
SynDEx v7 User Manual

Julien Forget, Christophe Gensoul, Maxence Guesdon

Christophe Lavarenne, Christophe Macabiau,

Yves Sorel, Cécile Stentzel

August 5, 2009

2

Contents

1 Overview 6
1.1 The AAA methodology . 6
1.2 SynDEx distributions . 6

2 Getting started 7
2.1 Application workspace . 7

2.1.1 SynDEx main window . 7
2.1.2 Load a SynDEx application . 7
2.1.3 Algorithm and architecture windows . 7

2.2 Modes . 8
2.3 Adequation and code generation . 8
2.4 Save, Close, Quit . 8

3 Libraries 10
3.1 To use libraries . 10
3.2 To create a library . 10

4 Using the interface 11
4.1 Selection . 11
4.2 Zoom . 11
4.3 Contextual menus . 11
4.4 Contextual information . 12
4.5 To find an object . 12
4.6 Refresh . 12

5 Algorithm 13
5.1 To create an algorithm definition . 14

5.1.1 Definition mode and main mode . 16
5.1.2 To add a port to a definition . 17
5.1.3 To add a reference to a definition . 20
5.1.4 To add a dependence to a definition . 23
5.1.5 To create a superblock . 23
5.1.6 To create an abstract reference . 23

5.2 To condition an algorithm definition . 23
5.3 To repeat an algorithm definition . 24

5.3.1 Diffuse, Fork, and Join . 24
5.3.2 Iterate . 26

5.4 To modify an algorithm definition or a reference . 28
5.4.1 Modify a definition . 28
5.4.2 Modify a reference . 28

5.5 To delete an algorithm definition . 28
5.6 To associate code with an algorithm definition . 30

5.6.1 The code editor window . 30
5.6.2 The code editor macro language . 30

3

5.6.3 The code editor shortcuts . 31

6 Architecture 32
6.1 Operator . 32

6.1.1 To create an operator definition . 32
6.1.2 To modify an operator definition . 32
6.1.3 To delete an operator definition . 33

6.2 Communication medium . 34
6.2.1 To create a medium definition . 34
6.2.2 To modify a medium definition . 34
6.2.3 To delete a medium definition . 34

6.3 Architecture . 34
6.3.1 To create an architecture definition . 34
6.3.2 To set the main architecture . 35
6.3.3 To modify an architecture definition . 36
6.3.4 To delete an architecture definition . 36

7 Characteristics 37
7.1 Execution durations . 37

7.1.1 Operation durations . 37
7.1.2 Operator durations . 37

7.2 Communication durations . 38
7.3 Libraries . 38

8 Constraints 39
8.1 To create an operation group . 39
8.2 To attach references to operation groups . 39
8.3 To constraint operation groups on operators . 40
8.4 To delete an operation group . 40

9 Adequation 41
9.1 Main algorithm and main architecture . 41
9.2 Characterization . 41
9.3 To launch the adequation . 41
9.4 Flattening . 41
9.5 Schedule . 42

9.5.1 To display the schedule . 42
9.5.2 The schedule window . 42

10 Code generation 43
10.1 To generate the code . 43
10.2 To view generated files . 43
10.3 Overview . 43
10.4 To compile an executive . 44
10.5 To load the compiled executive . 44
10.6 To automate the compilation/load process . 44

11 SynDEx downloader specification 46
11.1 Context . 46
11.2 Boot and download process . 46
11.3 Common download format . 47
11.4 Downloader macros . 47

12 Links 49

4

Introduction

This manual respects some writing conventions:

• menus, buttons etc. are written in bold
(eg. File menu, OK button, Definition list, Launch Adequation option),

• SynDEx directories and files, examples etc. are written in Computer Modern

(eg. libs directory, examples/tutorial/example7/example7_sdc.sdx file, ! int o port definition),

• notions, windows etc. are written in italic:
(eg. AAA methodology, reference, definition mode, algorithm window).

5

Chapter 1

Overview

1.1 The AAA methodology

SynDEx is based on the AAA methodology (cf. chapter 12).
A SynDEx application is made of:

• algorithm graphs (definitions of operations that the application may execute),

• architecture graphs (definitions of multicomponents: set of interconnected processors and specific
integrated circuits).

Performing an adequation means to execute heuristics, seeking for an optimized implementation of a
given algorithm onto a given architecture.

Adequation means an efficient mapping. An implementation consists in:

• distributing the algorithm onto the architecture (allocate parts of algorithm onto components),

• scheduling the algorithm onto the architecture (give a total order for the operations distributed
onto a component).

1.2 SynDEx distributions

SynDEx runs under Linux, Windows, and Mac OS X platforms. SynDEx is written in Objective Caml.
The Graphical User Interface is written in Tcl/Tk with the OCaml library CamlTk. See chapter 12 for
web links.

6

Chapter 2

Getting started

2.1 Application workspace

2.1.1 SynDEx main window

Figure 2.1: SynDEx main window

To create an application workspace, run the SynDEx executable, located at the root of your instal-
lation directory. It opens the main window of SynDEx (cf. figure 2.1).

2.1.2 Load a SynDEx application

To load an existing application in the workspace, from the File menu, choose the Open option and
select a SynDEx file (cf. figure 2.2). For example load the examples/basic/basic.sdx example.

2.1.3 Algorithm and architecture windows

Loading a SynDEx application will open:

7

Figure 2.2: Open a file

• the algorithm window on the main algorithm if it have been defined (cf. figure 2.3),

• the main architecture window if the main architecture have been defined (cf. figure 2.4).

Opening another application will replace the current one by the new one in the workspace.

2.2 Modes

In the algorithm window, the adress bar displays AlgorithmMain (main) meaning that the main algorithm
is viewed in the main mode (cf. section 5.1.1). Double click on AlgorithmMain in the Definition list.
The algorithm is now viewed in its definition mode and the adress bar displays [Function] AlgorithmMain.
See section 5.1.1 for more information.

Notice that there can be several algorithms and architectures but only one main algorithm and one
main architecture on which the adequation will be applied.

2.3 Adequation and code generation

To launch the adequation of the main algorithm (cf. Main mode in section 5.1.1) onto the main archi-
tecture (cf. section 6.3.2), from the Adequation menu, choose the Launch Adequation option. To
view the computed schedule, from the Adequation menu, choose the Display Schedule option. See
chapter 9 for more information.

To generate the code of the application, from the Code menu, choose the Generate Executive(s)
option. The generated .m4 files are saved in the example’s directory. To view theses files from the
SynDEx workspace, from the Code menu, choose the Display Executive(s) option. See chapter 10
for more information.

2.4 Save, Close, Quit

To save the current application, from the File menu, choose the Save option. To save it with a new
name, choose the Save as option and type the new name in the dialog window. The file will be suffixed

8

Figure 2.3: Algorithm window in examples/basic/basic.sdx

Figure 2.4: Main architecture window in examples/basic/basic.sdx

by .sdx.
To close the current application, from the File menu, choose the Close option. It closes all the

application windows and leaves the workspace empty.
To quit SynDEx, from the File menu, choose the Quit option.

9

Chapter 3

Libraries

3.1 To use libraries

To create a new application you may want to use pre-defined algorithm or architecture definitions. These
are global definitions (vs. local definitions from the current application).

