SynDEXx v7 Tutorial

Nicolas Dos Santos, Christophe Gensoul, Christophe Macadi,
Quentin Quadrat, Daniel de Rauglaudre,
Yves Sorel, Cécile Stentzel

August 5, 2009

Contents

Introduction 5
1 Example 1: algorithm, architecture, and adequation 8
1.1 Themainalgorithm e 8
1.1.1 Definitionofasensor. e e 8
1.1.2 Definitionofanactuator e 11
1.1.3 Definitionofafunction. e 11
1.1.4 Definition of the main algorithmo 11
1.2 Anarchitecture with one operator e 14
1.2.1 Definitionofanoperator 14
1.2.2 Definition of the main architecture L. 16
1.3 An architecture with a SAM point-to-point comunicatimedium 16
1.3.1 Definitionof operators 16
1.3.2 Definitionofamedium e 17
1.3.3 Definition of the main architecture L. 17
1.3.4 Connections between the operators and the medium 17
1.4 An architecture with a SAM multipointmedium oL 18
1.5 Anarchitecture witha RAM medium 18
1.6 Theadequation e 19
1.6.1 Withoutconstraint e e 19
1.6.2 Withconstraints e 19
2 Example 2: hierarchy in algorithm 24
2.1 Definition of the functiom L 24
2.2 Definition of the functio® 24
2.3 Definition of the algorithm with hierarchy o oL 26
3 Example 3: delay in algorithm 27
3.1 Definition of the operationisiput, output,andcalc 27
3.2 Definitionofthedelay e 27
3.3 Definition of the algorithm withdelay 27
4 Example 4: repetition and library in algorithm 29
4.1 An algorithm with repetition withoutany library 29
4.1.1 Definition of the scalams and the functiomul onscalars 29
4.1.2 Definition of the vectorisw andoutv L 29
4.1.3 Definition of the algorithml gorithmvainl 30
4.2 An algorithm with repetition with thent library0 0oL 30
4.2.1 Inclusionofthelibrarynt 31
4.2.2 Definition of the algorithml gorithmvain2 31
4.3 An algorithm with repetition with th&l oat library 32
4.3.1 Inclusion ofthelibraryloat 32
4.3.2 Definition of the functiodpace 32
4.3.3 Definition ofthe functiodp 32

4.3.4 Definition of the functioprodmatvec
4.3.5 Definition of the algorithml gorithmvaind

5 Example 5: condition and nested condition in algorithm

5.1 Analgorithmwith condition
5.1.1 Sensorsandi,actuaton e
5.1.2 Functioswitchl e
5.1.3 AlgorithmAlgorithmMainl

5.2 An algorithm with nested condition
5.2.1 Sensorsandi,actuaton e
5.2.2 Functioswitch2 e
5.2.3 AlgorithmAlgorithmVain2

6 Example 6: algorithm, architecture, adequation, and codgeneration

6.1 Themainalgorithm
6.2 Themainarchitecture e
6.3 The adequation and the code generation

7 Example 7: edition of the source code associated with an oggion

7.1 To add parameters to an already defined operation
7.2 To edit the code associated with anoperation
7.2.1 Inthe case ofagenericprocessor o....
7.2.2 Inthe case of an architecture with heterogeneougpsocs
7.2.3 Learnthe macrosofthe codeeditor
7.3 Togeneratendxfiles

8 Example 8: a complete realistic application from adequatin to execution

8.1 Theaimoftheexample e
8.2 Themodel e
8.3 Thecontrollers e
8.3.1 Blockdiagramsofcontrollers, .
8.3.2 Source code associated with the functions
8.4 Thecompletemodel e
8.4.1 ThecardynamiCS o i it
8.4.2 Thecarsandtheircontrollers., .
8.4.3 Themainalgorithm.
8.4.4 Source code associated with the sensor and the actuato.
8.45 Theexanple8 sdc.mix
8.4.6 To handwrite thexanple8. mix file
8.5 Scicossimulation e
8.6 SynDExsimulation
8.6.1 Inthe case of a mono-processorarchitecture
8.6.2 Inthe case of a bi-processor architecture L.
8.6.3 Inthe case of a multi-processor architecture

9 Example 9: a multiperiodic application

9.1 Themainalgorithm e
9.2 Themainarchitecture e
9.3 Amono-phaseschedule e
9.3.1 Durations
9.3.2 Adequation
9.4 Amulti-phaseschedule
9.4.1 Durations
9.4.2 Adequation

Introduction

This tutorial respects some writing conventions:

e menus, buttonstc. are written inbold
(eg. Algorithm / New Algorithm Window , OK, Definition list);

e command lines, SynDEX files, exampkts. are written inConput er Mbdern
(eg.-libs libs,exanples/tutorial,! int o);

To create an application workspace, run the SynDEx exeljtlmizated at the root of your installation direc-
tory, with option-1ibs |ibs. See theSynDEx v7 User Manualfor more information.

The examples presented in this tutorial are located in thedétectoryexanpl es/ tutori al . Each example is
located in its sub-directory.

Example 1

Algorithm, architecture, and adequation:

e we create a sensor definition, an actuator definition, andetifon definition. Then, we create an algorithm
and define it as main. Finally, we create in the main algoritium references to the sensor definition,
three references to the actuator definition, and one referemthe function definition, and we create data
dependences between these references by connectingdhsir p

e we create four different architectures:

an architecture with one operator,

an architecture with two operators and a SAM point-to-podrhmunication medium,

an architecture with three operators and a SAM multipoimigwnication medium,

an architecture with three operators and a RAM communioatiedium;

e we create constraints on the third architecture;
o we perform the adequation of the main algorithm onto thedthichitecture defined as main, without con-
straint and then with constraints.
Example 2

Hierarchy in algorithm:

e we create a function definition and a constant. Inside thetfon we create a reference to another function;
in that way this definition is defined by hierarchy. Then, weate a third function that references both
previous ones. Finally, we create an algorithm that refegsrthe third function and define it as main. In
that way, the main algorithm references a hierarchical tion¢

e Wwe create parameters names for an operation, and assigs\althese parameters.

Example 3
Delay in algorithm:
e we create a delay definition;
e we create a main algorithm by referencing a delay, a sens@ctuator, and a function and by connecting
them.
Example 4
Repetition and library in algorithm:
e we create a multiplication function of a vector by a scalardyyeating a multiplication function on scalars:

— firstly without any library,
— secondly with a library;

e we create a multiplication function of a matrix by a vectorbpeating a multiplication function on vectors.

Example 5
Condition and nested condition in algorithm:

e we create an algorithm conditioned by a data dependencegathe of which indicates the operation to be
executed;

e we create an algorithm conditioned by a data dependencegmeration of which is in turn conditioned
(nested condition) by the same data dependence.
Example 6
Algorithm, architecture, adequation, and code generation

e we create a main algorithm by referencing a sensor, two smtsiahree functions, and a constant and by
connecting them;

e we create an architecture with two operators of tymend a communication medium of typgeTCp;
o we perform the adequation;

e we perform the code generation, then we create manualyxtl e6. mix file (for operations not defined
in libraries);

e we create manualy thexanpl e6. mimfile (to define the hostname) and thmt . mix file (for the main oper-
ator);

e we create manualy th@unekef i | e, then we execute the executives created after compilation.

Example 7
Edition of the source code associated with an operation:
e we add parameters to thenv function ofExample 6

e we modify the code associated with this function first in caba generic processor then in case of an
architecture with heterogenous processors;

e we create manualy thexanpl e7. mémfile (to define the hostname) and thmt . mix file (for the main oper-
ator);

e we create manualy th@Unmekefi | ;

¢ we perform the adequation, then we perform compilation|lfiee compile the executives and launch the
executables.

Example 8

A complete realistic application from adequation to exaxut
¢ we build the model of a complete application for two cars;
o we perform the adequation;
e we generate the code for each processor;

e we compile and execute the code associated with each pacess
Example 9
A multiperiodic application:

Chapter 1

Example 1: algorithm, architecture, and
adequation

1.1 The main algorithm

File Options Algorithm | Architecture Constraints Adequation Code Help
New Algorithm Window CtH-N

Define Operation Group

Figure 1.1:Algorithm / New Algorithm Window

From the main window, choose tltéle / Save asoption and save your first application under a new folder
(eg. ny_tutorial) with the namesxanpl el.

ChooseAlgorithm / New Algorithm Window (cf. figure 1.1). It opens the edition window for algorithm
definitions.

1.1.1 Definition of a sensor

To create amnput sensor definition:

o from the algorithm window, click on the green button. It opens a dialog window, ch&snsor(cf. figure
1.2). Type the sensor name and optionally a list of pararaéterthe sensor. For example typ@ut , then

Define Sensor

ayhitax helo

- Function - Delay # Sensor - Actuator - Constant

il Cancel |

Figure 1.2:Define Sensor

| Define Sensor
|input

syntax help

« Function .. Delay % Sensor .. Actuator .. Constant

[] e |

Figure 1.3: Name of the new sensor

|
[[zensor input Up In Main | Main | History
Definition list: S

Double-click to open @@

Drag and drop to reference

poput__________|BN

- i
Definition Properties:
; -
Hame input
Description
Parameters
/!

Figure 1.4: Sensor definition window

|[Bensor] input

Definition list:
Double-click to open

Drag and drop to reference

foput________| K

Up In Main | Main | Histo

ry

EE

Hame input

Definition Properties:

&Y

Undo "Add definitions" Cir-2
Redo Cirl-Shift-2
Copy CtH-C
Cut Ctr-X
Paste Cir-v
Delete Delete

Extract as superblock

Activate Info Bubbles
Postscript

Create Condition
Delete Condition

Add dependence
Add port

Add reference

Set As Main Definition

Forts Order

Description

Description

Parameters

Durations
Edit code phases
Edition of the associated source code

|l ||

=~

Figure 1.5: Contextual menys Add port

Create Port:

Jlint o

ok |

ayhitax help

Cancel |

Figure 1.6:Create Port

10

[Sensor] input Up In Main Main | History

Definition list:
Double-click to open -]
Drag and drop to reference

Definition Properties:
Hame input
Description
Parameters

Figure 1.7: Sensor definition window after output port ceglat

click OK (cf. figure 1.3). It creates the definition of theput sensor. To open it in definition mode, double
click oni nput in the Definition list (cf. figure 1.4);

e in input definition mode, right click on the background and seledt port (cf. figure 1.5). It opens a
dialog window for the port’s direction, type, name and op#dly its size. For example type int o, then
click OK (cf. figure 1.6). It creates the integer output po(tf. figure 1.7) in the sensor definition window.

