operation. Noti
e that this new operation
reated by SynDEx must have an exe
utionduration. If the user omits to set this value SynDEx will ask for by displaying a warning window.43

9.5 FlatteningHierar
hyThe main algorithm graph is transformed for the adequation to obtain a graph with a unique levelof hierar
hy, where ea
h vertex is an operation in the sense of AAA (whi
h is the same as an atomi
de�nition in SynDEx). This transformation
onsists in repla
ing referen
es by
orresponding de�nitions,and paths of dependen
es
onne
ted along the hierar
hy through ports by dire
t dependen
es between
orresponding ports of the transformed operations.Abstra
t referen
esIn
ase of abstra
t referen
es (
f. se
tion 5.1.6), the hierar
hy is not taken into a

ount, i.e. the �atteningdoes not go into the hierar
hi
al referen
ed de�nitions. All the abstra
t referen
es are dire
tly repla
edby operations
ontaining the same ports as their de�nition. Referen
es or dependen
es in
luded in thosede�nitions are ignored.9.6 S
heduleThe s
hedule is displayed as sets of operations in�nitely repeated.In
ase of a multi-periodi
 appli
ation, the s
hedule may have two parts:
• a transient part exe
uted only one time,
• a permanent part in�nitely repeated.SynDEx adds some Wait verti
es to for
e the operators to satisfy the start time dates of everyoperation
omputed by the adequation, taking into a

ount their period.9.6.1 To display the s
heduleTo view the
omputed distribution and s
hedule, from the Adequation menu,
hoose the DisplayS
hedule option. It opens a window for the diagram of the real-time simulation of the algorithmexe
uted on the ar
hite
ture.9.6.2 The s
hedule windowIn the s
hedule window you will �nd one s
hedule for ea
h operator and for ea
h
ommuni
ation mediumof the ar
hite
ture.OperatorsEa
h s
hedule for an operator des
ribes a s
heduling of
onstants, sensors, a
tuators, fun
tions anddelays. By default
onstants are not displayed. From the Window menu,
hoose S
hedule DisplayOptions. Then
he
k Show Constants to
hange this setting.MediaEa
h s
hedule for a
ommuni
ation medium des
ribes a s
heduling of inter-operator
ommuni
ations,sending (resp. re
eiving) data from (resp. to) an operator.S
aleEa
h box has a length whi
h is proportional to the duration of the
orresponding operation. In
ase ofbig duration di�eren
es, you
an disable the s
ale. From theWindow menu,
hoose S
hedule DisplayOptions. Then un
he
k S
ale to
hange this setting.44

ColorsWhen the
ursor points at an operation, its box is highlighted in orange. The prede
essors of the targetoperation have their boxes highlighted in green and its su

essors in red.Other optionsCli
k on a
olumn of an operator or a
ommuni
ation medium. Then drag and drop on another
olumnto
hange its position.From the Window menu,
hoose S
hedule Display Options. Che
k Horizontal Display to
hange the orientation of the display. Che
k Show Arrows to draw arrows between boxes whi
h are inrelation of exe
ution pre
eden
e Un
he
k Labels to not draw the names of the operations.