From the File menu of the main window, choose the Specify Library Directories option. Then
click on the Add button of the dialog window and select the target directory. For example, specify the
SynDEx libs directory and the examples/basic_with_library/basicLibraries directory.

To include a library in an application in order to make references to the objects it contains, from the
File menu of the main window, choose the Included Libraries option. Then check the target library.
Uncheck an already included library to un-include it, provided there are no references in your application
on definitions from this library.

3.2 To create a library

To create a library of algorithm or architecture definitions, you must create a .sdx file containing the
definitions you need. Libraries may be located in the libs directory, at the root of your installation
directory. Or you will have to specify their location to the SynDEx application (cf. section 3.1).

10

Chapter 4

Using the interface

4.1 Selection

Selection may be applied to vertices or edges of both algorithm or architecture graphs.

Click on a vertex (resp. an edge). Red squares appear on its borders, meaning that the vertex (resp.
the edge) is selected. To select multiple vertices and/or edges, use the shift key. To select a set of
vertices and/or edges, use the left button of the mouse while dragging it, in order to draw a square when
the button is released. Vertices inside or intersecting the square are selected.

To move a selection, click on a vertex of the selection. Then drag it until the target position and
release the mouse. To cancel a selection click outside the selection.

Contextuals menus are available on selections (cf. section 4.3).

4.2 Zoom

Zoom may be applied to architecture (cf. chapter 6) and schedule windows (cf. section 9.5) by moving
the zoom cursor on the border of these windows.

4.3 Contextual menus

Some contextual menus are available in SynDEx. Contextual menus mainly include edition commands
(Copy, Cut, Paste, Delete).

Algorithm window

In the algorithm window, right click on the background of an algorithm definition window. It opens a
contextual menu on the target definition. Click on a vertex (function, delay, sensor, actuator, constant)
of an algorithm graph. Red squares appear. Then right click the mouse. It opens a contextual menu
on the target reference.

The Activate Info Bubbles option displays additionnal information when pointing the cursor at a
vertex of any algorithm graph.

Architecture window

In an architecture window, right click on the background or click on the Edit menu. It opens a contextual
menu on the target definition. Click on a vertex (operator, communication medium) of an architecture
graph. Red squares appear. Then right click the mouse. It opens a contextual menu on the target
reference.

11

4.4 Contextual information

When the cursor points at an object of an algorithm (cf. chapter 5), an architecture (cf. chapter 6) or
a schedule window (cf. section 9.5), information is displayed in the main window.

By default information is not kept when switching between objects. The new information overwrites
the older one. To change this behaviour and keep all the information, from the Options menu of the
main window, check Keep Information in the Main Window. This is for instance useful when the
information displayed does not fit in the window, which requires to scroll the main window.

4.5 To find an object

Looking for a vertex, from which you now the name, in a complex graph can become rather tedious.

Architecture window

In the architecture window (cf. chapter 6), from the Edit menu, choose the Find Operator Reference
or Find Medium Reference option to locate a vertex of your graph by its name. It opens a window
listing all the vertices of your graph. Double clicking on one of them will select it.

Schedule window

In the schedule window (cf. section 9.5), from the Edit menu, choose the Find Operation option to
locate an operation of your graph by its name. It opens a window listing all the operations of your graph.
Double clicking on one of them will select it.

4.6 Refresh

To refresh an architecture window, from its Window menu, choose the Refresh option. If necessary,
re-open the algorithm window (cf. Algorithm window in chapter 5) to refresh it.

12

Chapter 5

Algorithm

The AAA methodology

In the AAA methodology, an algorithm is specified as a directed acyclic graph (DAG) infinitely repeated.
Directed means that for each edge representing a relation between vertices, the vertices tuple is ordered,
i.e. its first element is the source vertex and the other one(s) is(are) the destination vertex(vertices).

Still in AAA, SynDEx algorithm vertices are operations; operation stands for a sequence of instruc-
tions which starts after all its input data are available and produces all its output data at the end of the
sequence. Edges are dependences between two vertices.

Definition vs. reference

In SynDEx there is a distinction between algorithm definition and algorithm reference. To each reference
corresponds one and only one definition. To a given definition may correspond several references. A
definition is a DAG similar to those in AAA, except that vertices are references or ports.

To a given reference contained in a definition corresponds a definition which may contain itself several
references and so on.

Hierarchy

In SynDEx, algorithms can be defined through hierarchy. A definition is said hierarchical when it
defines an algorithm which contains at least one dependence (and possibly references), otherwise it is
said atomic.

There are five types of atomic definitions:

• functions read data on input ports, execute instructions without any side-effect, write data on
output ports,

• sensors are input vertices of the DAG producing data from a physical sensor,

• actuators are output vertices of the DAG consuming data for a physical actuator,

• constants are input vertices of the DAG, with null execution time,

• delays memorize data during one or several infinite repetition of the DAG, for use in next repeti-
tions.

A definition is said explicitly hierarchical when the algorithm contains at least one dependence (and
possibly references). This includes conditioning (cf. section 5.2), repetitions (cf. section 5.3) of hier-
archical definitions, and more generally definitions defined through several levels of hierarchy. Only a
function may be defined through explicit hierarchy.

A definition is said implicitly hierarchical when the algorithm does not contain any dependence and
yet will be transformed by SynDEx, for the adequation, into a graph which contains dependences. This
happens only with repetitions (cf. section 5.3) of atomic definitions.

13

Warning: A hierarchical definition does not have to wait for all its input data to be available before
starting some computations. Indeed, parts of the algorithm graph of a hierarchical algorithm definition
may only require parts of the input data of the definition and therefore can start as soon as this part
is available (and not all the data). In the same way, some data may be produced before the end of the
complete sequence of computations.

Dependences

There are two types of dependences:

• data dependence: strong communication and execution precedence,

• precedence dependence: execution precedence only.

A data dependence imposes that the reference at the source of the dependence, produces data and is
executed before the reference at the destination of the dependence, which consumes the data. A precedence
dependence only imposes an execution order between references, no data is produced or consumed.

Algorithm window

Figure 5.1: Algorithm / New Algorithm Window

If necessary, from the Algorithm menu, choose the New Algorithm Window option (cf. figure
5.1). It opens the edition window for algorithm definitions (cf. figure 5.2). Click on the background of
a definition window : the algorithm window shows its Definition Properties. Click on a reference in
this definition window : the algorithm window shows its Reference Properties.

5.1 To create an algorithm definition

Types of definitions

SynDEx distinguishes five types of definitions with different edition rules:

14

Figure 5.2: Algorithm Window

• a function is a general abstraction with no edition restriction: it can contain dependences, references
and ports;

• a sensor is an abstraction of a physical device producing data: it can only contain output ports;

• an actuator is an abstraction of a physical device consuming data: it can only contain input ports;

• a constant is a an abstraction of a typed value: it can only contain one output port producing that
value. For convenience, the value hold by the constant can be given as a parameter to the constant
definition. Notice that this is only possible for values that are representable within the parameter
language: integer, float, string and list of such values. SynDEx standard library uses this trick
to define constants for the library base types (int, float, ...). For example, the cst definition of
the int library has one parameter: ListOfValues;

• a delay is an abstraction of a memory region: it must contain one input port (the write port) and
one output port (the read port) of the same type, but nothing more. Delays hold the state of a
SynDEx application. Using delays is the only way to propagate datas from one iteration of the
application to the next. A delay must be initialized, either by using a parameter (as suggested
above for constant definitions) or lately in the real world code (as for constant definitions, doing it
in the code is the only alternative for delays holding values of complex types). SynDEx standard
library defines delays for its base types as shift registers with two parameters: the first one is a
list of initial values and the second one is the delay range. The delay range is the size (in number
of items) of the register. For example, the delay definition of the int library has two parameters:
listInit and nbDelay.