1.1.2 Definition of an actuator

To create anut put actuator definition:

o from the algorithm window, click on the green buttor— dialog window: checléctuator then typeut put
and clickOK;

e double click onout put in the Definition list. Then right click on its background and seléatd port —

dialog window:? int i. Click OK. It creates the integer input parin the sensor definition window.

1.1.3 Definition of a function

To create aonput at i on function definition:

e from the algorithm window, click on the green button— dialog window: check~unction then type
conput ati on and clickOK;

e double click onconput ati on in the Definition list. Thenright click on its background and seléatd port
— dialog window:? int a? int b! int o. Click OK. It creates the integer porésb, ando in the
function definition window.

1.1.4 Definition of the main algorithm

To create aml gori t hmvai n function definition:

11

[IFunction] Algorithrihdain

Up In Main | Main | History

Definition list: [A]
Double-click to open @@ Undo "Add definitions" Ctr-Z
Drag and drop to reference - LIS
edo -Shift-
| ‘Algorithim Main S
fcomputat co cti-c
fAnput Cury Ctr-X
foutput :
Paste Ctr-v
Delete Delete
Extract as superblock
Activate Info Bubbles
Postscript
Create Condition
Delete Condition
Add dependence
Add port
- Audd reference
/
- Set As Main Definition
Definition Properties: -
Name Algarithmbda (RIS COiE vi
Description — DT
Durations
Parameters
Edit code phases
Edition of the associated source code
/

Figure 1.8: Contextual menw Set As Main Definition

|Function] Algorithmbain
Definition list:

Double-click to open @
Drag and drop to reference

Up In Main | Main | History

(o]

ImlgurithmMain

I input

foutput

A

4

Definition Properties:
Hame Algarithmhda
Description

A

Y=l

Parameters
Values

=~

Figure 1.9: Drag and dropmput definition

12

| Create Reference to input at [Function] AlgorithmMain
lin inz

ayhitax help

[| | e |

Figure 1.10Create References tonput

Figure 1.11: Main algorithm after references to sensorterta

R H =
=
=

Figure 1.12: Main algorithm of thExample 1

13

o from the algorithm window, click on the green button— dialog window: check~unction then type
Al gorit hmvai n and clickOK;

e double click onAl gori t hmvai n in the Definition list. Thenright click on its background and sel> As
Main Definition (cf. figure 1.8);

e in its definition mode,

— to create references to the sensmut , drag and drop the sensor definition from Definition list
to theAl gori t hnvai n definition window €f. figure 1.9)— dialog window:inl in2 (cf. figure 1.10).
The main algorithm looks like the figure 1.11,

— to create references to the actuatarput , drag and drop the actuator definition from tefinition
list to theAl gori t hmvai n definition window— dialog window:out 1 out 2 out 3,

— to create a reference to the functiammput at i on, drag and drop its definition> dialog window:cal c,

— from theAl gori t hmvai n definition window, to create a data dependence betwegeandcal ¢, point
the cursor on the output parbf thei n1 operation, middle click, and drag to the input podf thecal ¢
operation. It draws an arrow between these target portgr Afeating the other data dependences, the
main algorithm looks like the figure 1.12.

1.2 An architecture with one operator

1.2.1 Definition of an operator

Modify gates | Modify durations | Modify code generation phases

Figure 1.13: Operator definition window
To create ani nout operator definition:

o from the main window, choos&rchitecture / Define Operator. It opens a dialog window, typé nout and
click OK. It opens the operator definition windowf(figure 1.13);

o from theui nout definition window:

— to add a gate: clicModify gates — dialog window:gate_type_1 x,

— to set the operator execution durations: clMkdify durations — dialog window:

conmputation = 2
input =1
output = 3

14

File Options Algorithm Architecture | Constraints Adequation Code Help

Define Operator
Edit Operator Definition
Delete Operator -

Define Medium
Edit Medium Definition
Delete Medium -

Define Architecture

Edit Architecture Definition

Edit Main Architecture Ctrl-Shift-A
Delete Architecture -

=~

Figure 1.14:Architecture / Define Architecture

| Window ﬂl |

Copy cii-c
Cut CtH-X
Paste cii-v
Delete Delete
Postscript File

Jpeq File

Options -

Reference Operator

I]— Reference Medium

Find Operator Reference
Find Medium Reference

3et As Main Architecture CtH-M

Figure 1.15:Edit / Reference Operator

ul (Uinout) {mairn)

Figure 1.16: Architecture with one operator

15

=~

1.2.2 Definition of the main architecture

To create amr chi OneQper at or architecture definition:

¢ from the main window:Architecture / Define Architecture (cf. figure 1.14)— dialog window: type
Archi OneQper at or then clickOK — definition window;

e from theAr chi neQper at or definition window, to define it as mairEdit / Set As Main Architecture ;

e from theAr chi neQper at or definition window:

— to create a reference to the operationout , Edit / Reference Operator (cf. figure 1.15)— dialog
window: click user, double clickUinout — dialog window:ul,

— to define the operator as main, right click on its referenabsmiectSet As Main Operator.

The architecture looks like the figure 1.16.

1.3 An architecture with a SAM point-to-point comunication medium
1.3.1 Definition of operators
To createli n andUout definitions:

o from the main window:Architecture / Define Operator — dialog window: Ui n, click OK — definition
window;

o from theui n definition window:

— click Modify gates — dialog window:

Medi unSanPoi nt ToPoi nt x
Medi unBam\ul ti Point y
Medi unRam z

— click Modify durations — dialog window:

conputation = 2
input =2
output =5

o from the main windowArchitecture / Define Operator — dialog window:Uout , click OK — definition
window;

e from theUout definition window:

— click Modify gates — dialog window:

Medi unBanPoi nt ToPoi nt x
Medi unBanMul ti Point 'y
Medi unRam z

— click Modify durations — dialog window:

16

conputation = 2
input =5
output =3

1.3.2 Definition of a medium

Bus Type
4 SAM Point to Point
3AM MultiFoint
RAM

0K Cancel

Figure 1.17: Type of a communication medium

To create avkedi unSanPoi nt ToPoi nt medium definition:

o from the main windowArchitecture / Define Medium — dialog window:Medi unBanPoi nt ToPoi nt , click
OK — definition window;

o from theMedi unBanPoi nt ToPoi nt definition window:

— click Modify type — dialog window:SAM Point to Point (cf. figure 1.17),
— click Modify durations — dialog window:

float = 2
int =2

uchar =1
ushort =1

1.3.3 Definition of the main architecture

To create arr chi SanPoi nt ToPoi nt architecture definition:

o from the main windowArchitecture / Define Architecture (cf. figure 1.14)— dialog window
Ar chi SarPoi nt ToPoi nt — definition window;

e define it as main;

e from the Ar chi SanPoi nt ToPoi nt definition window, create references andu2 to the operatorsi n and
Uout ;

e from the Ar chi SanPoi nt ToPoi nt definition window: Edit / Reference Medium — dialog window: click
user, selectMediumSamPointToPoint — dialog window: typeredi um sanpp;

o define the operatarl as main.

1.3.4 Connections between the operators and the medium

In the main architecture window, to create a connection betwtheul operator and theedi um sampp medium,
point the cursor on the poxtof the operator, middle click, and drag it to the communmatnedium. It draws
an edge between the operator and the communication mediuter ¢eating the other connection, the main
architecture looks like the figure 1.18.

17

|med\um_sampp (MediumSamF’DintTDPmnt)|

ul (Uin

(main) uZ {Uouty
3

¥
z

[

Figure 1.18: Architecture with two operators and a SAM pdoypoint communication medium

1.4 An architecture with a SAM multipoint medium
To create arr chi Samwul ti Poi nt architecture definition:

o from the main windowArchitecture / Define Architecture (cf. figure 1.14)— dialog window:Ar chi Samul ti Poi nt
— Archi SamMul ti Poi nt definition window;

o define it as main;

e create referencad andu2 to the operatoti n and a references to the operatotout, like in the previous
example;

e create a medium definitiovedi unSamwul ti Poi nt of type SAM MultiPoint with durations:

float =2
int=2
uchar=1
ushort=1

e create a referenaeedi um sanmp to this medium in the main architecture windew dialog window: check
No Broadcast

o define the operatarl as main;

e connect the operators postso the medium.

The architecture looks like the figure 1.19

[medium_sammp (MediumSamultiPoing]

U1 (Uin) (main)
- / u3 {outy
y w2 (Uin) *

x z
Y
z

Figure 1.19: Architecture with three operators and a SAMtipaint communication medium

1.5 An architecture with a RAM medium

To create theér chi Ramarchitecture definition:

18

from the main window:Architecture / Define Architecture (cf. figure 1.14)— dialog windowAr chi Ram
— Ar chi Ramdefinition window;

define it as main;

create a referenad to the operatoti n and references andu3 to the operatotout ;

create a medium definitiavedi unRamof type RAM with durations

float =2
int=2
uchar=1
ushort=1

and create a refereneedi um ramin the main architecture;
o define the operatarl as main;

e connect the operators portso the medium.

medium_ram (MediumRam)|

uid (Uout)
3
Y

{main) Z

uzZ (Uout)
E3

¥
z

ul (Uin

R

Figure 1.20: Architecture with three operators and a RAM oaivation medium

The architecture looks like the figure 1.20.

1.6 The adequation

1.6.1 W.ithout constraint

Define the architecture with three operators and a mediuypa$AM MultiPoint (cf. 1.4) as main architecture
(Edit / Set As Main Architecture).

From the main window, choogedequation / Launch Adequation, then choos@dequation / Display sched-
ule.

It opens the schedule windowf(figure 1.21) in which you can see the schedule of the algoritinnthe
architecture and the schedule of the different inter-ofpei@@mmunications on the medium.

1.6.2 W.ith constraints

To contraint ther chi Samul ti Poi nt architecture:
o from the main window, to create the constraints:

— Algorithm / Define Operation Group (cf. figure 1.22)— dialog window:ogl 0g2 og3,

— Constraints / Absolute Constraints— dialog window: selecArchiSamMultiPoint It opens a dialog
window in which you can create constraints on the differgrgrators of the architecture selected:

19

*

first click onogl, thenul, and theCreate button, to constrain the operation groogl on the
operatonl,

constrain the operation growp2 on the operatou?,
constrain the operation growp3 on the operatou3,
x click onOK button €f. figure 1.23),

*

*

e in the main modeMi n button):

— select the operatiom1, click on theGroup button of itsReference Propertieghen selecbgl (cf.
figure 1.24),

attach the operatiom?2 to the operation groupg2,

attach the operatiosut 1 to the operation grougpg1,

attach the operatiosut 2 to the operation grougg2,

attach the operatiosut 3 to the operation grougpg3,

attach the operatioeul ¢ to the operation grougy3;
The algorithm with constraints looks like the figure 1.25.

o from the main window, to perform the adequation with coriatsa Adequation / Launch Adequation,
thenAdequation / Display Schedule— schedule window. The schedule looks like the figure 1.26.