45

Chapter 10Code generationWhen the adequation has been performed,
ode may be generated for the main ar
hite
ture.Warning: To generate
ode, it is mandatory to de�ne a pro
essor of the main ar
hite
ture as themain operator (
f. se
tion 6.3.2).10.1 To generate the
odeFrom the Code menu,
hoose the Generate Exe
utive(s) option. The generated .m4 �les are savedin the appli
ation's dire
tory, one �le per pro
essor.10.2 To view generated �lesFrom the Code menu,
hoose the Display Exe
utive(s) option.If the option Generate m4x Files of the Code menu is
he
ked, SynDEx also produ
es ma
ro �les:
• an appli
ation_name.m4x �le (if not already existing),
• an appli
ation_name _sd
.m4x �le.The .m4x �le is the only user ma
ro �le whi
h the M4 ma
hinery is aware of. Thus, it should in
ludethe _sd
.m4x �le. The _sd
.m4x �le
ontains M4 ma
ro de�nitions
orresponding to algorithm de�nitionsthat have been asso
iated with a sour
e
ode via the SynDEx
ode editor. This �le should not be editedby hand be
ause it is overwritten ea
h time the user triggers
ode generation.The user should put its hand-written ma
ro de�nitions in the .m4x whi
h is automati
ally
reated bySynDEx only if not already existing. If this �le is
reated by hand, the user should be
areful to in
ludethe _sd
.m4x at the begining of the �le.10.3 OverviewIn this se
tion we give a brief summary of �les you will require to generate and
ompile your exe
utive�les. Code generation prin
iples will be detailed in next se
tions. Files required are:
• appli
ation_name.m4x whi
h may be empty, and optionally some pro
essor_name.m4x,
• appli
ation_name.m4m,
• GNUmakefile,
• appli
ation_name.m4, and one pro
essor_name.m4 �le per pro
essor from the main ar
hite
tureThese �les are generated during the exe
utive generation by SynDEx.46

For the �les whi
h are not generated by SynDEx, most of the time you
an simply
opy existing ones(for instan
e from the example dire
tory) and make modi�
ations explained in the
omments of these�les. On
e you gathered all these �les, type make appli
ation_name.all in your shell. It
ompiles theexe
utive �les. Then laun
h the exe
utable �le of the main pro
essor. You
an also
lean your dire
toryby typing make
lean.10.4 To
ompile an exe
utiveEa
h ma
ro-exe
utive sour
e �le must be �rst translated by the GNU M4 ma
ro-pro
essor, into a text�le in the language preferred for the pro
essor (usually assembler for e�
ien
y, sometimes C or anotherhigh-level language for portability). This translation relies on several �les in
luded in the following order:
• the �rstma
ro-
all of thema
ro-exe
utive sour
e (in
lude(syndex.m4x)) in
ludes the �le syndex.m4xwhi
h de�nes all the SynDEx generi
 (pro
essor -independent) ma
ros whi
h rely on low-level spe-
i�
 ma
ros expe
ted to be de�ned by the following in
luded �les;
• the se
ond ma
ro-
all of the ma
ro-exe
utive sour
e pro
essor _(pro
essor_type, pro
essor_name,appli
ation_name, version, date)) in
ludes:� the �le pro
essor_type.m4x whi
h de�nes low-level ma
ros spe
i�
 to the type of pro
essor,� the �le appli
ation_name.m4x whi
h de�nes appli
ation-spe
i�
 ma
ros,� optionally the �le pro
essor_name.m4x whi
h de�nes ma
ros spe
i�
 to the target pro
essor ;
• then, after the memory-allo
ation ma
ro-
alls, ea
h
ommuni
ation sequen
e starts with athread _(medium_type, medium_name,
onne
ted_pro
essor_names) ma
ro-
all whi
h in
ludes the�le medium_type.m4x whi
h de�nes low-level
ommuni
ation ma
ros spe
i�
 to the type of the
ommuni
ation medium.These indire
ted in
lusions, through the names spe
i�ed under SynDEx, provide a very �exible andpowerful me
hanism needed to support e�
iently heterogeneous ar
hite
tures, with heterogeneous lan-guages and
ompilation
hains. Then ea
h ma
ro-pro
essed text �le must be
ompiled with the adequate
ompiler, and linked with the adequate linker against separately
ompatibly-
ompiled appli
ation-spe
i�
�les and/or pro
essor -spe
i�
 libraries, for those ma
ros whi
h
annot simply inline the desired
ode,but instead must
all separately
ompiled
odes.10.5 To load the
ompiled exe
utiveIn an heterogeneous ar
hite
ture, there are di�erent
ompilation
hains, with di�erent exe
utable formatswhi
h have to be transfered through di�erent types of intermediate media and pro
essors to be �nallyloaded by di�erent boot loaders. For these reasons, a post-pro
essor is required for ea
h type of pro
essor,in order to en
apsulate this heterogeneity into a
ommon download format. This is explained in moredetails in the downloader spe
i�
ation (
f.
hapter 11).10.6 To automate the
ompilation/load pro
essAll pro
essor types require the same
ompilation sequen
e, but with di�erent
ompilation tools:
• ma
ro-pro
essing of the ma
ro-exe
utive generated by SynDEx,
•
ompilation into pro
essor -spe
i�
 obje
t
ode,
• linking into pro
essor -memory-map-spe
i�
 exe
utable
ode,
• post-pro
essing into
ommon downloadable format.This
ompilation sequen
e may be automati
ally generated for ea
h pro
essor by ma
ro-pro
essingthe ma
ro-make�le generated by SynDEx whi
h in
ludes:47