New definition

To create a new definition, in the algorithm window, click on the + green button. It opens a dialog
window in which you can select the definition’s type. For example check Sensor (cf. figure 5.3). Type
the name of the new sensor and optionally a list of parameters. For example type input. Then click
OK. It creates a definition of sensor named input.

15

Figure 5.3: Definition of a sensor

Parameters are local to the scope of a definition. Often, parameters are used to create more generic
definitions. For example, to parameterized the size of a definition’s ports, we can create a parameterized
definition with one parameter standing for the port size. Parameter names are given as a semi-colon
separated list between < and >, following the definition’s name. The user can also edit the parameters
list in the Definition Properties. Only the main algorithm (cf. section 5.1.1) can instanciate its
parameters thanks to its field Values in its Definition Properties (cf. figure 5.8).

5.1.1 Definition mode and main mode

This section refers to section 2.2.

Definition mode

Figure 5.4: C definition in examples/hierarchy/hierarchy.sdx

Double click on a definition name in the Definition list (eg. open the examples/hierarchy/hierarchy.sdx

application and double click on C in the Definition list). You are now in a definition mode (cf. figure
5.4). From a definition mode, to open the definition corresponding to a reference in order to inspect and
possibly modify its content, click on the target reference. Red squares appear on its borders (cf. figure
5.5). Then double click on it. It displays the definition of the target reference (cf. figure 5.6).

16

Figure 5.5: Opening B1 reference in examples/hierarchy/hierarchy.sdx

Main mode

To define an algorithm as main, right click on the background of the target definition window. Choose
the Set As Main Definition option (cf. figure 5.7). The color of the background changes and the
adress is changed from a [Function] to a (main), meaning that you are now in the main mode on the main
algorithm (cf. figure 5.8). Notice that the main algorithm must be at the root level of a hierarchy; it
can not contain unconnected ports. Only the main algorithm can instanciate its parameters (cf. section
5.1) thanks to its field Values in its Definition Properties (cf. figure 5.8).

Click on the Main button of the algorithm window. It displays the main algorithm in the main mode.
Click on a hierarchical reference to browse down the main algorithm (eg. click on the C reference of Main

then click on the B2 reference of C). Then click on Up In Main to browse up the main algorithm.

Hierarchy

Now you may construct a graph with references to constants, sensors, actuators, delays and functions.
If this definition is intended to be referenced in an explicit hierarchy, i.e. this reference will belong to
a certain level of hierarchy (possibly a leaf), you must use input and output ports. If this definition
is intended to be referenced at the root level of the hierarchy, input ports are replaced by sensors and
output ports are replaced by actuators.

References to an explicitly hierarchical definition are displayed with a double-border (in the figure 5.4
B1 is a reference on an explicitly hierarchical definition contrary to add).

5.1.2 To add a port to a definition

Ports are communication interface of a definition with the outside world.

Types of ports

SynDEx distinguishes three types of ports:

17

Figure 5.6: B definition in examples/hierarchy/hierarchy.sdx

• an input port represents a data that is provided by the outside world to the definition;

• an output port represents a data that is provided by the definition to the outside world;

• an input/output port can be seen as a reference (or pointer) to a data provided by the outside
world that the definition can modify in place. This explains the name of input/output ports: we
can read the value of the port and replace it by a new one.

New port

To add a port to an atomic definition (cf. chapter 5):

• in the definition mode (cf. section 5.1.1), right click on the background and choose the Add port
option For example create a new definition named input and add a port to this definition (cf.
figure 5.9);

• it opens a dialog window in which you can type the port direction, type, name and optionally its
size. You can click on the syntax help link for more information. For example type ! int o,
then click OK (cf. figure 5.10);

• it creates the target port. In this example, the new port is an integer output port named o (cf.
figure 5.11) in the definition window.

You can undo and redo this action.
A port definition has the following syntax:

port_definition ::= direction type [[size]] name

direction ::= ? | ! | &

where:

• ? specifies an input port,

• ! specifies an output port,

18

Figure 5.7: Set Main definition as main algorithm in examples/hierarchy/hierarchy.sdx

• & specifies an input/output port.

Hint: you can create several ports in one breath by simply putting several port definitions in a row
in the dialog window.

definition ::= { port_definition }

Ports order

If you plan to generate code, it is necessary to specify an order for ports which is consistent with the
declaration of the corresponding executable function. To specify the ports order, right click on the
background and choose the Ports Order option.

Input/output ports

Input-output ports have a very specific behavior concerning data memory allocation in the executives
generated by SynDEx. For any application, SynDEx makes data buffer allocations for (and only for)
the output ports of the atomic references of your algorithm graph. Input-output ports do not cause
an allocation but instead an alias on the output port of its predecessor. The operation containing this
input-output port directly modifies the value of its predecessor port (side-effect). This is useful to avoid
reallocation of big data buffers of the same type (for instances images) by making successive computa-
tions on the same data buffer.

However, as side-effects are not supposed to happen in data-flow graphs, this comes with some
restrictions:

• Ports of delay definitions can not be input/output ports,

19

Figure 5.8: Main mode in examples/hierarchy/hierarchy.sdx

• Ports of hierarchical definitions can not be input/output ports,

• The data of an input/output port can not be diffused: if there is a dependence A.o –> B.io (where
A.o is an output port and B.io is an input/output port), neither A.o nor B.io can be diffused (cf.
section 5.3.1).

5.1.3 To add a reference to a definition

A reference can be thought as a call to a function in a traditional programming language. Here the called
function is an algorithm definition.

New reference

To reference a definition (eg. myReferencedDef) into another one (eg. myDefinition), set the algorithm
window in definition mode on myDefinition (cf. section 5.1.1). Then drag and drop myReferencedDef

from the Definition list to the definition window (or select myReferencedDef in the Definition list,
right click on the background of the definition window, and choose the Add reference option). It opens
a dialog window. Type the name of the reference (eg. myReference). See figure 5.12 to see the result.

Parameterized definitions

To reference a parameterized definition, a valued expression is required for each parameter. This can be
done by typing a semi-colon separated list of expressions between < and > after the reference’s name, in
the dialog window. Please notice that the number of expressions must match the number of parameters
of the referenced definition, and that types must match.

20

Figure 5.9: Contextual menu → Add port

Figure 5.10: Name of the new port

21

Figure 5.11: A definition after port creation

Figure 5.12: A reference to myReferencedDef into myDefinition

22

5.1.4 To add a dependence to a definition

A dependence is an execution order relation between two references.

SynDEx distinguishes two types of dependences (cf. Dependences): data dependences and precedence
dependences (without data). SynDEx automatically creates the right type of dependence depending on
the context:

• data dependences
To create a data dependence between two references, point the cursor at an output port of the
source, middle click (or Ctrl left click), then drag and drop on an input port of the destination
(or right click on the background, and choose the Add dependence option). The source and
destination of a data dependence can also be ports: this is used to read a data from (resp. write
a data to) the outside world. Notice that for a given non-atomic definition, all output ports must
be in dependence with input ports: all outputs must be defined;

• precedence dependences
To create a precedence dependence between two references, point the cursor at an output precedence
port of the source, middle click, then drag and drop on an input precedence port of the destination.
Input (resp. output) precedence ports are represented by little black squares at the left (resp.right)
of the boxes holding the reference names.