From the main window, choogéle / Close In the dialog window, click on th&avebutton.

20

| Window Edit

‘ medium_sammp || U3 || uz || ul 3 -S
0 1}
inz ind
Z é
Z Z Z
Send_uz_ud(inz.o)
4 ‘Wait
4 4 out2
Send_uz_ul{inZ.o)
B outd]
7 7@
calc
]
i
outl
1 -
1 /]
~ =

Figure 1.21: Schedule

File Options Algorithm | Architecture Constraints Adequation Code Help

Hew Algorithm Window Cid-N

Define Operation Group
Delete Operation Group

=~

=~

Figure 1.22:Define Operation Group

Absolute Constraints

ogl 1 ul 0g3 u3
g2 juz 0g2 uz
093 ogl ul
it} L u3 L
Create

Remove |

OK | . Cancel |
Figure 1.23: Constrain operation groups on operators oftbkitecture selected

21

|Algarithmbdain (main)
Definition list:

Double-click to open @@

Drag and drop to reference

| 'Algorithmkain j

finput
foutput

Up In Main | Main | History

E > - &

Reference Properties:

A

Hame in

Parameters
Repeat 1
Period 0

Group Hone

~

Hone

ogl
og2
0g3

Figure 1.24: Attach a reference to an operation group

Figure 1.25: Algorithm with constraints

22

| Window Edit

‘ medium_sammp || U3 || uz || ul E E

Figure 1.26: Schedule with constraints

23

Chapter 2

Example 2: hierarchy in algorithm

From the main window, choogéle / Save asand save your second application under your tutorial fold#r the
nameexanpl e2.

2.1 Definition of the function a

To create theé function definition:
¢ from the algorithm window:

— click on the+ green button— dialog window: checlunction then typeA and clickOK,

— click on the+ green button— dialog window: checlConstantthen typeconst ant e<X> and clickOK.
Create an integer output parinside;

e in theA definition window:

— create a referenasst <T> to the definitiorconst ant e,
— create an integer input patf an integer output pott (Contextual menu- Add port cf. 1.1.3);

o from the algorithm window,
create a function definitiocal cul 1, with two integer input porta andb and an integer output post

e in theA definition window:

— create a referenasml c1 to the definitiorcal cul 1,
— add a parameter namef.(figure 2.1): FieldParameters— T.

The functionA looks like the figure 2.2.

2.2 Definition of the functions

To create th& function definition:
¢ from the algorithm window: green button— dialog window:B<X; Y>;
e in theB definition window:

— create references andA2 to the definitiomA (Al<X> A2<Y>),

— create two integer input porésandb, one integer output post and the functiomal c1 of the definition
cal cul 1,

— add the parameters nameandy (field Parameters.

The functionB looks like the figure 2.3.

24

|[Function] &

B
fMain
fcalcull

finput
foutput

Definition list:
Double-click to open
Drag and drop to reference

n |\

B

Hame
Description
Parameters

Definition Properties:

I

Up In Main | Main | History

A

Y=l

=~

Figure 2.1:Parameters

Figure 2.2: Functiom

25

A1

g———on

[l —

Figure 2.3: FunctioB

2.3 Definition of the algorithm with hierarchy
To create theai n algorithm:

o from the algorithm window: green button— dialog window:Mi n;
¢ from the definition window, define it as main;
e create a sensonput with an integer output portt and an actuatamt put with an integer input pori;

¢ intheMi n algorithm window, create a referengel; 2> to the definitiors, a referencel i 2 to the definition
i nput , and a referenceut to the definitiorout put ;

e create dependences between the references.

The algorithm looks like the figure 2.4.

- -
R L

Figure 2.4: Algorithm of the&eExample 2

From the main window, choodéle / Close In the dialog window, click on th&avebutton.

26

Chapter 3

Example 3: delay in algorithm

From the main window, choodgle / Save asand save your third application under your tutorial foldéthwthe
nameexanpl e3.

3.1 Definition of the operationsi nput, out put, aNd cal ¢

Create a sensomnput, an actuatoout put, and the functiortal c, like in the Examples 1and2. (cf. 1.1.3 and
calcul1in2.1)

3.2 Definition of the delay
To create theal cPrec delay:

¢ from the main windowAlgorithm / New Local Definition / Delay — dialog window:cal cPrec<init;si ze>
— definition window. The parameténit will be use to specify the initial value, antlze the number of
delays to repeat;

¢ in the definition window, create one input port and one oupymrt. Enter:? int x ! int x. Notice that
input and output names are the same.

3.3 Definition of the algorithm with delay

Create an algorithmal gori t hmvai n. Create a referendenl to the definitioni nput, a referenceal c to the defi-
nition cal ¢, a referenceut 1 to the definitionout put , and a referenceal cPrec<0; 1> to the definitioncal cPrec.
Create dependences between the references.

The algorithm looks like the figure 3.1.

From the main window, choodéle / Close In the dialog window, click on th&avebutton.

27

Figure 3.1: Algorithm of the&example 3

28

Chapter 4

Example 4: repetition and library in
algorithm

From the main window, choogéle / Save asand save your fourth application under your tutorial foldth the
nameexanpl e4.

4.1 An algorithm with repetition without any library

In this section, we create a multiplication function oNaelements vector by a scalar by repeatddimes a
multiplication function on scalars.

4.1.1 Definition of the scalarn ns and the function nul on scalars

In a new algorithm window:

e create a new sensor definition nanied with an integer output po;

e create a new function definition named with two integer input porta andb and an integer ouput pasj.

4.1.2 Definition of the vectors nv and out v

To create the vectors:
e to create the definitionnv:

— from the algorithm window, create a new sensor definition @dinv,

— from thei nv definition window, typeN in the Parameterstextfield of itsDefinition Properties (it has
N elements),

— create its integer output port namedvith lengthN: | int[N o;
¢ to create the definitioout v:

— from the algorithm window, create a new actuator definitiorv,

— in outv definition window, typeN in the Parameterstextfield of its Definition Properties (it hasN
elements),

— create its integer input port namedvith lengthN: 2 int[N i .

29

4.1.3 Definition of the algorithm Al gori t hmvai n1

To create thel gori t hmvai n1 algorithm:

o from the algorithm window, create a new function definiticammedAl gori t hnivai n1 and from its definition
window, define it as main;

e intheA gorit hmvai n1 definition mode:

— create a referencei nput to the scalarns,
— create a referencei nput <N> to the vector nv,

— create areferengal to the functiomul and typeNin theRepeattextfield of itsReference Properties
(it is repeatedN times),

— create a reference out put <N> to the vectoout v;

e create dependences between the references, in order to tii@anain algorithmdf. figure 4.2);

e typeNin the Parameterstextfield of theDefinition Properties of the main algorithm and in the Values
textfield (cf. figure 4.1). Notice that this value is keeped as long as thariéthgn remains the main one.

Definition Properties:
Hame Algorithmbda
Description |First algorithi
Parameters M

Values 3

Figure 4.1:Parameters Values

The repetition consists in multiplying each of tBelements of the_i nput vector with thes_i nput scalar and
placing the result in th8 elementy_out put vector.
The parameteNis here the repetition factor of theal function.

5_input

[o

v_nput/
[o

b

mul(*3)
al ‘0 =

Figure 4.2:A gori t hmvai n1 of the Example 4

4.2 An algorithm with repetition with the int library

In this section, we create a multiplication function of ateedy a scalar by using thent library.

30

4.2.1 Inclusion of the library i nt

From the main window, choodgle / Included Libraries / int (cf. figure 4.3).

File | Options Algorithm Architecture Constrainis Adequation Code Help

Open Cir-0
Save CtH-5
Save as

Close

Included Libraries bool

Specify Library Directories c40
Quit cna | e
float
N int
transtech

Figure 4.3:File / Included Libraries / int

4.2.2 Definition of the algorithm Al gori t hmvai n2

Notice that this library containsput , mul , andout put definitions parameterized witlengt h.
We will need to set it td for the scalar and the multiplication function, and\tfor the vectors:

o from the algorithm window, create the function definitiéryori t hmvai n2 and define it as main;

e in Al gorit hmvai n2 definition mode:

— drag and drop the sensor definitiom/input from the Definition list to theAl gori t hmvai n2 window
— dialog window:s_i nput <1> (cf. figure 4.4) (it is a scalar),

Create Reference to input at [Function] AlgorithmMain2
3_inputel=

ayhitax help

[| | e |

Figure 4.4:Create Reference ta nt /i nput

— drag and drop the sensor definitio/input — dialog window:v_i nput <N> (it hasN elements),

— drag and drop the function definitiant/Arit_mul — dialog window: nul <1> then typeN in the
Repeattextfield of itsReference Properties(it is a multiplication on scalars, repeatsdimes),

— drag and drop the actuator definition/output — dialog window:v_out put <N> (it hasN elements);

e create dependences between the references in order ta tianain algorithmdf. figure 4.5);

31

o typeNin the Parameterstextfield of theDefinition Properties, and3 in the Valuestextfield.

Notice the difference of theul reference when it is seen from thkgori t hmvai n2 definition mode or from
the main modeNlain button).

5_input

[o

v_\nput/ 1]
[o

Figure 4.5:A gori t hmvai n2 of the Example 4

4.3 An algorithm with repetition with the 11 oat library

In this section, we create a multiplication function difaM matrix by aM elements vector by repeatifgtimes
a multiplication function on vectors.

4.3.1 Inclusion of the library f 1 oat

Include the libranyf | oat (File / Included Libraries / Float).

4.3.2 Definition of the functiondpacc

This function is a multiplication function on scalars with accumulator:

e create a new function definition nameyhcc;

create a referenaeil <1> to the functiorfloat/Arit_mul (the reference works on scalars);

create a referencald<1> to the functiorfloat/Arit_add (the reference works on scalars);
e add it three input ports and one output port:float s1 ? float s2 ? float acc ! float acc;

¢ then create dependences to obtain an algorittinfigure 4.6).

Notice thatacc is an input port and an output port of the function. It will bged as an accumulator to store
the partial sum.

