
Master of Science

A Formal Approach for Safe Optimized
Distributed Real-Time Systems

The Algorithm-Architecture Adequation (AAA) Methodology

Yves Sorel

INRIA Paris-Rocquencourt
Domaine de Voluceau BP105

78153 Le Chesnay CEDEX
Tél. : 01 39 63 52 60, email : yves.sorel@inria.fr

http://www.syndex.org

Plan I

Context and goals
System approach
Definitions
Application domains
Functional specification
Non functional specification
Optimized implementation: AAA methodology

Algorithm specification
General issues
Algorithm model
Functional specification languages
Synchronous language SIGNAL

Multicomponent Architecture specification
General issues
Multicomponent architecture model
Multicomponent architecture model examples

Optimized implementation: Adequation
General issues

Plan II
Uniprocessor real-time scheduling
Multiprocessor real-time scheduling
Formalization of the AAA implementation
Optimized implementation: adequation
Code generation
SynDEx software

Conclusion

Context and goals

Embedded systems examples

Automotive

Mobile robotics

Avionics

Telecommunication

1

System approach
Development life cycle of embedded systems

CODAGE

EXIGENCE (quoi ?)

CONCEPTION (comment ?) TESTS

VALIDATION

Cycle en V

We focus on the lower part of the V development life cycle: Design ↔
Tests and Coding. The main goal is to automate the coding and tests or
at least minimize them. We aim a I (down-side of the cycle) enabling a
safe by construction design, thus avoiding the up-side of the cycle.

System approach
Links between CONTROL THEORY and COMPUTER SCIENCE to design a system

CONTROL THEORY - modelling/simulation - Specification

Modeling/hybrid simulation ot the system: process in continuous and/or
discrete domains, control system in discrete domain.
COMPUTER SCIENCE - implementation - Design Coding

Control system implementation on processors and/or on specific integrated
cirtuits (IC), then connection with the process.

2

System approach
General structure of the system

DE
COMMANDE

PROCESSUS

SYSTÈME

co
m

m
an

de

rétrocaction

(a) closed loop

DE
COMMANDE

PROCESSUS

co
m

m
an

de

SYSTÈME

(b) open loop

System approach
Control system and sampled process loop

Actionneur

Capteur

+
−

C1

C2

consigne
erreur commande

C.N.A

C.A.N

rétroaction

rétroaction

Processus

SYSTEME DE COMMANDE PROCESSUS ECHANTILLONNÉ

3

Definitions
Reactive system

Input events

Stimulus
⇒ CONTROL SYSTEM

REACTIVE AND REAL-TIME
⇒

Output events

Reaction

Reactive system (Harel, Pnueli 1985): the control system whenever it
consumes an input event, executes functions and must produce an
output event.

The control system consumes an infinity of input events, numerical values
produced by the process trough a sensor, associated to an analog digital
converter (ADC). The control system produces an infinity of ouput events,
numerical values consumed by the process through an actuator
associated, to a digital analog converter (DAC). Every infinite sequence of
events is called a signal.

Definitions
Real-time system

Real-time system: reactive system that must satisfy constraints of two
types:

I input rate: constraint on the duration between the occurence of two
successives event of a signal (period, sporadic with a minimal period,
aperiodic without period),

I input-output latency: constraint on the duration of the reaction
triggered by an event of an input signal and producing an event of an
output signal.

4

Definitions
Distributed embedded real-time system, event or time triggered

Hard, critical, strict real-time system: all constraints must be satisfied
otherwise catastrophic consequences occur: human beings loss, ecological
disaster, etc.

Soft, QoS, real-time system: some percentage of constraints may not
be satified, quality of service.

Distributed, parallel, multiprocessor, multicore system: for
performance, modularity, bring closer computation and sensors/actuators.

Embedded system: require resource minimizations (volume, weight,
power consumption, cost, etc.).

Event triggered system (ET): the process state is known through
interruptions provided by sensors, actuators must follow sensor rate,
flexible, probabilistic prediction, suited to soft real-time.

Time triggered system (TT): the process state is known through
periodic polling of sensors and actuators relatively to a discrete time
(quantum), actuators must be synchronized, not flexible, deterministic
prediction, suited to hard real-time.

Definitions
Real-time application

5

Application domains
Consumer and large scale systems

I Consumer product systems

I telecoms: smart mobile phone, adsl modems, etc.
I automotive electronics: engine control, driver assistance, etc.
I robotics: automatic vehicle, cleaner, industrial robot, etc.
I medical electronics: implants, patient monitoring, etc.
I domotic: remote monitoring, automatic vacuum cleaner, etc.
I audio and video equipements: walkman, set-up box, HD television, etc.