5.1.5 To create a superblock

A superblock is a set of operations, edges and ports extracted as a new definition.

To create a definition as a superblock, select the target set of operations, edges and ports you want
to extract (cf. section 4.1). Then right click and choose the Extract as superblock option. A new
definition is created and a reference to this definition replaces the selected set. The new definition is
available in the Definition list, You can rename both the definition and the reference.

You can undo and redo this action.

5.1.6 To create an abstract reference

An abstract reference is a reference to a hierarchical definition in which the hierarchy is not taken into
account, ie the flattening (cf. section 9.4) does not go into the hierarchical referenced definition that
becomes therefore abstract.

5.2 To condition an algorithm definition

First make sure that the target definition contains an input port of type int for the conditioning port.
Notice that the SynDEx libs directory already provides an int library for operations on integer values.

New condition

Right click on the background of the definition window and choose the Create Condition option. It
opens a dialog window for the new condition. A condition is a port = value expression where port is
the name of the conditioning port and value is an integer. A new tab is created for the given condition.
The conditioning port is now yellow colored (cf. figure 5.13).

If necessary, refresh the algorithm window (cf. section 4.6).

Remarks

Notice that there can be only one conditioning port. You have to construct one sub-graph per condition
(cf. figure 5.13). For each other value of the conditioning port, the result is unspecified and will be
inconsistent.

23

Figure 5.13: switch definition mode for cond = 3 in examples/condition/simpleCondition/simpleCondition.sdx

CondI and CondO vertices

The adequation and the code generation will take into account the expanded graph (cf. section 9.4).
SynDEx will introduce new vertices during the expansion: CondI and CondO vertices.

A CondI vertex consumes the conditioning data and connects the input ports of the conditioned
operation according to its value.

A CondO vertex consumes the conditioning data and connects the output ports of the conditioned
operation according to its value.

References

In a definition mode (cf. section 5.1.1), references to conditioned definitions have their conditioning port
yellow colored (cf. figure 5.14).

Delete a condition

Right click on the background of the definition window and choose the Delete Condition option.

5.3 To repeat an algorithm definition

5.3.1 Diffuse, Fork, and Join

You can create a reference to a definition, and connect to its input (resp. output) ports some output
(resp. input) ports with different sizes. The pre-condition is to have a unique common multiple between
each pair of ports of different sizes. This multiple is the repetition factor of the reference.

Multiplication of a vector by a scalar

Suppose that you want to specify the multiplication of a vector by a scalar giving a vector as result
(cf. AlgorithmMain1 in examples/tutorial/example4). You can specify it by repeating the multiplication
between two scalars instead of defining a new one. For example for N length vectors, you may specify

24

Figure 5.14: conditioned definition mode in examples/condition/simpleCondition/simpleCondition.sdx

Figure 5.15: AlgorithmMain1 definition mode in examples/tutorial/example4/example4.sdx

25

the repetition by N multiplications between scalars giving a scalar as a result (cf. figure 5.15).

You have to:

• create a definition parameterized by N,

• reference the multiplication on scalars mul,

• connect the output port of a scalar (eg. s_input) to one of its input ports (eg. mul.a),

• connect the output port of a vector (eg. v_input) to the other input port (eg. mul.b),

• connect its output port (mul.o) to the input port of a vector (eg. v_output),

• set the repetition factor of mul to N: click on the mul reference, then type N in its Reference
Properties (cf. Algorithm window in chapter 5).

Repetition factor

The common multiple between each pair of ports with different sizes is N. It is the repetition factor that
you have to set explicitely by using a symbolic numbered expression.

Diffuse the scalar

Since the output port of s_input has the same size as its connected input port of the multiplication
function, it is replicated N times in order to be multiplicated by each element of v_input. This is a
Diffuse operation.

Fork the vector

Since the function operates on scalars and the v_input vector has N elements, each of its elements are
provided separately in order to be multiplicated. This is a Fork operation.

Join the internal results

Since the function operates on scalars and the v_output vector has N elements, each repetition of the
multiplication is taken in order to be provided as a N elements vector. This is a Join operation.

Representation

The repetition factor is displayed next to the name of the reference (eg. in the figure 5.15 mul is repeated
N times). The main algorithm (eg. AlgorithmMain3) instanciates its parameters (cf. figure 5.8). From
the main mode in examples/tutorial/example4/example4.sdx (cf. section 5.1.1), double click on the
matprodvec reference, the dotprod reference is repeated three times (cf. figure 5.16).

Explode and Implode vertices

The adequation and the code generation will take into account the expanded graph (cf. section 9.4).
SynDEx will introduce new vertices during the expansion: Explode and Implode vertices.

An Explode vertex extracts for each repetition of a definition each element of the data it receives (cf.
subsections Diffuse and Fork).

An Implode vertex builds the data it sends by concatenating each separated element produced by
each repetition of the definition (cf. subsection Join).

5.3.2 Iterate

In some cases, you may want to repeat a reference but have no difference between port sizes.

26

Figure 5.16: matprodvec main mode from AlgorithmMain3 main algorithm in
examples/tutorial/example4/example4.sdx

Figure 5.17: dp definition mode in examples/tutorial/example4/example4.sdx

27

Multiplication of two vectors

Suppose that you want to specify the multiplication of two vectors giving a scalar as a result (cf. figure
5.17). You can specify it by repeating the multiplication between two scalars, that used an accumulator
to store the partial sum. For example if for dpaccn length vectors, you may specify the repetition by
dpaccn multiplications between three scalars (the i element of the first vector, the i element of the second
one, and the accumulator, initialized to 0).

You have to:

• reference the multiplication on scalars with accumulator (eg. dp),

• connect two vectors (eg. v1 and v2) to the scalar input ports of the multiplication,

• connect a {0} constant to the acc input port of the multiplication,

• connect the output port of the multiplication to a scalar (eg. dp),

• connect the acc output port of the multiplication to its acc input port choosing an Iterate edge,

• repeat dpaccn times the multiplication (in the Reference Properties of the dpacc reference).

The accumulator is initialized with {0}. Then the output of the repetition i becomes the accumulator
of the repetition i+1. The output of the last repetition is the output of the repeated definition. This is
an Iterate operation.

5.4 To modify an algorithm definition or a reference

5.4.1 Modify a definition

Double click on the definition name in the Definition List or double click on a reference from a
definition mode (cf. section 5.1.1). It opens its definition window. Right click on the background of
the definition window. Choose the Add dependence option (cf. section 5.1.4), Add port (cf. sec-
tion 5.1.2), Add reference (cf. section 5.1.3), Create Condition or Delete Condition (cf. section
5.2) to modify the definition. Click on the background of a definition window (cf. Algorithm window in
chapter 5). Use itsDefinition Properties to modify its Name, Description, Parameters or Values.

Note: You can modify local and global definitions (cf. section 3.1). Modifications on a global definition
impact only the current application and the library remains unchanged. To modify a global definition
over-all, open the corresponding SynDEx library file (eg. libs/int.sdx). Modifications on a definition
in a library may have consequences on all the applications using this library.