4.3.3 Definition of the functiondp

This function is a multiplication function on vectors with accumulator:

e create a new function definition name

e add it a parameteipaccn;

32

acc

Figure 4.6: Algorithm of the functiodpacc

e create a referenceer 0<{ 0} > to the constarfloat/cst (it is the{ 0} scalar);

e create a referencdpacc to the functiondpacc then typedpaccn in the Repeattextfield of its Reference
Properties (it is repeatedipaccn times);

e addittwo input ports? float[dpaccn] vl ? float[dpaccn] v2 andone outputport: float dp (vec-
tors havelpaccn elements);

e create dependences to obtain an algoritbixfigure 4.7). To build the dependence between the output port
acc of dpacc and its input porticc, choosdterate on the dialog window (it is the connection between two
successive calls of the function).

dpacc{dp..)

212 "aEc_, I—ﬁ___‘___ﬂ

fatc

Figure 4.7: Algorithm of the functiodp

The repetition consists in multiplying twdpaccn elements vectors by callingpaccn times thedpacc multi-
plication function on scalars with accumulator. The iditialue of its accumulator is given by ther o constant
and the following are given by the accumulator itself.

4.3.4 Definition of the functionpr odmat vec

This function is a multiplication function of a matrix by aater:

33

create a new function definition namgchdnat vec;
typea; b in the Parameterstextfield of itsDefinition Properties;

create a referenant prod to the functiondp (input vectors have elements) and type in the Repeat
textfield of itsReference Propertieqit is repeated times);

add it two input ports? float[a*b] inm? float[b] invandoneoutputport: float[a] outv;

then create dependences to obtain an algorittinfigure 4.8).

dotprod(*a)
vl |dp 4)-
Ve

Figure 4.8: Algorithm of the functiopr odmat vec

The repetition consists in multiplyingat b matrix by ab elements vector by calling times thedp multipli-
cation function on vectors.

4.3.5 Definition of the algorithmal gori t hmvai n3

To create thel gori t hmvai n3 algorithm:

create the definition of the sensam with two parameters namasndm and with an output port: fl oat
[NM o;

create a new function definition namadyor i t hnvai n3 and define it as main;
add it two parametens:Mwith valuess; 4;

create a referenael<N; M> to the matrixinm;

create a referendewv<N> to the vectoffloat/input;

create a referenaat pr odvec<N; M> to the functionprodmatvec;

create a referenamit v<M> to the vectoifloat/output;

then create dependences to obtain an algoritinfigure 4.9).

From the main window, choogéle / Close In the dialog window, click on th&avebutton.

34

Figure 4.9:A gori t hmvai n3 of the Example 4

35

Chapter 5

Example 5: condition and nested
condition in algorithm

From the main window, choodgle / Save asand save your fifth application under your tutorial foldettwihe
nameexanpl e5.

5.1 An algorithm with condition

5.1.1 Sensors andi, actuator o

To create the sensors and the actuator:
o from the algorithm window: green button— dialog window:Sensorx;
o from the algorithm window: green button— dialog window:Sensori ;

o from the algorithm window: green buttorn— dialog window:Actuator o.

5.1.2 Functionswi tchl

To create thewi t chl function:

e from the algorithm window: green button— dialog window:swi t chi;

e in theswi t chl definition window:

— contextual menu- Add port — dialog window:? int x ? int i ! int o,
— contextual menu- Create Condition — dialog window:x=1 x=2 x=3 x=4 (cf. figure 5.1):

x click on the conditionx=1 (cf. figure 5.2) and create a referendiev1<1> to the definition
int/Arit _div,

x click on the conditionx=2 (cf. figure 5.3) and create a referendiev2<1> to the definition
int/Arit_div,

x click on the conditiorx=3 (cf. figure 5.4) and connect the parto the port,

x click on the conditionx=4 (cf. figure 5.5) and create a referencdl 4<1> to the definition
int/Arit_mul;

— create dependences between the references.

5.1.3 Algorithm Al gori t hmvai n1

The algorithm looks like the figure 5.6.

36

Undo "Add ports" Ctn-Z2

Activate Info Bubbles
Postscript

Create Condition

Add dependence
Add port
Add reference

Set As Main Definition

Forts Order

Description

Durations

Edit code phases

Edition of the associated source code

Figure 5.1:Create Condition

o]

V=l

Figure 5.2: Condition x=1

37

divZ

g
i

Y
Figure 5.3: Condition x=2
®=3
[N
.
I

Figure 5.4: Condition x=3

38

Figure 5.5: Condition x=4

g\‘ sikitchi
x|o =

Figure 5.6: AlgorithmMainl of th&xample 5

39

x=1 A WA A Wi
&
- i e
. i

5.2 An algorithm with nested condition

5.2.1 Sensors andi, actuator o
Use previous definitionsf. 5.1.1).

5.2.2 Functionswi t ch2
To create thawi t ch2 function:
e from the algorithm window: green button— dialog window:swi t ch2;

e in its definition window:

— contextual menu- Add port — dialog window:? int x ? int y ! int o,
— contextual menu- Create Condition — dialog window:y=1 y=2,

— click on the conditiory=1 (cf. figure 5.7) and create the function 1 of the definitionArit_mul from
int library,

Figure 5.7: Condition y=1
— click on the conditiory=2 (cf. figure 5.8) and create a refererm@t chl to the definitionswitchl;

e create dependences between the references.

5.2.3 Algorithm Al gori t hmvai n2

The algorithm looks like the figure 5.9.
From the main window, chooséle / Close In the dialog window, click on th&avebutton.

40

/

switch1 o]
I |EI /

V=l

Figure 5.8: Condition y=2

switch2
" |D 5

&\y
M

Figure 5.9: AlgorithmMain2 of th&xample 5

41

Chapter 6

Example 6: algorithm, architecture,
adequation, and code generation

From the main window, choodéle / Save asand save your sixth application under a new folder of youoriat
folder (eg. ny_exanpl e6) with the namexanpl e6.

6.1 The main algorithm

Create the main algorithmai go (cf. figure 6.1) using the librarint for the operationsn<1> (input), cst e2<{ 2} >
(cst), add<1> (Arit_add), mul <1> (Arit_mul), vi suadd<1>, andvi sumul <1> (output). For the operatioronv,
create a function definitiononv and create a reference to this definition. Create the depeerddetween the
references. Set it as main.

Figure 6.1: Main algorithm of thExample 6

6.2 The main architecture
To define and constraint thmain arhcitecure:

e open the architectut@ Proc from the libraryu;

e define it as main;

42

e create the operation groupgl andog? then create the absolute constraints on the operatgtonr oot ,
0g2 onPl. Attach references to operation groups; add, andvi surmul — og1, nul , andvi suadd — og2.

6.3 The adequation and the code generation
To perform the adequation and to generate the code:

e before performing the code generation, you have to perftrenadequation. Set the eventually missing
durations, then from the main windovkdequation / Launch Adequation;

o from the main window:Code / Generate Executive(s)It generates for each operator of the main archi-
tecture the code in afile (filesot . m andP1. m) and an architecture description (fdeanpl e6. mt). These
files are generated in the same directory as the applicatibe.files generated for each processor may be
viewed: Code / Display Executive(s)

e the macros corresponding to the operations, included ititiheries of SynDEX, are already defined under
the foldernacr os (filesi nt. mix, U. mix, andTCP. mix);

¢ in the same folder as the SynDEx application of Edample 6, create a new filexanpl e6. mix in which
you define the macro corresponding to the operatimin which is the only one not defined in the library,
and the number of iterations. The file looks like:

dnl (c)INRIA 2001- 2009
dnl SynDEx v7 executive macros specific to application tutorial/exanpl e6/exanpl e6
divert(-1)

define
define
define
define

* NOTRACEDEF’)

“ NBI TERATI ONS' | 3)
“BINPWD , ‘pwd’)
*RSHELL', ‘ssh’)

—~ e~~~

define(‘conv’, " ifel se(

MC INIT, “dnl’,

MC, ‘ LOOP', ' $2[0] = $1[0] + 1;,
MSC, “END', ‘dnl")")

divert
divert(-1)
divert''dnl--------cumu---- end of file --------mmvmmnnnn-

e create a new filexanpl e6. mim in which you set for each operator, except the main operitemame of a
workstation corresponding to this operator. The file lodks:|

dnl (c) I NRI A 2001- 2009
define(* P1_hostnane_’', HOSTNAME)dnl

whereHOSTNAME is substituted with the name of your remote station, as atdit in theReadne file under
syndex- 6. 8. 5/ exanpl es/ t utori al / exanpl e6;

e create a new fileoot . mix for the main operator including the fikxanpl e6. mint

43

dnl (c)INRIA 2001- 2009
i ncl ude(exanpl 6. nmin)

e create a new fil&é\unakef i | e which allows the compilation and the substitution of the madrom the code
generation by the executable code. The file looks like:

(c)INRIA 2001- 2009

A = exanpl e6

Mt = gmt

export Algo_Macros_Path = ../../../macros/algo_libraries
export Archi_Macros_Path = ../../../mcros/archi_libraries

export MAPATH = $(Al go_Macros_Pat h): $(Archi _Macros_Pat h)

CFLAGS = - DDEBUG
VPATH = $(MAPATH)

.PHONY: all clean
all : $(A).nk $(A).run
clean :

$(RV $(A) . nk

$(A).nk : $(A) . m syndex. mim U. mdm $(A) . mim
$(M) $< >$@

root.libs =
p.libs =

i nclude $(A). nk

The folder of theExample 6 must contain the following files:
e exanpl e6. mt

e exanpl 6. nmim

e exanpl e6. mix

e exanpl e6. sdc

e exanpl e6. sdx

o GNUnakefile

e pcl.mt

e root.nmd

e root.mix

To launch the execution, type the commayndke in the folder of theExample 6 To delete the file created
during the compilation, type the commagrdike cl ean.
From the main window, choogéle / Close In the dialog window, click on th&avebutton.