• a very �rst ma
ro-
all (in
lude(syndex.m4m)) that in
ludes the �le syndex.m4m whi
h generates amake�le header, and de�nes thema
ros ar
hite
ture _, pro
essor _,
onne
t _, and endar
hite
ture _used in the ma
ro-make�le;
• the se
ond ma
ro-
all (ar
hite
ture _(appli
ation_name, version, date) that in
ludes the �leappli
ation_name.m4m (if it exists) whi
h de�nes appli
ation-spe
i�
 make-ma
ros ;
• ama
ro-
all pro
essor _(pro
essor_type, pro
essor_name,
onne
tors_type_and_name) per pro
es-sor that in
ludes the �le pro
essor_type.m4m whi
h should have for side e�e
t to generate therequired
ompilation dependen
es for this pro
essor ;
• a ma
ro-
all
onne
t_(medium_type, medium_name,
onne
tors_opr_and_name) per
ommuni
ationmedium that in
ludes the �le medium_type.m4m (if it exists) whi
h should have for side e�e
t togenerate any loader-spe
i�
 dependen
es (presently unused).Although this indire
t in
lusion me
hanism is able to generate most of the
ore make�le, an appli
ation-spe
i�
 top make�le is still required to spe
ify how to generate the
ore make�le, and to spe
ify the
ompilation and linking dependen
ies with appli
ation-spe
i�
 �les (in
lude �les, separately
ompiled�les and libraries).

48

Chapter 11SynDEx downloader spe
i�
ation11.1 ContextSynDEx allows the e�
ient programming of parallel, distributed, heterogeneous ar
hite
tures,
omposedof several di�erent types of pro
essors, and of several di�erent types of
ommuni
ation medium. From auser spe
i�
ation of an algorithm data�ow graph and of an ar
hite
ture resour
es graph, and from algo-rithm and ar
hite
ture
hara
terized libraries, SynDEx automati
ally generates an appli
ation spe
i�
exe
utive
ode for ea
h pro
essor, and provides a make�le to automate the
ompilation and linking ofea
h exe
utive, and its downloading into the program memory of the
orresponding pro
essor.Separate programming of non-volatile program memories being unpra
ti
al, SynDEx
onsiders thatea
h pro
essor has, for only non-volatile resident program, a boot-loader (whi
h may be very small andsimple, or may rely on a big and
omplex operating system) expe
ting an exe
utive to be downloadedfrom a neighbour pro
essor through a
ommuni
ation medium, ex
ept for a single host pro
essor, desig-nated by the name root in the spe
i�ed ar
hite
ture graph, whi
h boot-loader expe
ts all exe
utives tobe stored altogether in its lo
al non-volatile memory.Consequently, SynDEx
omputes, over the ar
hite
ture graph, an oriented
overage tree rooted onthe root pro
essor, and generates in ea
h pro
essor exe
utive the
ode needed to download the
ompiledexe
utives through this tree, in a predetermined order whi
h is also used to generate the make�le.11.2 Boot and download pro
essThis pro
ess is the same for all pro
essors, ex
ept that the root pro
essor gets exe
utives from its lo-
al non-volatile memory, whereas all the other pro
essors get exe
utives from their neighbour pro
essorwhi
h is their as
endant towards the root of the download tree. The pro
essors whi
h have the sameas
endant pro
essor are
alled the des
endants of that pro
essor.When powered on, ea
h pro
essor boots by exe
uting its resident boot-loader whi
h gets the pro
es-sor 's exe
utive, loads it into the pro
essor 's program memory, and exe
utes it. During its initializationphase, the exe
utive gets and forwards exe
utives to all its des
endants, before pro
eeding with appli
a-tion data pro
essing.The root pro
essor, usually an embedded PC or other kind of workstation, bootloads from its disk anoperating system whi
h automati
ally loads and exe
utes a startup program allowing the user to
hoosebetween di�erent appli
ations. During early developments, this program may be a simple shell (but thisrequires a keyboard to be available), and the user enters a make
ommand to
ompile the exe
utives ifneeded, and to exe
ute the root exe
utive, with the other exe
utive �les passed as arguments on the
om-mand line. In appli
ations where it is unpra
ti
al to use a keyboard permanently
onne
ted, the startupprogram may use another input devi
e (for example a swit
h or a tou
h s
reen) to let the user
hoosebetween di�erent prede�ned shell
ommands, starting di�erent appli
ations through the
orresponding49