5.4.2 Modify a reference

Click on a reference in a definition window (cf. Algorithm window in chapter 5). Use its Reference
Properties to modify its Name, Parameters, Repeat or Period.

5.5 To delete an algorithm definition

To delete a definition, in the algorithm window, click on the - red button.

Note: Deleting a global definition (cf. section 3.1) impacts only the current application.

28

Figure 5.18: Edition of the conv code phases in examples/tutorial/example7/example7.sdx

Figure 5.19: Edition of the code associated with conv in examples/tutorial/example7/example7.sdx

29

Figure 5.20: Code associated with conv in loop phase in examples/tutorial/example7/example7.sdx

5.6 To associate code with an algorithm definition

5.6.1 The code editor window

Right click on the background of a definition window. Choose the Edit code phases option (cf. figure
5.18). Check init (resp. end) to generate code in the initialization phase (resp. ending phase).

Right click on the background of a definition window. Choose the Edition of the associated
source code option (cf. figure 5.19). It opens the code editor window on the initialization phase for
the selected definition. Click on loop phase (resp. end phase) to edit the code associated in the loop
phase (resp. ending phase) (cf. figure 5.20).

5.6.2 The code editor macro language

Figure 5.21: M4 macro code for conv in examples/tutorial/example7/example7_sdc.sdx

From the Code menu of the main window, check Generate m4x files. At code generation
time, the code written in the code editor will be wrapped into M4 macro code, and outputed into

30

an application_name _sdc.m4x file. These files contain one M4 macro definition per algorithm definition
(cf. figure 5.21). The code editor offers several macros to abstract away the M4 nature of the output
file. These macros are of two kinds: port and parameter names translation macros, and quoting macros
(cf. macros directory).

Names translation macros

Parameter and port names of an algorithm definition are encoded as parameters of the corresponding
M4 macro. Because the M4 language uses positional parameters, when the user wants to refer to a
parameter or port in the associated code he has to know its position in the M4 macro parameters list.
More than being not very handy, this is fragile relatively to adds or deletions of ports and parameters in
the definition: when the user adds a port or a parameter to a definition, he has to adjust (replace $n by
$n+1 in) all references to parameters or ports coming after the added one in the parameters list of the
M4 macro. To overcome this difficulty, the code editor recognizes the following macros (cf. figure 5.20):

• @IN(prt) refers to the input port named prt,

• @OUT(prt) refers to the output port named prt,

• @INOUT(prt) refers to the input/output port named prt,

• @PARAM(prm) refers to the parameter named prm,

• @NAME(pr) refers to the port or parameter named pr. When using this macro, you should be careful
that the port or parameter you want to refer to has a unique name in the definition.

Quoting macros

Quoting macros are used to wrap or unwrap code by M4 quote. The code editor recognizes the following
quoting macros:

• @QUOTE(txt) will be put as ‘txt’ in the output file,

• @TEXT(‘txt’) will be put as txt in the output file.

5.6.3 The code editor shortcuts

The code editor supports various keyboard shortcuts that could be handy when editing source code.

Ctr-Tab Insert a tabulation.
Tab Complete a port name. Type the begining of a port name, then press Tab

and as many times as necessary for the editor to find the wanted completion.
Ctr-I Insert the @IN macro at cursor position.
Ctr-O Insert the @OUT macro at cursor position.
Ctr-N Insert the @INOUT macro at cursor position.
Ctr-P Insert the @PARAM macro at cursor position.
Ctr-T Insert the @TEXT macro at cursor position.
Ctr-Q Insert the @QUOTE macro at cursor position.
Ctr-W Cut the selected text into the clipboard.
Ctr-K Cut text from cursor position to the end of the line.
Alt-W Copy the selected text into the clipboard.
Ctr-Y Paste the clipboard content at cursor position.
Ctr-A Jump to the beginning of the line.
Ctr-E Jump to the end of the line.
Ctr-up Jump to the beginning of the buffer.

Ctr-down Jump to the end of the buffer.

31

Chapter 6

Architecture

An architecture is specified as a non directed graph where vertices are of two types: operator or commu-
nication medium, and each edge is a connection between an operator and a communication medium.

6.1 Operator

6.1.1 To create an operator definition

Figure 6.1: Definition of an operator

From the Architecture menu of the main window, choose the Define Operator option (cf. figure
6.1). It opens a dialog window. Type the name of the new operator (eg. U). Then click OK. It opens the
new operator definition window (cf. figure 6.2). By default the code will be generated only for the loop
phase of the operator. See the section 6.1.2 to set its gates, durations and code phases.

6.1.2 To modify an operator definition

From the Architecture menu of the main window, Choose the Edit Operator Definition option. It
opens a browse window. Select the target operator. It opens its definition window with Modify gates,

32

Figure 6.2: New U operator definition window

Modify durations, and Modify code generation phases buttons.

Gates

Click on the Modify gates button. It opens a dialog window in which you can set the gates, one per
line. For example type

TCP x

TCP y

A gate has the following syntax:

gate_definition ::= medium_definition_name gate_name

where:

• medium_definition_name specifies a communication medium to connect with,

• gate_name. specifies the new gate.

Durations

Click on the Modify durations button to specify durations by operation (cf. chapter 7).

Code generation phases

Click on the Modify code generation phases button. Check init (resp. end) to generate code in the
initialization phase (resp. ending phase).

Note: You can modify local and global operators (cf. section 3.1). Modifications on a global operator
impact only the current application and the library remains unchanged. To modify a global operator
over-all, open the corresponding SynDEx library file (eg. libs/u.sdx to modify u/U). Modifications on
a definition in a library may have consequences on all the applications using this library.

6.1.3 To delete an operator definition

From the Architecture menu of the main window, choose the Delete Operator option. It lists the
local operator definitions (cf. section 3.1). Select the target operator.

Note: Deleting a global operator (cf. section 3.1) impacts only the current application.

33

6.2 Communication medium

6.2.1 To create a medium definition

From the Architecture menu of the main window, choose the Define Medium option. It opens a
dialog window. Type the name of the new communication medium. Then click OK. It opens the new
communication medium definition window. By default a new communication medium has type SAM
point-to-point. See the section 6.2.2 to set its type and durations.

6.2.2 To modify a medium definition

From the Architecture menu of the main window, Choose the Edit Medium Definition option. It
opens a browse window. Select the target communication medium. It opens its definition window with
Modify type, and Modify durations buttons.

Type

Click on the Modify type button. It opens a dialog window in which you can change the type of the
communication medium. For example, check SAM MultiPoint (resp. RAM).

Durations

Click on the Modify durations button to specify durations by data type (cf. chapter 7).

Note: You can modify local and global media (cf. section 3.1). Modifications on a global commu-
nication medium impact only the current application and the library remains unchanged. To modify a
global communication medium over-all, open the corresponding SynDEx library file (eg. libs/u.sdx to
modify u/TCP). Modifications on a definition in a library may have consequences on all the applications
using this library.

6.2.3 To delete a medium definition

From the Architecture menu of the main window, choose the Delete Medium option. It lists the
local communication medium definitions (cf. section 3.1). Select the target communication medium.

Note: Deleting a global communication medium (cf. section 3.1) impacts only the current application.