44

Chapter 7

Example 7: edition of the source code
associated with an operation

In the previousExample 6, we have learnt that a4 file, called with the name of the application plus tindx
extension, must be manually written. It contains all thersewcode associated with all operations present in a
SynDEXx application. For example, in theanpl e6 application, theonv function increments of one the value of
the input and stores the result in the output. Teuspl e6. mix file contains:

define(‘conv’, " ifel se(

MC “INIT, “dnl’,

MC, ‘ LOOP', ' $2[0] = $1[0] + 1,
MSC, “END', ‘dnl")")

where$1 and$2 correspond respectively to the input port nameahd the output port namedf theconv function.
Handwriting this kind of code is not very easy, for severalsens:

e the port number may change by inserting or removing a poraoaipeter, following the SynDEX’s rule of
port numeration. For example, after inserting a parameiarthe functionconv, $1 will not refer to the
input porti but it will refer to the new added parameterAll numbers are now brought, thus we must
modify the code and replace the argumeitby $2 ands$2 by $3;

o this task is quite repetitive when an application contaiasynoperations;

e itis easy to make a mistake in th&4 syntax. Great knowledges im4 syntax (two different kind of quotes,
i fel se...) and SynDExn4 macros ¥C) are required.

It should be more convenient to wri@UT(0)[0] = @N(i)[0] + @ARAM P) and let SynDEX interpret it and
generate the associatet#x file than to write the specification with the4 syntax. SynDEXx (versiopr 7.0.0)
is able to do that thanks themde editor which is a tool integrated in the graphical user interfac®((GIn the
following example, we will show how to use this tool.

7.1 To add parameters to an already defined operation

In this example, we show how to modify some functions by aggiarameters in order to expand parameters into
m4 arguments.

Open theexanpl e6. sdx application

o from the main window; choodéile / Open — Open theexanpl e6. sdx file;

e save it azxanpl e7. sdx under a new folder of your tutorial foldeed. ny_exanpl e7).

45

Add parameters to theconv function:

¢ from the algorithm window on the main algorithm: right cliok theconv blue box— Popup menuModify
— Write conv_ref <2; 3> instead otonv — OK. 1;

e add parameter’ T to theconv definition.

Verify that the parameters have been stored in the function

We have three solutions:

¢ from the algorithm window on the main algorithm: put the mews theconv_ref box — In the SynDEX
main window: read the printed informations;

e or, from the algorithm window on the main algorithm: doubddtIclick on theconv_ref blue box—
Algorithm Function conv: Edit / Ports Order;

e or from the algorithm window on the main algorithrizdit / Options / Show Info Bubbles — point the
mouse cursor on theonv_r ef operation box.

7.2 To edit the code associated with an operation

7.2.1 Inthe case of a generic processor
Open the code editor

We need to launch the code editor of the selected operatitrud.consider the case of ttmw_ref function. We
have to do the following operations:

e in the main algorithm: double left click on thenv_ref blue box. It opens theonv definition window. In
its contextual menu, seleEdition of the associated source codelt opens the code editor. It looks like

a window with three push-buttons and an editable text areah Bush-button corresponds to one specific

phase of threeifit, loop, andend phases). When one of the three buttons is pressed, the eaxshows
the associated source code;

e in theconv definition window, right click on the background and selgdit code phases— Selectinit and
end— OK;

¢ in the code editor windowinit phase — write in the text area (which is empty) the followittdanguage
code. This code is understood as a generic code:

printf("Init phase of function $0 for default processor.\n");
e do the same thing for theop phase’:
@UT(0) [0 =@N(i)[0] * GPARAM T) +@ARAM P) ;

printf("Loop phase of function $0 for default processor = % .\n", @UT(0)[0]);

e and for theend phase

INotice that you will have only to ignore the error messagésted from the main window if you have inverted this step vith following.
2Macros of the code editor as @IN, @OUT, @PARAM, are explained in the User Manual.

46

printf("End phase of function $0 for default processor.\n");

¢ in the code editor windowEdit / Apply changes to all phaseslt saves all buffers of all edited phases;
¢ in the code editor windowOK (it also saves all buffers).
Notice the following points:

e you can not launch the code editor from a main algorithm oiaa+enly operation (definition coming from
libraries);

e you can write a code associated with a super-operation mebaiwill not be presentin theppl i cat i onName_sdc. mix
file (the background color of the text area of the code ed#grey);

e itis important to recall that the code is common to all theerefices of the same operator. Only the values
of parameters are specific of each instance.

Verify that code is common to all references
We create a new reference to ttumv function:
¢ in the main algorithm: create a refererwwav_r ef _bi s<8; 9> to the definitiorconv;

e in the main algorithm: first remove the link between thev_ref andnul boxes. Second, link thesnv_r ef
output to theconv_ref _bi s input. Third, link theconv_ref _bi s output to thewl b input;

¢ in the main algorithm:Window — Auto position — Space between verticewindow: in the two entry
texts, write 120— OK;

e open the code editor of this new box: the code is the same. dw 8tat values of parameters are specific to
the reference (and not to the definition), we must generatmthcode like shown in the previous example
(MenuAdequation / Launch AdequationthenCode / Generate Executive(3)and look inpc1. m (Menu
Code / Display Executive(s). The file contains

conv(2,3, _algo_cste2 Pl o, _algo_conv_ref_o)
conv(8,9, algo_conv_ref_o,_algo_conv_ref_bis_o)

7.2.2 Inthe case of an architecture with heterogeneous pressors

Sometimes it is interesting for an operation to have difieource codes depending on the type of processor.
For example, a given processor typenay only offer assembly language as a programming interfatsuch
case, we must be able to provide (for examglepde for processors that support it, and assembly language f
the X processor type. To support heterogeneous architectigesdtie editor associates code to a triplet (phase,
processor, operation). A special processor tedault is provided for processors that have not been associated
with dedicated code. Its use allows to share a code betwéfenedit processor types.

Include a new processor type

From the main window, choodéle / Included Libraries — Selectc40

Define an new architecture:

o from the main window, choosarchitecture / Define Architecture (cf. figure 1.14)— In the entry text,
write ar chi 2. — OK;

e in thear chi 2 window: create a referenceot to the operato€40 and define it as the main operator.

47

Replace theconv_r ef _bi s box by a reference tobar _ref:

create a new function definition namieet with one input port calledn and one output port calledlt ;

from the main window, choosg&lgorithm / Edit Main Definition : select all the references using the mouse
and copy it (MentEdit — Copy);

create a new main algorithm namadjo2;
pasteal go in al go2 definition window;

in theal go2 definition window: first delete theonv_ref bi s reference, then create a refereheae ref box
to the definitiorbar, finally create the missing dependences. The main algostiould look like the figure
7.1.

cony_ref bar_ref E

o = [0 S I |outl/

Figure 7.1: Main algorithm after adding 'bar_ref’

Insert code for C40 processor type to thebar function:

in the al go2 definition window: double left click on thear _ref blue box. It opens théar definition
window. In its contextual menu, seldetlition of the associated source coddt opens the code editor;

in thebar definition window, right click on the background and selgdit code phases— Selectinit and
end— OK;

in the code editor windowType of Processor SelectC40;

in the code editor window: click on thait phase button and write in the text area the following code:

[* H, | am$0 function, in init phase for C40 processor */

in the code editor window: click on tHeop phasebutton and write in the text area the following code:

@ut(out)[0] = @N(in)[0];

/* H, | am$0 function, in loop phase for C40 processor */

48

¢ in the code editor window: click on thend phasebutton and write in the text area the following code:

/* Bye, | am$0 function, in end phase for C40 processor */

Insert code for U processor type to thebar function:

in the code editor windowType of Processor SelectU;

in the code editor window: click on thait phase button and write in the text area the following code:

[* H, | am$0 function, in init phase for U processor */

¢ in the code editor window: click on tHeop phasebutton and write in the text area the following code:

@uT(out)[0] = @N(in)[0] * 42;
/* H, | am$0 function, in loop phase for U processor */

in the code editor window: click on thend phasebutton and write in the text area the following code:

/* Bye, | am$0 function, in end phase for U processor */

Modify the durations

Add c40/ C40 = 1 at the end of th®urations text area for each definition referencedimo2

7.2.3 Learn the macros of the code editor

The code editor comes with a set of predefined macros thaiatiethe user from knowing the black magicroft
processing.

The more useful ones are names translation macros. Thesestemnslate port and parameter names to their
internal representation as4 parameters. We have already encountered such macros inngHadve just done:
@ N, @UT and@ NOUT are port name translation macros, a@ARAMis the parameter name translation macro. As
a rule of thumb, you should uggARAM x) when you want to refer to a parameteand@ N(i) (resp.@UT(0)
/ @NQUT(ii 0)) when you refer to an input poirt(resp. output porb / input-output port o).

The code editor recognizes three more mac@®MVE, @UOTE and @EXT. These advanced macros are not
used in this tutorial and the reader is refered to SynDEx mserual to learn more about it.

7.3 To generate m4x files
Before performing the code generation we have to perfornattegjuation:

o from the main window, choosédequation / Launch Adequation;
¢ from the main window, choosgode SelectGenerate m4x Files

e from the main window, choosgode / Generate Executive(s)

49

o from the main window, choosgode / Display Executive(s)
Two cases are possible:

e the check boxGenerate mix Files has not been checked. For each operator of the main arahiteat
processor_name.m4 file containingn4 macro-code is produced. As previously explained an archite
description file (hameexanpl e7. m4) is also produced;

e the check boxenerate mix Files has beenchecked. Then, two new file&(pl e7. mix andexanpl e7_sdc. mix)
are generated in the same directory as the application.

These two files constitute thgpplicative kernel:

e theMyApplication_sdc. mix file contains allm4 macro code associated with operations used in the SynDEX
application. Each time code generation is triggered, tlesgioverwritten;

e theM/Appl i cation. mix file is an user editable file whose goal is to allow the user tojgete the applicative
kernel if needed. At code generation time, if this file does exist then SynDEX creates a generic file
(including themyAppl i cati on_sdc. mix file plus some other features), otherwise the existing filejst.