make
ommand, or simply laun
hing a shell for intera
tion with a keyboard. In more deeply embeddedappli
ations, where the root pro
essor has neither a disk nor an operating system, all the exe
utives arestored in a FLASH memory, and the root pro
essor boots by exe
uting dire
tly its own exe
utive, and�nds the other exe
utives sequentially stored in its FLASH.The �rst exe
utive forwarded to a des
endant is re
eived, stored, and exe
uted by that des
endant'sboot-loader. Then, while that des
endant's exe
utive asks for exe
utives, the as
endant exe
utive getsand forwards the next exe
utives to the same des
endant, until that des
endant's exe
utive signals thatit has itself no more exe
utives to forward. Then the as
endant may swit
h to its next des
endant, untilit has no more des
endant to servi
e, and hen
e no more exe
utive to forward. This fully sequentialdownload pro
ess boots pro
essors in the order of a depth-�rst traversal of the download tree.In the
ase of a point-to-point medium, the des
endant exe
utive may pro
eed to appli
ation data
ommuni
ations as soon as it has no more exe
utive to forward, whereas in the
ase of a multipointmedium, the des
endant exe
utive must wait until the as
endant exe
utive signals that it has no moreexe
utive to forward (to avoid
ommuni
ation interferen
es between des
endant appli
ation data andas
endant download data).11.3 Common download formatEa
h pro
essor type may have a di�erent
ompiler (linker) output format, and some pro
essor types mayhave a ROM-ed embedded boot-loader (�rmware), with its own requirements on the download format.The SynDEx
ommon download format en
apsulates the details and the di�eren
es of the
ompileroutput formats, and of the boot-loaders download formats; it is
omposed as follows:
• four bytes pre�x en
oding the 32 bits big-endian total length of the following sequen
e of bytes,
• a sequen
e of bytes en
oding one
omplete exe
utive, stru
tured as required by the destinationboot-loader, and padded if needed with null bytes until the total length is a multiple of four.The �rst exe
utive forwarded to a des
endant being re
eived by that des
endant's boot-loader, thatexe
utive must be sent without its four bytes pre�x; the following exe
utives sent to the same des
endantbeing forwarded by that des
endant's exe
utive, they must be sent with their four bytes pre�x.The sequen
e of bytes itself must follow the format expe
ted by the destination boot-loader. Thereforea linker post-pro
essor must be developped for ea
h pro
essor type, to translate the linker output �leinto the SynDEx
ommon dowload format des
ribed above. All the post-pro
essors' outputs will be
on
atenated by the make�le into a unique
ontiguous image (�le), that the root exe
utive will use assour
e.11.4 Downloader ma
rosThe downloader
ode is generated by two ma
ros :
• loadFrom_ starts the initialization phase of the
ommuni
ation sequen
e of the
ommuni
ationmedium
onne
ted to the as
endant pro
essor ; its �rst argument is the name of the as
endantpro
essor, its next arguments, if any, are the names of the other
ommuni
ation medium
onne
tedto des
endant pro
essors, if any;
• loadDnto_ starts the initialization phase of the
ommuni
ation sequen
e of ea
h
ommuni
ationmedium
onne
ted to a des
endant pro
essor ; its �rst argument is the name of the
ommuni
ationmedium
onne
ted to the as
endant pro
essor, its next argument(s) is (are) the name(s) of thedes
endant pro
essor(s).Pro
essor names are usefull to address pro
essors
onne
ted to multipoint medium: a pro
essor namemay be su�xed to give the name of a user de�ned ma
ro, whi
h substitution gives the pro
essor address.50