6.3 Architecture

6.3.1 To create an architecture definition

From the Architecture menu of the main window, choose the Define Architecture option. It opens
a dialog window. Type the name of the new architecture. Then click OK. It opens the new architecture
definition window. Now you may construct a graph with references to operators and media.

New operator reference

To reference an operator into an architecture, from the Edit menu of the architecture window choose the
Reference Operator option. It opens a browse window. Select the target operator. It opens a dialog
window. Type the name of the reference. Then click OK.

New medium reference

To reference a communication medium into an architecture, from the Edit menu of the architecture
window choose the Reference Medium option. It opens a browse window. Select the target operator.
It opens a dialog window. Type the name of the reference. Then click OK. In case of a SAM multipoint
medium, it opens a dialog window. Check Broadcast or No Broadcast for the mode of the reference.

34

Then click OK.

Note for a SAM multipoint medium reference: In case of a SAM multipoint medium in Broad-
cast mode, all operators connected to this communication medium will receive each and every message
sent on the communication medium. In case of SAM multipoint medium in No Broadcast mode, each
message will be received by only one operator : the destination operator of the message. Right click on
a medium reference and choose Broadcast Mode to change it.

New connection

To connect an operator and a communication medium, point the cursor at a gate of the operator reference,
middle click, then drag and drop on the communication medium reference.

6.3.2 To set the main architecture

Figure 6.3: Set u/biProc as main architecture in examples/tutorial/example7/example7.sdx

Set the main operator

To define an operator of an architecture as main, click on the target operator, right click, then choose
the Set As Main Operator option.

Set the main architecture

To define an architecture as main, right click on the background of the target architecture. Choose
the Set As Main Architecture option (cf. figure 6.3). The architecture window is now labelled with
(main).

Edit the main architecture

To open the main architecture, from the Architecture menu of the main window, choose the Edit
Main Architecture option.

35

6.3.3 To modify an architecture definition

From the Architecture menu of the main window, Choose the Edit Architecture Definition option.
It opens a browse window. Select the target architecture. It opens its definition window.

Note: You can modify local and global architectures (cf. section 3.1). Modifications on a global
architecture impact only the current application and the library remains unchanged. To modify a global
architecture over-all, open the corresponding SynDEx library file (eg. libs/u.sdx to modify u/biProc).
Modifications on a definition in a library may have consequences on all the applications using this library.

6.3.4 To delete an architecture definition

From the Architecture menu of the main window, choose the Delete Architecture option. It lists
the local architecture definitions (cf. section 3.1). Select the target architecture.

Note: Deleting a global architecture (cf. section 3.1) impacts only the current application.

36

Chapter 7

Characteristics

The heuristics performed by the adequation use the characteristics of each operation relatively to the op-
erators and media it may be distributed to. Presently we are mainly interested in real-time performances.
Therefore the operations of algorithm graphs must be characterized in terms of duration relatively to
the operators and media of architecture graphs.

7.1 Execution durations

7.1.1 Operation durations

In the algorithm window, right click on the background of an algorithm definition window. Choose
the Durations option. It opens a dialog window in which you can set the execution durations of the
operation by operator (eg. u/U = 3 specifies the duration required to execute the target operation on an
u/U operator).

An operation duration has the following syntax:

operation_duration ::= operator_definition_name = value

where:

• operator_definition_name specifies an operator,

• value specifies the duration as an integer time unit.

7.1.2 Operator durations

In an operator definition window, click on the Modify durations button. It opens a dialog window in
which you can set the execution durations on the operator by operation (eg. bool/AND = 2 specifies the
duration required to execute a bool/AND operation on the target operator).

An operator duration has the following syntax:

operator_duration ::= operation_definition_name = value

where:

• operation_definition_name specifies an operation,

• value specifies the duration as an integer time unit.

37

7.2 Communication durations

In a medium definition window, click on the Modify durations button. It opens a dialog window in
which you can set the communication durations on the communication medium by data type (eg. u/bool

= 1 specifies the duration required to transfer one element of type u/bool on the target communication
medium).

A medium duration has the following syntax:

medium_duration ::= data_type = value

where:

• data_type specifies a basic data type,

• value specifies the duration as an integer time unit.

7.3 Libraries

Figure 7.1: u/U durations window in examples/basic_with_library/basicBiProc/basicBiProc.sdx

In case of a duration already specified in a library, a lib/operator_definition_name = value or
lib/operation_definition_name = value or lib/data_type = value line will appear in the corresponding
duration windows (cf. figure 7.1).

You can modify durations of local and global definitions. Modifications on a duration of a global
definition impact only the current application and will not be saved with the current application.

38

Chapter 8

Constraints

Some operations of the main algorithm graph may be constrained to be executed on specific operators
of the architecture graphs. In this case the heuristics will not have the choice in distributing them.
These constraints are specified through operation groups. All the operations of an operation group will
be distributed on the same operator.

8.1 To create an operation group

To create a new operation group, from the Algorithm menu of the main window, choose the Define
Operation Group option. It opens a dialog window. Type the name of the new operation group. Then
click OK.

8.2 To attach references to operation groups

Figure 8.1: algo as main algorithm in examples/tutorial/example7/example7.sdx

39

From the main mode of the algorithm window (cf. section 5.1.1) click on the target reference. In its
Reference Properties (cf. Algorithm window in chapter 5) click on the Group button and select the
target operation group (cf. figure 8.1).

If it references a hierarchical definition, all the references of this hierarchy will be attached to this
operation group (except references of this hierarchy that may be explicitly attached to another operation
group).

In particular, in case of a reference to a conditioned (resp. repeated) definition its CondI and CondO
(resp. Explode and Implode) vertices created by SynDEx when flattening the algorithm graph (cf. section
9.4). will be attached to the operation group.

8.3 To constraint operation groups on operators

Figure 8.2: Constraints on the main architecture in examples/tutorial/example7/example7.sdx

To constraint the references attached to a given operation group to be distributed on a specific
operator, you will constraint the operation groups on operators. From the Constraints menu, choose
the Absolute Constraints option. Then select the target architecture. To constraint an operation
group on an operator, click on the target group in the left list, then click on the target operator in the
middle and finally click on the Create button. It adds the new constraint in the right list (cf. figure
8.2). Click on the OK button to confirm your new constraint list, otherwise click on the Cancel button.

8.4 To delete an operation group

To delete an operation group, from the Algorithm menu of the main window, choose the Delete
Operation Group option. It lists all the operation groups. Select the target group.

40

Chapter 9

Adequation

Performing an adequation means to execute heuristics, seeking for an optimized implementation of a
given algorithm onto a given architecture.

9.1 Main algorithm and main architecture

There can be several algorithms and architectures but only one main algorithm (cf. Main mode in section
5.1.1) and one main architecture (cf. section 6.3.2) on which the adequation will be performed.

To define an algorithm as main, right click on the background of the target definition window.
Choose the Set As Main Definition option. To define an architecture as main, right click on the
background of the target architecture. Choose the Set As Main Architecture option

9.2 Characterization

To be able to perform an adequation, each type must be associated with a duration (cf. chapter 7).
SynDEx needs characterization for each vertex of the transformed graph to perform the adequation. You
will also have to characterize additional operations generated by SynDEx in case of conditioning (cf.
section 5.2) or repetition (cf. section 5.3).