Goal: cost minimization

I Large scale systems

I aeronautics and spatial
I air-trafic control
I railroad system
I industrial control process of plant
I telecomunication infrastructure
I weapon system

Goal: development cycle minimization

Functional specification
Image and signal processing - control

Specification of functions and of data dependences relating output of
functions producing data and input of functions consuming data.

Control theory

Signal ⇒ Numerous computations
image processing Regular - For i=1 to N Do

Control ⇒ Few computations
Non regular - If cond Then Else

Mode changes

Generally, regular and non regular algorithms are mixed, increasing the
complexity of the implementation problem.

6

Non functional specification
Hardware architecture
Specification of the hardware architecture components and their
interconnections. Specification of distribution and scheduling constraints
on the functions relatively to hardware components and on data
dependences relatively to communication devices.

Function execution time
Latency constraint > 1⇒ Distributed, parallel, etc., architecture

Heterogeneous architecture called multicomponent (Lavarenne, Sorel 96)
composed of:

I sensors and actuators,

I programmable components: processors RISC, CISC, DSP (Digital Signal
Processor), ASIP (Application Specific Instruction set Processor),

I non programmable components: specific electronic board, ASIC
(Application Specific Integrated Circuit), FPGA (Field Programmable Gate
Array),

I communication medium: point-to-point link (crossbar), multi-point link
(bus), network, etc.

Non functional specification
Timing caracteristics

Specification of timing characteristics associated to every function. They
are of two types:

I architecture independent: period, minimal period, deadline
constraints, generalized latency constraints on pair of functions not
necessarily input-output,

I architecture dependent: Worst Case Execution Time (WCET) of
functions on computational components and Worst Case
Communication Time (WCCT) of data dependences on
communication media.

Specification of safety and security properties will not be considered in
the course.

7

Optimized implementation: AAA methodology
Potential parallelism potentiel, actual parallelism
The potential parallelism (concurrence) of the functional specification is
defined from the set of functions that are not dependent, indeed these
functions will be executed potentially in parallel according to the actual
parallelism of the architecture.

The implementation consists in choosing on which processor of the
architecture each function will be distributed and scheduled.

When the actual parallelism of the architecture is less or equal to the
potential parallelism, some acceleration may occur relatively to the
uniprocessor execution time, this acceleration is proportional to the
number of processors. As soon as the potential parallelism is greater, the
acceleration does not increase any more, leading to a saturation
phenomenom.

Acceleration =
Tuniprocessor

Tmultiprocessor

6

-
�
�
�
�

number of processors

acceleration
saturation

Optimized implementation: AAA methodology
Operating system role

Algorithm

Operating system

Architecture
Algorithm : informal definition (Al-Khwarizmi, astronomer Persia 825)
description of a function using a finite number of instructions chosen in a
finite set of instructions, more generic than a program which assumes that
a language was chosen, formal definition (Turing, Post 1930).

Operating System (OS): provides services to functions in order to take
advantage of the architecture: programs, peripheral devices, memory,
communications, synchronizations, possibly depending of time RTOS
(Real-Time OS) also called real-time executive or executive later on.

Architecture: digital electronics composed of processors and/or IC, all
interconnected.

8

Optimized implementation: AAA methodology
OS, RTOS, executive: distributed, reactive, real-time

OS features

Hardware resource allocation:
OS = computation, memory, communication

to the algorithm
+

Distributed → Several resources
for every type

+
RTOS features

Reactive → Reaction order = stimuli order
independently of the reaction time

+
Real-time → Allocation conditioned by

physical time flow

Optimized implementation: AAA methodology
Real-time executive: resource allocation

The real-time executive allocates resources

I Distribution: spatial allocation

I Scheduling: timing allocation

I Off-line: optimizations and decisions performed before execution
(execution duration must be known)

I On-line: optimizations and decisions performed during execution (use
of real-time clocks)

9

Optimized implementation: AAA methodology
Real-time executive: executive overhead

The real-time executive involves an overhead which increases
according to the number of processors.

6

-

� -� -Texec

nb proc

Vcalc

Tcalc Treac

Tmax

Optimized implementation: AAA methodology
Goal

From a functional specification and a non functional specification
(architecture and timing characteristics), explore all the possible
implementations (spatial and timing allocation of functions to architecture
resources, considered as sequencial machines) to obtain, manually or
automatically an optimized and safe by construction implementation.

In order to reach this goal the exploration is achieved from formal models
describing the algorithm and the architecture (graphs, partial order, finite
state machines) by performing graph transformations based on
multiprocessor real-time schedulability analyses and timing and
resources optimizations.