As exe
utives data may be forwarded through several
ommuni
ation medium of di�erent bandwidths,transfers must be syn
hronized su
h that data �ow at the speed of the slowest
ommuni
ation medium.Between pro
essors, if �ow
ontrol is not supported by the
ommuni
ation medium hardware, it mustbe implemented by ready to re
eive
ontrol messages sent by the loadFrom_
ode for ea
h
hunk of datato be sent by the loadDnto_
ode. Inside a pro
essor, the loadFrom_ and loadDnto_ ma
ro
ooperationis based on the order in whi
h the spawn_thread_ ma
ros (one for ea
h
ommuni
ation sequen
e, i.e.for ea
h
ommuni
ation media) are generated in the initialization phase of the main_ ... endmain_ se-quen
e: the spawn_thread_ ma
ro
orresponding to the thread_ ma
ro of the
ommuni
ation sequen
estarting with the loadFrom_ ma
ro (i.e. of the media
onne
ted to the as
endant pro
essor) is
alled �rst,followed by the other spawn_thread_ ma
ros, among whi
h the ones, if any,
orresponding to the
om-muni
ation sequen
es with a loadDnto_ ma
ro (i.e. of the media
onne
ted to the des
endant pro
essors).If the pro
essor is a leaf node of the download tree, its loadFrom_ ma
ro has only one argument; inthis
ase, it dire
tly generates the
ode sending to the as
endant pro
essor a "null" message meaningthat no more exe
utive is requested, followed, in the
ase of a multipoint medium, by the
ode waitingfor other exe
utives to be downloaded to the other pro
essors
onne
ted to the
ommuni
ation medium,until the as
endant pro
essor sends an "empty" exe
utive meaning that the download pro
ess is
ompleteon this
ommuni
ation medium.Otherwise, before generating the
ode des
ribed in the previous paragraph, the loadFrom_ ma
rogenerates a RETURN instru
tion (whi
h will return
ontrol after the CALL instru
tion generated by thespawn_thread_ ma
ro), followed by a loadFrom_end_: label, and the loadFrom_ ma
ro also de�nes threema
ros for use by the loadDnto_ ma
ros :
• the loadFrom_req_ ma
ro must generate the
ode that sends a non-null message requesting theas
endant pro
essor to download another exe
utive;
• the loadFrom_get_ ma
ro must generate the
ode that re
eives one word of exe
utive data fromthe as
endant pro
essor ; word means the size of a pro
essor register, usually 32 bits; if the
om-muni
ation medium transfers exe
utive data by
hunks of N words, then every N
alls to the
odegenerated by the loadFrom_get_ ma
ro re
eives a full
hunk of data and returns its �rst word, andthe next N-1
alls ea
h return a next word of the
hunk;
• the loadFrom_next_ma
ro whi
h is
alled at the end of ea
h loadDnto_ ma
ro, must generate a CALLloadFrom_end_, but only for the very last loadDnto_ ma
ro.If the
ode generated by any of these three ma
ros is limited to a few instru
tions, it may be generatedinline, otherwise the loadFrom_ ma
ro generates this
ode as a subroutine (between the RETURN instru
tionand the loadFrom_end_ label), and a
all to that subroutine is generated instead of the inline
ode.

51

Chapter 12LinksFor more information:SynDEx : http://www.syndex.orgAAA methodology : http://www-ro
q.inria.fr/syndex/pub/exe
v4/exe
v4.pdfObje
tive-Caml : http://
aml.inria.fr/T
l/Tk : http://www.t
l.tk/CamlTk : http://pauilla
.inria.fr/
amltk/

52