9.3 To launch the adequation

To launch the adequation of the main algorithm onto the main architecture, from the Adequation menu,
choose the Launch Adequation option.

9.4 Flattening

The main algorithm graph is transformed for the adequation to obtain a graph with a unique level
of hierarchy, where each vertex is an operation in the sense of AAA (which is the same as an atomic
definition in SynDEx). This transformation consists in replacing references by corresponding definitions,
and paths of dependences connected along the hierarchy through ports by direct dependences between
corresponding ports of the transformed operations.

In case of abstract references (cf. section 5.1.6), the hierarchy is not taken into account, ie the
flattening does not go into the hierarchical referenced definitions. All the abstract references are directly
replaced by operations containing the same ports as their definition. References or dependences included
in those definitions are ignored.

41

9.5 Schedule

9.5.1 To display the schedule

To view the computed distribution and schedule, from the Adequation menu, choose the Display
Schedule option. It opens a window for the diagram of the real-time simulation of the algorithm
executed on the architecture.

9.5.2 The schedule window

In the schedule window you will find one schedule for each operator and for each communication medium
of the architecture.

Operators

Each schedule for an operator describes a scheduling of constants, sensors, actuators, functions and
delays. By default constants are not displayed. From the Window menu, choose Schedule Display
Options. Then check Show Constants to change this setting.

Media

Each schedule for a communication medium describes a scheduling of inter-operator communications,
sending (resp. receiving) data from (resp. to) an operator.

Scale

Each box has a length which is proportional to the duration of the corresponding operation. In case of
big duration differences, you can disable the scale. From the Window menu, choose Schedule Display
Options. Then uncheck Scale to change this setting.

Colors

When the cursor points at an operation, its box is highlighted in orange. The predecessors of the target
operation have their boxes highlighted in green and its successors in red.

Other options

Click on a column of an operator or a communication medium. Then drag and drop on another column
to change its position.

From the Window menu, choose Schedule Display Options. Check Horizontal Display to
change the orientation of the display. Check Show Arrows to draw arrows between boxes which are in
relation of execution precedence Uncheck Labels to not draw the names of the operations.

42

Chapter 10

Code generation

When the adequation has been performed, code may be generated for the main architecture.

Warning: To generate code, it is mandatory to define a processor of the main architecture as the
main operator (cf. section 6.3.2).

10.1 To generate the code

From the Code menu, choose the Generate Executive(s) option. The generated .m4 files are saved
in the application’s directory, one file per processor.

10.2 To view generated files

From the Code menu, choose the Display Executive(s) option.
If the option Generate m4x Files of the Code menu is checked, SynDEx also produces macro files:

• an application_name.m4x file (if not already existing),

• an application_name _sdc.m4x file.

The .m4x file is the only user macro file which the M4 machinery is aware of. Thus, it should include
the _sdc.m4x file. The _sdc.m4x file contains M4 macro definitions corresponding to algorithm definitions
that have been associated with a source code via the SynDEx code editor. This file should not be edited
by hand because it is overwritten each time the user triggers code generation.

The user should put its hand-written macro definitions in the .m4x which is automatically created by
SynDEx only if not already existing. If this file is created by hand, the user should be careful to include
the _sdc.m4x at the begining of the file.

10.3 Overview

In this section we give a brief summary of files you will require to generate and compile your executive
files. Code generation principles will be detailed in next sections. Files required are:

• application_name.m4x which may be empty, and optionally some processor_name.m4x,

• application_name.m4m,

• GNUmakefile,

• application_name.m4, and one processor_name.m4 file per processor from the main architecture
These files are generated during the executive generation by SynDEx.

43

For the files which are not generated by SynDEx, most of the time you can simply copy existing ones
(for instance from the example directory) and make modifications explained in the comments of these
files. Once you gathered all these files, type make application_name.all in your shell. It compiles the
executive files. Then launch the executable file of the main processor. You can also clean your directory
by typing make clean.

10.4 To compile an executive

Each macro-executive source file must be first translated by the GNU M4 macro-processor, into a text
file in the language preferred for the processor (usually assembler for efficiency, sometimes C or another
high-level language for portability). This translation relies on several files included in the following order:

• the first macro-call of the macro-executive source (include(syndex.m4x)) includes the file syndex.m4x
which defines all the SynDEx generic (processor -independent) macros which rely on low-level spe-
cific macros expected to be defined by the following included files;

• the second macro-call of the macro-executive source processor _(processor_type, processor_name,

application_name, version, date)) includes:

– the file processor_type.m4x which defines low-level macros specific to the type of processor,

– the file application_name.m4x which defines application-specific macros,

– optionally the file processor_name.m4x which defines macros specific to the target processor ;

• then, after the memory-allocation macro-calls, each communication sequence starts with a
thread _(medium_type, medium_name, connected_processor_names) macro-call which includes the
file medium_type.m4x which defines low-level communication macros specific to the type of the
communication medium.

These indirected inclusions, through the names specified under SynDEx, provide a very flexible and
powerful mechanism needed to support efficiently heterogeneous architectures, with heterogeneous lan-
guages and compilation chains. Then each macro-processed text file must be compiled with the adequate
compiler, and linked with the adequate linker against separately compatibly-compiled application-specific
files and/or processor -specific libraries, for those macros which cannot simply inline the desired code,
but instead must call separately compiled codes.

10.5 To load the compiled executive

In an heterogeneous architecture, there are different compilation chains, with different executable formats
which have to be transfered through different types of intermediate media and processors to be finally
loaded by different boot loaders. For these reasons, a post-processor is required for each type of processor,
in order to encapsulate this heterogeneity into a common download format. This is explained in more
details in the downloader specification (cf. chapter 11).

10.6 To automate the compilation/load process

All processor types require the same compilation sequence, but with different compilation tools:

• macro-processing of the macro-executive generated by SynDEx,

• compilation into processor -specific object code,

• linking into processor -memory-map-specific executable code,

• post-processing into common downloadable format.

This compilation sequence may be automatically generated for each processor by macro-processing
the macro-makefile generated by SynDEx which includes:

44

• a very first macro-call (include(syndex.m4m)) that includes the file syndex.m4m which generates a
makefile header, and defines the macros architecture _, processor _, connect _, and endarchitecture _

used in the macro-makefile;

• the second macro-call (architecture _(application_name, version, date) that includes the file
application_name.m4m (if it exists) which defines application-specific make-macros ;

• a macro-call processor _(processor_type, processor_name, connectors_type_and_name) per proces-
sor that includes the file processor_type.m4m which should have for side effect to generate the
required compilation dependences for this processor ;

• a macro-call connect_(medium_type, medium_name, connectors_opr_and_name) per communication
medium that includes the file medium_type.m4m (if it exists) which should have for side effect to
generate any loader-specific dependences (presently unused).

Although this indirect inclusion mechanism is able to generate most of the core makefile, an application-
specific top makefile is still required to specify how to generate the core makefile, and to specify the
compilation and linking dependencies with application-specific files (include files, separately compiled
files and libraries).

45

Chapter 11

SynDEx downloader specification

11.1 Context

SynDEx allows the efficient programming of parallel, distributed, heterogeneous architectures, composed
of several different types of processors, and of several different types of communication medium. From a
user specification of an algorithm dataflow graph and of an architecture resources graph, and from algo-
rithm and architecture characterized libraries, SynDEx automatically generates an application specific
executive code for each processor, and provides a makefile to automate the compilation and linking of
each executive, and its downloading into the program memory of the corresponding processor.