Theexanpl e7_sdc. mx file contains the following code:

divert(-1)
(c)I NRIA 2001- 2009
di vert (0)

define(‘ exanpl e7_bar’, ‘bar’)

define(‘bar’,"ifelse(

processor Type_, C40", ‘i fel se(
M CINIT, ““/* H, | am$0 function, in init phase for C40 processor */'’,
MC, ‘ LOOP', ‘ $2[0] = $1[0]; /* H, | am$0 function, in loop phase for C40 processor */'',
M, “END', ‘‘/* Bye, | am$0 function, in end phase for C40 processor */'")")")

processor Type_, ‘U, "ifel se(
MSC, “INIT ,““/* H, | am$0 function, in init phase for U processor */'’
MSC, ‘ LOOP',* *$2[0] = $1[0] * 42; /* H, | am$0 function, in loop phase for U processor */'’,
M, “END', ‘‘/* Bye, | am$0 function, in end phase for U processor */'')’",

define(* exanpl e7_conv’', ‘ conv’)

define(*conv’', "ifel se(

processor Type_, processor Type_, ' i fel se(
M, “INIT ,““printf("Init phase of function $0 for default processor.\n");’’,
MGC, * LOOP', * * $5[0] =$3[0] * $2+$1,;
printf("Loop phase of function $0 for default processor =%.\n", $4[0]);" ",
MC, “END', ‘“ ‘printf("End phase of function $0 for default processor.\n");'")")")

If the exanpl e7. mix file did not exist at code generation time then it will conttie following code:

divert(-1)
(c)INRI'A 2001- 2009
di vert (0)

define(‘dnldnl’, /] ")
def i ne(* NOTRACEDEF')
define(‘ NBI TERATIONS',**5"")
i ncl ude(* exanpl e7_sdc. mix’)

divert
#include <stdio.h> /* for printf */

50

divert(-1)
divert‘’ dnl

Deeper insights about the4 macro language can be found in SynDEx user manual and GNU Mdiaha

See the difference between executable codes:

create thexanpl e7. mmfile (cf. 6.3);
create the oot . mix file (cf. 6.3);

create thesNUmakef i | e (cf. 6.3), containing:

$(A).nk : $(A) . m syndex. mim U. mdm CA0. mdm $(A) . mim
$(M) $< >$@

defineal go2 as main algorithm;

definearchi as main architecture, perform the adequation, generatedtie, and run thé\unekefile
compilation You obtain aoot . ¢ file containingu code only (na40 code);

definear chi 2 as main architecture, perform the adequation, generatedtie, and compile again. This
time, onlyC40 code is present in thevot . ¢ file.

Notice that:

adequation modifies original filexanpl e7. sdx andexanpl e7. sdc;

code generation produces these filegnpl e7. m4, root . m#, pcl. m# (if ar chi is defined as maingxanpl e7_sdc. mix
(if Generate m4x filesis set) anckxanpl e7. mix (if Generate m4x filesis set and the file did not exist be-
fore);

compilation produces these filesxanpl e7. nk, root, root. ¢, androot. root . o, and (ifarchi is defined as
main)pcl, pcl. c, andpcl. pcl. o.

From the main window, choogéle / Close In the dialog window, click on th&avebutton.

51

Chapter 8

Example 8: a complete realistic
application from adequation to execution

From the main window, chooggle / Save asand save your eighth application under a new folder of yoatrial
folder (eg. ny_exanpl e8) with the namexanpl e8.

8.1 The aim of the example

In the seven previous examples we have learnt how to use Syal#J| to create architectures, algorithms,
launch adequation, obtain executive files... Now, we haffcgnt knowledge to perform a simple automatic
control application that will be executed on a multiprocesschitecture.

First the application is described and the system is defin&ticos (the block diagram editor of the Scilab
softwaré). Second the corresponding SynDEx application is creatsihg theExample 1to 3 of the tutorial).
This needs the generation of soimeode following the method discussedBxample 7. Finally, we compile
the application to obtain executable for several proceasasiit has been shown Examples 6and7. SynDEx
generates the code necessary to the communication bethepnocessors.

8.2 The model

We consider a system of two cars. The secondgdollows the car(y trying to maintain the distandewhile the
acceleration and the deceleration@f We call: x1(t) the position of the first cax(t) the position of the second
car plusl; X (t) andxx(t) the speeds of two cars. We den&teandk the inverse of the car masses. We cél)
the reference speed chosen by the first driver. We suppose¢hare able to observe the speed of the first car and
the distance between the cars.

We have the following fourth order (four degrees of libegystem:

X1 = kyug

Xo = kou

2 .2 2 (8.1)
yi=X1

Y2 =X1—X2

We will decompose the system into mono-input mono-outpstesyS; (u1,y1) andS(u2,y2). Denoting by
uppercase letter the Laplace transform of the variablehaveY; = kyU; /sandY, = (kyU; — koU,) /s? whereU;
is seen as a perturbation that we want reject in the seconeisys

Afirst proportional feedbacld; = p1(R— Y1) will insure the first car to follow the reference speed. Theosel
controller will be proportional derivativl, = p,Y» + p3sY- (in fact we will suppose in the following diagram that
the derivative ofy, is also observed). The coefficignt is obtained by placing the pole of the first loop:

Y= plklR/(S+ plkl).

Thttp://ww.scilab.org

52

The coefficienpz andps are obtained by placing the pole of the transfer fidpto Y in the closed loop system
which is given by:
Yo = U1k1/(52 + k2p33+ kzpz).

8.3 The controllers

The purpose of the controller of th@ car is to follow the reference in speed given the first driiestabilizes the
(1 speed around its reference speed by using pole placemerex&mple, gains are respectively, -5, 0, 0,
-5). The controller of second car stabilizes the distance betvee two cars. It stabilizes around 0 by pole
placement. For example, gains are respectively: 4, - 4, - 4).

The controler ofC, knows these informations and sends them electronically; toT his remark is available
for (1.

8.3.1 Block diagrams of controllers
oD >
¥ @H’>ﬁ

el

+++++
N1
\

2 [3)——
V2E>7

ref. vit B »

Figure 8.1: Scicos controller of the first car

gainl

inx1 ||: »{in_1]out_1
S

gaing
\ gaind
[in< } > {in_1 [out1

gaing

a{in_1 [oui_1 sommateur

W/

E

=

ra
¥

in_1Jout_1

gaing

refuit % in_1Jout_1

Figure 8.2: SynDEX controller of the first car

Our controllers are simple. They are represented in figuresaBd 8.3 in Scicos and figures 8.2 and 8.4 in
SynDEXx:

53

E)

Figure 8.3: Scicos controller of the second car

gain1
{in_1 oui_1
gainz
sommateur
{in_1 Joui_1
\ in_1lout_1 l——)-
gaind in_z
in_3
o T i a
gaind
{in_1 [out_1

Figure 8.4: SynDEXx controller of the second car

54

e create gai n_def function with one input poritn_1 and one output porut _1. Notice that all ports will be
of typefloat;

e then creatsonmat eur 2_def , sommat eur 4_def , andsommat eur 5_def functions, respectively with two input
ports { n_1 andi n_2), four input ports (fromin_1 toi n_4), and five input ports (fromn_1 toi n_5). Each
of these three functions is created with only one output @art1;

o finally create both algorithmsnt r ol eur 1_sup andcont rol eur 2_sup (cf. figures 8.2 and 8.4), setting their
gain parameters respectively®o -5, 0, 0, 5and4, 4 ,-4 , -4.

8.3.2 Source code associated with the functions

We associat€ source code to each function definition: gain and nary-surhs. code is inserted for the default
processor.

Gain

A gain is a function that multiplies its input by a coefficiaggiven as a parameter, namea N. After adding this
parameter, open the code editor of the gain definition angkulre following code in the loop phase of the default
processor:

@uT(out _1)[0] = @N(in_1)[0] * @GARAM GAIN);

Sum

We have three different forms of sum depending of its arityo,tfour or five input ports:

e open the code editor of the sum function with two input pond @arite the following code in the loop phase
of the default processor:

@uT(out _1)[0] = @N(in_1)[0] + @N(in_2)[0];

e open the code editor of the sum function with the four inputpand write the following code in the loop
phase of the default processor:

@UT(out _1)[0] = @N(in_1)[0] + @N(in_2)[0] +
@N(in_3)[0] + @Nin_4)[0];

e open the code editor of the sum function with the five input@and write the following code in the loop
phase of the default processor:

@UT(out_1)[0] = @N(in_1)[0] + @N(in_2)[0] +
@N(in_3)[0] + @N(in_4)[0] + @N(in_5)[0];

55

8.4 The complete model

In a real application, our job stops with the SynDEXx’s adeigumeof the two controllers on their associated archi-
tectures. Nevertheless, for pedagogic reasons, we willlsita the whole system (with the dynamics of the cars)
in the aim to verify that our application does the same joly Swacos.

8.4.1 The car dynamics

SynDEXx is only used in discrete time model (not continuone)i and is not able to manage implicit algebraic
loop. Thatis, in SynDEX, any loop contains at least a dejay Therefore, our application which is a continuous
time dynamic system described in Scicos, must be discrklizéme to be used in SynDEX.

The differential equatior = u is discretized using the simplest way: the Euler schemeuseenote by the
step of the discretization ang an arbitrary initial value, the discretized system can bigter as:

Xn+1— Xn = Uh (8.2)

Finally, the system is given in Scicos in the figure 8.5 andi8 @ven in SynDEX in the figure 8.6. Notice
that the variabléh is stored in the Scicos context, and used in the input of the @ad the clock definition. In
SynDEXx,h is defined as parameter in the definition of a gain and the deékition is directly used in the source
code associated with operations.

Horloge

Pas de discretisation

.
! D_’I>’—’_: 1§ L 1z

Figure 8.5: An integral discretized in Scicos

pas sommateur

in_1 [out_1

in_1{out_1
in_z

k.

(HER

Figure 8.6: An integral discretized in SynDEXx
Create the ntegral e_di screte_sup algorithm f. figure 8.6). Notice thapas is of typegai n_def with

parameteiGAl N equal to0. 001, sommat eur is of typesommat eur2_def, andretard is of typefl oat/del ay with
parameters equal {@} and1.

56

The car dynamics are given with Scicos block diagrams in thedi 8.7 and with SynDEXx operations in the
figure 8.8, where the input (ref) is the acceleration of the car. The first integral gives theesl of the car and
the second its position.

Puissance moteur Position

D o S e [D

1/s Vitesse

Figure 8.7: Car dynamics with Scicos block diagrams (cantgtime)

puissancemoteur integralel integraleg

ref in_1 Jout 1 in_Jout in__Jout [p——1qx
=2

L

Figure 8.8: Car dynamics with SynDEXx operations

Create therecani que_sup algorithm f. figure 8.8). Notice thapui ssancenot eur is of typegai n_def with
parameteAl N equal tol whereas nt egr al el andi nt egr al e2 are of type ntegral e_di screte_sup.

8.4.2 The cars and their controllers

In the following diagrams (from 8.9 to 8.12), the blocks (opi@ns) denoted byeca are the car dynamics. Let
us get the controllers of the two cars.

Create theoi t urel_sup andvoi t ure2_sup algorithms €f. figures 8.10 and 8.12). Notice thatcal andneca?
are references toecani que_sup whereaseontrol 1 (resp. control 2) is a refrence taontrol eur1_sup (resp.
control eur2_sup).