10

Optimized implementation: AAA methodology
Basic models

A graph G is a pair (S ,A) where S is a finite set of vertices and A is a
binary relation on S defining pairs of vertices (s1, s2) ∈ S × S such that
(s1 A s2)⇔ (s1 “is related to” s2) through an edge. This graph is directed
if every pair (edge) is ordered (s1, s2) 6= (s2, s1), we have s1 “precedes” s2.
An ordered pair is called a directed edge. This graph is acyclic if it does
not have a sequence of directed edges such that (s1, s2) . . . (sn, s1).

For a directed graph the relation A is antisymmetric, i.e. if s1As2 and
s2As1 then s2 = s1, it is transitive and it is not reflexive. Thus, it is a
strict order relation (noted > different from ≥ that is non strict).

If the set of directed edges is such that A ⊂ S × S then A is a strict
partial order relation, Ā = S × S is a strict total order relation.

A stable of the graph is a subset of vertices such that for every pair of
vertices they are not in relation A, i.e. there is no edge connecting them,
assuming this graph is not directed. The greatest stable of the graph is
denoted by A∗, we have A ∪ A∗ = Ā.

Optimized implementation: AAA methodology
Principles

ADEQUATION

ALGORITHM ← Timing → ARCHITECTURE
↓ characteristics ↓

potential −→ actual
parallelism reduction parallelism
↓ ↓

algorithm −→ architecture
graph transformations graph

OPTIMIZATIONS
↙↘

Processors specific IC
EXECUTIVE NETLIST
- custom synthetized
- may call a resident executive: VxWorks, Osek,

Linux/RTAI, Linux/Xenomai, Windows/RTX, etc.
11

Algorithm specification

General issues
Algorithm

The functional specification is performed by describing the control
system as an algorithm that will be implemented on processors and/or
specific integrated circuits all interconnected.

The algorithm describes, possibly hierarchically, the functions necessary to
achieve the functional specification as well as the partial order of their
execution, due to data dependences. It also describes the way some of
these functions will be conditionally executed or executed several
times.

There are several approaches to describe an algorithm using formal
models based on graphs.

12

Algorithm model
Control flow graph 1/3

The algorithm can be modeled by a directed cyclic graph called a control
flow graph of two possible types:

I a flow chart whose vertices are operations (functions) and directed
edges are control dependences (foreward unconditional branching -
sequential execution of operations - and test with foreward
conditional branching for execution of alternative operations called OR

divergence, loop with backward branching) which induce precedences
between operations. An operation is executed as soon as the
operation, it depends on, is completed, it reads and writes its data in
local or state variables ;

I an automaton whose vertices are states and directed edges are
state transitions. A transition is fired when an event occurs
involving the execution of one operation which reads and writes its
data in local variables ;

I interactions with the process (reactive system) are modeled through a
loop (flow chart) and through event occurences (automaton).

Algorithm model
Control flow graph 2/3

FV

2 : B=E*2

5 : X=X*24 : X=X/2

1 : E = Capteur

3 : E<0

8 : Actionneur = S + B

X2

X3

X1

X4

Entrée={0,1} Etats={X1,X2,X3,X4}

0 / (2 : B=D*5)

0 / (1 : D=Capteur)

1 / (4 : D=5)

0 / (3 : Actionneur=B)

1 / (5 : F=D*D)

AUTOMATE
ORGANIGRAMME

6 : A=E+X

7 : S=A+X

X=variable d’état

E, B, A, S variables locales

D, B variables partagées

(1 ; 2 ; 3) || (4 ; 5)
1 ; 2 || (3 ; 4/5 ; 6 ; 7) ; 8

E, B, A, S variables partagées

D variables réutilisées

13

Algorithm model
Control flow graph 3/3

In this model:

I operations access to the data memorized in variables which can be
reused and/or shared by several operations, this mechanism is
particularly error-prone.

I there is no relation between the order the data are accessed by
operations and the order the operations are executed,

I all the operations are precedence related, the control flow induces a
total order on the operation execution, no AND divergence.

In a flow chart model the state memory is implicitely localized in variables
whereas in an automaton model it is explicitely localized in vertices.

Algorithm model
Data flow graph 1/3

The algorithm can be modeled by a directed acyclic graph (DAG) called
data flow graph (Dennis, Kahn 1974) whose vertices are operations and
directed edges are data and control dependences. A control dependence
induces precedences between operations. An operation is executed as soon
as all its input data - produced by operations that precede it - are
available, thus it produces all its output data - consumed by operation
that succeed it (Milner’s activation rule). Vertices without predecessors
are executed first. Similarly, vertices without successors are executed last.

GEN

*2

+

/2
V1

V2

V1

V2

14

Algorithm model
Data flow graph 2/3

In this model:

I to each directed edge corresponds a data transfer (single assignation)
without shared variables and thus the corresponding errors, however
the directed edges are implemented by variables that will be
automatically managed by the compiler rather than the programmer,

I the order data are read ans written by operations is consistent with
the order the operations, that uses that data, are executed, that order
prevents the programmer to force an order on the operations and uses
the variables in a different order leading to an error,

I some operations can not be precedence order related, the data and
control flow induces a partial order on the execution of the
operations: AND divergence.