Separate programming of non-volatile program memories being unpractical, SynDEx considers that
each processor has, for only non-volatile resident program, a boot-loader (which may be very small and
simple, or may rely on a big and complex operating system) expecting an executive to be downloaded
from a neighbour processor through a communication medium, except for a single host processor, desig-
nated by the name root in the specified architecture graph, which boot-loader expects all executives to
be stored altogether in its local non-volatile memory.

Consequently, SynDEx computes, over the architecture graph, an oriented coverage tree rooted on
the root processor, and generates in each processor executive the code needed to download the compiled
executives through this tree, in a predetermined order which is also used to generate the makefile.

11.2 Boot and download process

This process is the same for all processors, except that the root processor gets executives from its lo-
cal non-volatile memory, whereas all the other processors get executives from their neighbour processor
which is their ascendant towards the root of the download tree. The processors which have the same
ascendant processor are called the descendants of that processor.

When powered on, each processor boots by executing its resident boot-loader which gets the proces-
sor ’s executive, loads it into the processor ’s program memory, and executes it. During its initialization
phase, the executive gets and forwards executives to all its descendants, before proceeding with applica-
tion data processing.

The root processor, usually an embedded PC or other kind of workstation, bootloads from its disk an
operating system which automatically loads and executes a startup program allowing the user to choose
between different applications. During early developments, this program may be a simple shell (but this
requires a keyboard to be available), and the user enters a make command to compile the executives if
needed, and to execute the root executive, with the other executive files passed as arguments on the com-
mand line. In applications where it is unpractical to use a keyboard permanently connected, the startup
program may use another input device (for example a switch or a touch screen) to let the user choose
between different predefined shell commands, starting different applications through the corresponding

46

make command, or simply launching a shell for interaction with a keyboard. In more deeply embedded
applications, where the root processor has neither a disk nor an operating system, all the executives are
stored in a FLASH memory, and the root processor boots by executing directly its own executive, and
finds the other executives sequentially stored in its FLASH.

The first executive forwarded to a descendant is received, stored, and executed by that descendant’s
boot-loader. Then, while that descendant’s executive asks for executives, the ascendant executive gets
and forwards the next executives to the same descendant, until that descendant’s executive signals that
it has itself no more executives to forward. Then the ascendant may switch to its next descendant, until
it has no more descendant to service, and hence no more executive to forward. This fully sequential
download process boots processors in the order of a depth-first traversal of the download tree.

In the case of a point-to-point medium, the descendant executive may proceed to application data
communications as soon as it has no more executive to forward, whereas in the case of a multipoint
medium, the descendant executive must wait until the ascendant executive signals that it has no more
executive to forward (to avoid communication interferences between descendant application data and
ascendant download data).

11.3 Common download format

Each processor type may have a different compiler (linker) output format, and some processor types may
have a ROM-ed embedded boot-loader (firmware), with its own requirements on the download format.
The SynDEx common download format encapsulates the details and the differences of the compiler
output formats, and of the boot-loaders download formats; it is composed as follows:

• four bytes prefix encoding the 32 bits big-endian total length of the following sequence of bytes,

• a sequence of bytes encoding one complete executive, structured as required by the destination
boot-loader, and padded if needed with null bytes until the total length is a multiple of four.

The first executive forwarded to a descendant being received by that descendant’s boot-loader, that
executive must be sent without its four bytes prefix; the following executives sent to the same descendant
being forwarded by that descendant’s executive, they must be sent with their four bytes prefix.

The sequence of bytes itself must follow the format expected by the destination boot-loader. Therefore
a linker post-processor must be developped for each processor type, to translate the linker output file
into the SynDEx common dowload format described above. All the post-processors’ outputs will be
concatenated by the makefile into a unique contiguous image (file), that the root executive will use as
source.

11.4 Downloader macros

The downloader code is generated by two macros :

• loadFrom_ starts the initialization phase of the communication sequence of the communication
medium connected to the ascendant processor ; its first argument is the name of the ascendant
processor, its next arguments, if any, are the names of the other communication medium connected
to descendant processors, if any;

• loadOnto_ starts the initialization phase of the communication sequence of each communication
medium connected to a descendant processor ; its first argument is the name of the communication
medium connected to the ascendant processor, its next argument(s) is (are) the name(s) of the
descendant processor(s).

Processor names are usefull to address processors connected to multipoint medium: a processor name
may be suffixed to give the name of a user defined macro, which substitution gives the processor address.

47

As executives data may be forwarded through several communication medium of different bandwidths,
transfers must be synchronized such that data flow at the speed of the slowest communication medium.

Between processors, if flow control is not supported by the communication medium hardware, it must
be implemented by ready to receive control messages sent by the loadFrom_ code for each chunk of data
to be sent by the loadOnto_ code. Inside a processor, the loadFrom_ and loadOnto_ macro cooperation
is based on the order in which the spawn_thread_ macros (one for each communication sequence, i.e.
for each communication media) are generated in the initialization phase of the main_ ... endmain_ se-
quence: the spawn_thread_ macro corresponding to the thread_ macro of the communication sequence
starting with the loadFrom_ macro (i.e. of the media connected to the ascendant processor) is called first,
followed by the other spawn_thread_ macros, among which the ones, if any, corresponding to the com-
munication sequences with a loadOnto_ macro (i.e. of the media connected to the descendant processors).

If the processor is a leaf node of the download tree, its loadFrom_ macro has only one argument; in
this case, it directly generates the code sending to the ascendant processor a "null" message meaning
that no more executive is requested, followed, in the case of a multipoint medium, by the code waiting
for other executives to be downloaded to the other processors connected to the communication medium,
until the ascendant processor sends an "empty" executive meaning that the download process is complete
on this communication medium.

Otherwise, before generating the code described in the previous paragraph, the loadFrom_ macro
generates a RETURN instruction (which will return control after the CALL instruction generated by the
spawn_thread_ macro), followed by a loadFrom_end_: label, and the loadFrom_ macro also defines three
macros for use by the loadOnto_ macros :

• the loadFrom_req_ macro must generate the code that sends a non-null message requesting the
ascendant processor to download another executive;

• the loadFrom_get_ macro must generate the code that receives one word of executive data from
the ascendant processor ; word means the size of a processor register, usually 32 bits; if the com-
munication medium transfers executive data by chunks of N words, then every N calls to the code
generated by the loadFrom_get_ macro receives a full chunk of data and returns its first word, and
the next N-1 calls each return a next word of the chunk;

• the loadFrom_next_macro which is called at the end of each loadOnto_ macro, must generate a CALL

loadFrom_end_, but only for the very last loadOnto_ macro.

If the code generated by any of these three macros is limited to a few instructions, it may be generated
inline, otherwise the loadFrom_ macro generates this code as a subroutine (between the RETURN instruction
and the loadFrom_end_ label), and a call to that subroutine is generated instead of the inline code.

48

Chapter 12

Links

For more information:

SynDEx : http://www.syndex.org

AAA methodology : http://www-rocq.inria.fr/syndex/pub/execv4/execv4.pdf

Objective-Caml : http://caml.inria.fr/

Tcl/Tk : http://www.tcl.tk/

CamlTk : http://pauillac.inria.fr/camltk/

49