8.4.3 The main algorithm

Create thesenseur _def sensor, theitesse_def actuator andcope_def actuator (this one with two input ports
in_1 andin_2. Then createl gonai n. After inserting the reference speeef vit (of type senseur_def, with
PCSI _ARRAY parameter equal t0) and two kinds of outputvi tesse (X1, of typevitesse_def with POSI _ARRAY
parameter equal tb) anddi st ance between the two cars (of typeope_def with POSI _ARRAY parameter equal to
2), the applications looks like the figure 8.13 in SynDEX.

8.4.4 Source code associated with the sensor and the actuato

We associat€ source code to each function definition: input and two kindsuput.

57

v

v
-
>
2 [D)——F Pr— -l
> [— .
M 1
v E>/C0ntroleur1 ecanique
ref vit| | N

D

Figure 8.9: Scicog car dynamics and its controller

mecal

I

o

Tl [}
WA
c/’troﬂ

1 [res
e | o]

refvit

Figure 8.10: SynDEX; car dynamics and its controller

XII>\>
>
vi[2)———= gL Hla
>

_> .
M 2
Controleur?2 ccanique
x2
v2

Figure 8.11: Scicosg> car dynamics and its controller

58

out=z

mecaz

ref|><

N

~
Wi

outyz

T

]

Figure 8.12: SynDEX> car dynamics and its controller

ref_vit
og_root

Jout_1

vehiculel

2 [CHED)
in=g [outy

WE

veflicu

A1 [outes
invl [outv?

Figure 8.13: SynDEx’s main algorithm

59

Input

In our Scicos application an input is a square wave generdsoa rule, we will simulate a square wave generator
by reading values in a text file (nameef _vitesse.txt). We will use thefopen, thefcl ose and thef scanf
functions ét di o. h library). We will also use assertionssgert . h library) to ensure that the opening of a file has
been successful.

For the moment, let suppose that it exists an arreéy of* (the structure returned by tfiepen function) called
fd_array and a variable called ner to simulate a pseudo-timer. Our sensor has a parameted €afie ARRAY to
remember the position of th LE* structure in the array.

Now, open the code editor of theenseur _def sensor and write the following code in the init phase of the
default processor:

timer = 0;
fd_array[GPARAM PCSI _ARRAY)] = fopen("ref _vitesse.txt", "r");
assert (fd_array[@GARAM POSI _ARRAY)] !'= NULL);

In the Scicos application, we have defined the clock peridd@tquare wave generator to the value 5 and the
step of discretizatioh to the value 001. Thus we need, in the SynDEX application, to send 500&xtitne same
value. To count, we use the variablerer . All the 5000-th times, we read a new value in the file.

Write the following code in the loop phase of the default gssor:

timer = (timer + 1) % 5000;

if (timer ==1)

fscanf (fd_array[GPARAM PCSI _ARRAY)], "% \n", &data);
@uT(out_1)[0] = data;

We need to free memory by closing the file. Write the followaagle in the end phase of the default processor:

fcl ose(fd_array[GPARAM PCSI _ARRAY)]);

Speed output

An output saves in a file the values of the system states. Hmusutput has a parameter calle@sl _ARRAY to
remember the position of the array where the stream has laeen s Open the code editor of thiet esse_def
actuator and write the following code in the init phase ofdleéault processor:

fd_array[@GPARAM PCSI _ARRAY)] = fopen("actuat or _@EXT(@ARAM POSI _ARRAY))", "W');
assert (fd_array[@GARAM POSI _ARRAY)] !'= NULL);

The loop phase, allows to save the values:
fprintf(fd_array[GARAM POSI _ARRAY)], "9&\n", @N(in_1)[0]);
We need to free the memory by closing the file. Write the foitapcode in the end phase:

fcl ose(fd_array[@GPARAM PCSI _ARRAY)]);

60

Distance output

Contrary to the first type of output, this output has two inpaoitts but the ni t andend source codes are identical.
The loop phase differs. Open the code editor ofdtwpe_def actuator and write the following code in the init
phase of the default processor:

fprintf(fd_array] @ARAM PCSI _ARRAY)], "9&\n", (@N(in_1)[0] - @Nin_2)[0]));
8.4.5 Theexanpl e8_sdc. mix
SynDEXx’s code generation will create tlweanpl e8_sdc. mix file (as explained ifexample 7):

define(' exanpl e8_al gomain’, * al gomain’)
define(‘algomain', ifelse(
processor Type_, processor Type_, ' i fel sg(

M “INT, “
MGC, ‘ LOOP',* * WARNING enpty code for nmacro $0 in | oop phase'’,
,\m,(END’,((!!)!)!)

define(* exanpl e8_control eurl_sup’, ‘control eurl_sup’)
define(‘controleurl _sup’,"'ifelse(
processor Type_, processor Type_, " i f el se(

M CINET
MGC, ‘ LOOP',* * WARNING enpty code for nmacro $0 in | oop phase'’,
M’IEND!’IIII)!)!)

define(* exanpl e8_control eur2_sup’, ‘control eur2_sup’)
define(‘controleur2_sup’,'ifelse(
processor Type_, processor Type_, ' i fel sg(

M INT
MC, ‘ LOOP',* *WARNING enpty code for macro $0 in | oop phase’
MSC, “END', "))

define(' exanpl e8_gai n_def’, * gain_def’)
define(‘gain_def', ifelse(
processor Type_, processor Type_, ' i fel sg(

M “INT, “
MGC, ‘ LOOP', * * WARNING enpty code for nmacro $0 in | oop phase’’,
,\m,(END’,((!!)!)!)

define(‘ exanpl e8_integral e_discrete_sup’',‘integrale_discrete_sup’)
define(‘integrale_discrete_sup', " ifelse(
processor Type_, processor Type_, ' i fel se(

M INT

MC, ‘ LOOP', * *WARNING enpty code for macro $0 in | oop phase’
MSC “END',“*"")")")

define(* exanpl e8_scope_def’, ‘ scope_def")
define('scope_def’,"ifelse(

processor Type_, processor Type_, ' i f el sg(

MC INIT '

MC, ‘ LOOP',* *WARNING enpty code for macro $0 in | oop phase’
MEC “END',“*"")")")

define(* exanpl e8_senseur _def’,* senseur _def")
define(*senseur_def', " ifelse(
processor Type_, processor Type_, ' i fel se(

MC “INIT '

61

MC, ‘ LOOP',* *WARNING enpty code for macro $0 in | oop phase'’
MSC, “END', "))

define(*' exanpl e8_sonmat eur 2_def’, * sommat eur 2_def ")
define(‘ sommat eur2_def’, " ifel se(
processor Type_, processor Type_, ' i fel sg(

M “INT, “
MGC, ‘ LOOP', * * WARNING enpty code for nacro $0 in | oop phase'’
MGC,"END',"*77)")")

define(* exanpl e8_sommat eur4_def’, ‘ sonmat eur 4_def ")
define(‘ sommateurd4_def’, " ifel se(
processor Type_, processor Type_, ' i fel se(

M CINET

MGC, ‘ LOOP', * * WARNING enpty code for nacro $0 in | oop phase'’
MEC 'END' L, “"")")")

define(* exanpl e8_sommat eur5_def’, ‘ sonmat eur5_def ")

define(' sommateur5_def’, ifel se(

processor Type_, processor Type_, ' i fel sg(

M CINET

MC, ‘ LOOP', * *WARNING enpty code for macro $0 in | oop phase'’
MEC, ‘END' L, “"")")")

define(' exanpl e8_vitesse_def’, 'vitesse def’)
define(‘vitesse_def', ifelse(
processor Type_, processor Type_, ' i f el se(

M “INT, “
MGC, ‘ LOOP', * * WARNING enpty code for nacro $0 in | oop phase'’
M’IEND!’IIII)!)!)

define(* exanpl e8_voiturel_sup’, ‘voiturel sup’)
define(‘voiturel_sup', " ifelse(
processor Type_, processor Type_, ' i fel se(

M INT
MC, ‘ LOOP', * *WARNING enpty code for macro $0 in | oop phase’
M’IENDI’IIII)!)!)

define(* exanpl e8_voiture2_sup’, ‘voiture2_sup’)
define('voiture2_sup', " ifelse(
processor Type_, processor Type_, ' i fel sg(

MC INIT e
MC, ‘ LOOP', * * WARNING enpty code for macro $0 in | oop phase'’
,\m’(ENDl’((!!)!)!)

8.4.6 To handwrite theexanpl e8. mix file

You will not can use directly the SynDEX’s generatadnpl e8. mix generic file because both the creation of local
variable and the call of libraries is missing. After the cageration, you will must handwrite it to obtain the
following code:

define(‘dnldnl’, /] ")
def i ne(* NOTRACEDEF')
define(‘ NBI TERATI ONS', “ 20000" ")

define(' BINPWD , ‘pwd’)
define(* RSHELL', ‘ssh’)

define(‘proc_init_",

62

FILE *fd_array[10];
float data,
int timer;")

i ncl ude(* exanpl e8_sdc. mix’)

divert
divert(-1)
divert*’ dnl

Where the macrproc_i nit_ allows the local variable declaration to be declared bes#laserts its source

defined generically with a loop &8l TERATI ONS whereNBI TERATI ONS is initialized with the size of the input file
(ref _vitesse. txt). Finally, the call of libraries is inserted after the indiof theexanpl e8_sdc. mix file.

8.5 Scicos simulation

Scicos software allows to simulate models in a windafv figure 8.14), where the values of three states are
plotted (ordinate axle) according to the time (abscissa)a¥l/e have:

¢ the square wave generator drawn at the bottom (red);
¢ the speed of the first car at the top (black);
¢ the distance between the two cars seen in the middle of theef{gueen).

Thanks the diagram, the system is stable (plots do not grpwrentially) and so it works. We do not continue
to ameliorate the controllers job.

150

0.754
0.00
0755

1505y HE e e pi5] T i E]]} pEzs g 7

130515 3 3G p30] p5] 5 TR pi3} pEz) T 7

Figure 8.14: Scope window obtained with the values 0; -5;;050or gains of the(; controller and 4; 4; -4; -4
for the (> controller.

8.6 SynDEXx simulation

8.6.1 Inthe case of a mono-processor architecture
The architecture

In this subsection, we suppose that the architecture iditatesl of an only operator namedot :

63

e create theJ operator:

— set the durations with

float/delay = 1
gain_def =1
scope_def =1
senseur _def = 2

sommat eur 2_def = 2
sommateur4 _def =1
sommateur5 def = 2

vitesse_def =1

— choosadnit as code generation phase in which to generate code;
e create themwno architecture:

— add oneJ operator namedoot and define it as main operator,
— define themno architecture as main.

The adequation and the code generation

First, launch the adequation. It modifiesanpl e8. sdc andexanpl e8. sdx files.

Then, generate the executive and applicative files (seftotg / Generate m4x Filek It createsxanpl e8. 4,
exanpl e8. mix, exanpl e8_sdc. mix, andr oot . m4 files.

Finally, handwrite thexanpl e8. mix file as explained in 8.4.6.

The compilation

First, generate manually@Unakefi | e containing:

A = exanpl e8

M = gmi

export Archi Macros_Path = ../../../macros/archi _|libraries
export Al goMacros_Path = ../../../macros/algo_libraries

export MAPATH = $(Archi Macros_Pat h) : $(Al goMacr os_Pat h)

CFLAGS = - DDEBUG
VPATH = $(MAPATH)

.PHONY: all clean

all : $(A).nk $(A).run

clean ::

$(RM $(A).nmk *~ *. 0 *.a *.c actuator_*

$(A).nk : $(A) . m syndex. mim U mim
$(W) $< >$@

root.libs =
p.libs =
i ncl ude $(A). nk

Where:

64

e Ais set with the name of your application (heseanpl e8);

o the path about the generic *.m4? macro-files are stored irxperted shell variable& chi Macr os_Pat h
andAl goMacr os_Pat h then grouped into a new exported shell variable name€aTH. The separatar means
that am4 macro-file will be search first iar chi Macros_Pat h and then imAl goMacr os_Pat h if is not found;

e a mix of this makefile and the informations stored in file nareedpl e8. Mmwill create another makefile
calledexanpl e8. nk during the compilation.

Then, copy-paste thef _vitesse. txt file from theExample 8folder to yours.
Then, type the commanygteke in a shell commands interpreter. It creadetsuat or _1, act uat or _2, exanpl e8. nk,
root, root.c, androot.root. o files:

e theactuat or _1 file contains the speed of the first car;

e theact uat or _2 file contains the distance between the cars.

8.6.2 Inthe case of a bi-processor architecture
The architecture

In this subsection, we suppose that the architecture istibotes! of two operators namedot andpcl, of typeu
and linked with a mediumcp1 of typeTCP:

e create th&CP medium:

— set the type wittSAM MultiPoint ,
— set the durations withl oat = 1;

e modify theU operator: set the gates witltP x andTCP y;

e create thei Proc architecture:

add oneJ operator namedoot and define it as main operator,

add oneJ operator namegqkc1,

add onerCP medium namedcpl,

links the medium to the gates of the operators,
— define thevi Proc architecture as main.

The adequation and the code generation

First, launch the adequation. It modifiesnpl e8. sdc andexanpl e8. sdx files.

Then, generate the executive and applicative files (seftote / Generate m4x Filek It createsxanpl e8. 4,
exanpl e8. mix, exanpl e8_sdc. méx, root . m¢, andpcl. n4 files.

Finally, handwrite thexanpl e8. mix file as explained in 8.4.6.

The compilation

First, generate manually ttedlUrakef i | e, theexanpl e8. mim and the oot . mix files:

o theG\Umekefil e has to be created as explained in 8.6.1. Upgrade it so thiihthe

$(A).nk : $(A).nmt syndex. mim U mim

is changed by:

65

$(A).nk : $(A).m syndex. mim U. mim $(A) . mim

e create theexanpl e8. mim file with this line: define(‘ pcl_hostname ', HOSTNAME) dnl where HOSTNAME is
substituted with the name of your remote station;

e create the oot . mix file with this line:i ncl ude(exanpl e8. minj .

Then, copy-paste thef _vitesse. txt file from theExample 8folder to yours.
Then, type the commanygieke in a shell commands interpreter. It creadessuat or _1, act uat or _2, exanpl 8. nk,
root,root.c,root.root.o, pcl, pcl. c, andpcl. pcl. o files:

e theact uat or _1 file contains the speed of the first car;

e theact uat or _2 file contains the distance between the cars.

8.6.3 Inthe case of a multi-processor architecture

The architecture

contl (1) EEhiiE (U

3
bl

dynal (L) Foot (1) (main)

v 1 y

Figure 8.15: L'architecture avec cinq opérateurs.

In this subsection, we suppose that the architecture istitatesl of five operators namedot ,cont 1, cont 2,
dynal, anddyna2, of typeU and linked with a mediurhus of type TCP:

e create thewl ti architecturedf. figure 8.15):

— add oneJ operator namedoot and define it as main operator,
— add oneJ operator namedont 1,
— add oneJ operator namedont 2,
— add oneJ operator namedynal,
— add oneJ operator namedyna?,
— add onerCP medium namedus,

— links the medium to the gates of the operators, except for thet one, linked with itsy gate to the
medium,

— define thewl ti architecture as main;
e create operation groups:

— create theg_root operation group, attaatef _vit, vitesse, anddi st ance to it,

— create theg_dynal operation group, from the main mode, in trehi cul el reference attachecal to
it,

— create theg_cont 1 operation group, from the main mode, in thehi cul el reference attactont rol 1
to it,

66

— create thevg_dyna2 operation group, from the main mode in thehi cul e2 reference attacheca2 to
it,
— create theg_cont 2 operation group, from the main mode, in thei cul e2 reference attactont rol 2
to it;
e create absolute constraints:

constrainog_r oot onroot,

constrairnog_cont 1 oncont 1,
constrairnog_cont 2 oncont 2,
constrairog_dynal ondynal,
constrairng_dyna2 ondyna2.

The adequation and the code generation

First, launch the adequation. It modifiesnpl e8. sdc andexanpl e8. sdx files.

Then, generate the executive and applicative files (seftode / Generate m4x Filek It creategxanpl e8. m4,
exanpl e8. mix, exanpl e8_sdc. mdx, root . m4, cont 1. m4, cont 2. m4, dynal. 4, anddyna2. m4 files.

Finally, handwrite thexanpl e8. mx file as explained in 8.4.6.

The compilation

First, generate manually thékefi | e. ocan , theexanpl e8. mm ther oot . mix, thecont 1. mix, thecont 2. mix, the
dynal. mix, and thedyna2. mx files:

e copy-paste theakefil e. ocani from theExample 8folder to yours;

e create thexanpl e8. mimfile with these lines:

define(‘contl_hostnane_', HOSTNAME)dnl
define(‘cont2_hostname_', HOSTNAME)dnl
define(' dynal_hostname_', HOSTNAME)dnl
define(‘ dyna2_hostnane_', HOSTNAME)dnl

whereHOSTNAME is substituted with the name of your remote station;
e create theoot. mix, cont 1. mix, cont 2. mix, dynal. mix, anddyna2. mix files with this line:i ncl ude(exanpl e8. minj .

Then, copy-paste some files from tArample 8folder to yours:

copy-paste thexanpl e8. ni file.

copy-paste thea_exanpl e8. m file.

copy-paste theoot . sh, cont 1. sh, cont 2. sh, dynal. sh, anddyna2. sh files;
e copy-paste theef vitesse.txt file.

You will probably need to install camlp5 (see bttt p: // pauil lac.inria.fr/~ddr/cam p5/).

Then, type the commanmhke -f Makefile.ocan in a shell commands interpreter. It createsnpl e8. cni,
exanpl e8. o, pa_exanpl e8. cni , and<pr ocessor >. cni , <processor >. cnx, <pr ocessor >, 0, <processor >. opt foreach
processor.

Finally, launch separatly the five script files. At the endludit execution, thect uat or_1 andact uat or _2
files are created:

e theactuator _1 file contains the speed of the first car;
e theactuat or _2 file contains the distance between the cars.

From the main window, choogéle / Close In the dialog window, click on th&avebutton.

67

Chapter 9

Example 9: a multiperiodic application

From the main window, chooggle / Save asand save your ninth application under a new folder of youdriat
folder (eg. ny_exanpl e9) with the namexanpl e9.

9.1 The main algorithm

compute
in_ Jout i

[]
=
¢

Figure 9.1: Main algorithm of thExample 9

Create the main algorithimasi cAl gori t hm(cf. figure 9.1) using the librarynt for the operationgnput <1>
(int/input) andout put <1> (i nt/output). For the operatioronpute, create a function definitiononput e and
create a reference to this definition. Create the dependémte/cen the references. Set the periods to énfart ,
8 for conput e, and 8 forout put .

9.2 The main architecture

Open the architectumonoProc from the libraryu. Define it as main. The durations for tleoperator are by
default:

int/input =3
Inplode_int =1
conpute = 1

int/output = 3

68

In this case, the system is not schedulable.

9.3 A mono-phase schedule

9.3.1 Durations

Modify the durations for th& operator:

int/input =1
Implode_int =1
conpute = 1

int/output = 1

9.3.2 Adequation

| Window Edit

root | 3 -S

output

H

Figure 9.2: A mono-phase schedule

Launch the adequatio®@lequation / Launch Adequation). Display the scheduleddequation / Display
Schedulg (cf. figure 9.2).

Wait operation

Notice the new operation added by SynDE&i ¢) to respect the period of theput operations.

Multiple occurrences

Notice that because of the periods, during a cycle twaut operations are executetnfut #1 andi nput #2)
whereas only oneonput e and onebut put operations are executed.

Implode operation

Notice the new operation added by SynDExp(ode_conput e) to provide the data from thieput operations to
theconput e one.

69

9.4 A multi-phase schedule

9.4.1 Durations

Modify the durations for th& operator:

int/input =1
Implode_int =1
conpute = 2

int/output = 1

9.4.2 Adequation

| Window Edit

root

1] input#
1 walt 2
z X
Wait 4
inputts 9
] Implode_compute 43
i input# g
1n X
Wait
* 12
1z inputtz 13
13 Implode_compute 14
] /]
~ =

Figure 9.3: A multi-phase schedule

Launch the adequatio®@equation / Launch Adequation). Display the scheduleddequation / Display
Schedulg§. The computed schedule has two phases: a transitory pteabeafid a permanent phase (greeh) (

figure 9.3).

Transitory phase

The transitory phase is executed only once. It contains teedtcurrence of thénput #1 operation, the first
occurrence of thenput #2 operation, the first occurrence of thepl ode_conput e operation, and the fist occurrence
of theconput e operation. Theonput e operation provide data consumed by teput operation schedule at time

9in the permanent phase.

Permanent phase

The permanent phase is the one that is executed infinitelgoritains the second occurrence of thgut #1
operation (and its following occurrences). It containsfitet occurrence of theut put operation (and its following

occurrences).