Algorithm model
Data flow graph 3/3

I This partial order represents the potential parallelism inherent in the
specification of the algorithm. More formally it is the greatest stable
of the graph whose vertices in transitive relation are removed. In this
set one determines all the vertices subsets that have the same rank,
i.e. that are at the same distance, in terms of maximal number of
predecessors, from the vertices without precedessors. It is possible to
modify the rank of a vertex in order to increase the number of
vertices of another rank.

The greatest cardinal of these subsets
gives the number of processors that are
in potential parallelism, here
Card{C ,D,E} = 3;

0 1Rang 2 3

A

B

C

D

E

F

I a vertex is hierarchical if it can be decomposed in another data flow
graph, otherwise it is atomic. An atomic vertex cannot be allocated
(distributed) on several resources of the architecture.

15

Algorithm model
AAA model: data flow graph repeated conditioned factorized 1/3

The proposed AAA model is a data flow graph repeated conditioned
factorized, i.e. an extended data flow graph:

I infinitely repeated, every repetition of the data flow graph
corresponds to an interaction between the control system described
by the graph (reactive system), it defines a logical instant t of a
logical time for a LTT system (Logical Time Triggered), vertices
without predecessors correspond to sensors and vertices without
successors to actuators,

I conditioned, i.e. a hierarchical vertex of the graph can be
decomposed in several vertices such that only one of these vertices
(OR divergence) will be executed every infinite repetition (logical
instant) according to the value of its specific conditioning input,
extension of the dynamic data flow graph (Buck 1993). Conditioning
inputs are connected with a conditioning dependance to other
operations. Conditioned vertices correspond to conditional branching
in the control flow model (equivalent to If...Then...Else...);

Algorithm model
AAA model: data flow graph repeated conditioned factorized 2/3

I finitely repeated, i.e. a hierarchical vertex of the graph can be
decomposed in several identical vertices all executed on different data,
corresponding to potential data parallelism, opposite to potential
control parallelism where vertices are different, that is called by
default potential parallelism. Finitely repeated vertices are
represented as a single vertex with a repetition index called (P) for
data parallelism and (S) for flow parallelism. It corresponds to loop in
the control flow model (equivalent to For...To...Do...);

I factorized in order to simplify the model, but this may induce cycles
when a repeated operation during infinite repetition t consumes data
produced during infinite repetition t − n. Cycles are forbiden to
guarantee a deterministic behaviour, without deadlocks. Every cycle
must contain at least a delay vertice $ explicitely defining an
algorithm state.

16

Algorithm model
AAA model: data flow graph repeated conditioned factorized 3/3

B

Dépendance de données Dépendance de conditionnement

=>

B

A D
=>

C
C

E 1

D$in $out
FACTORISATION

D

$
!! Cycle INTERDIT !!

$in initialisé pour première répétition

D_init

E

A

0 E

A

1

B B

E

A

1

C
C

C
C

B ou B’ sont exécutées exclusivement l’une de l’autre en fonction de la valeur de la dépendance de conditionnement

DDD

Répétition infinie 1 Répétition infinie 2
Répétition infinie t

B’

B’

*2P

B’ B’

sommet non exécuté

*2P *2P *2P

Répétition finie
C

en parallèle

*∞

Every infinite repetition corresponds to a logical instant t.

Algorithm model
Example: adpative equalizer

The output of the sensor gensig is filtered by a FIR (Finite impulse
response) digital filter with fixed coefficients and by another FIR whose
coefficients are computed by an adaptive algorithm, both filter outputs are
substracted and visualized by an actuator visu.

17

Algorithm model
Example: FIR filter

An input vector of 3 elements containing the coefficients (h0, h1, h2), an
input vector of 3 elements containin the past values ot the input
(xt , xt−1, xt−2), a scalar output Yt =

∑2
i=0 hi ∗ xt−i

The graph (mul , add) is repeated 3 times (*3S) such that the output of
every add is connected to the input of the next add .

Algorithm model
Example: simplified smartphone

18

Functional specification languages
General purpose langages: ASSEMBLY, FORTRAN, PASCAL, C, etc.

ASSEMBLY
FORTRAN, PASCAL

C, C++, JAVA
SystemC,VHDL

MODULA, SIMULA
LISP, CAML

ADA, LTR, GRAFCET
. . .

These languages are more or less adapted to functional specification of
algorithm that can describe potential parallelism and manage time.

Functional specification languages
Synchronous languages: Esterel, Lustre, Scade, Signal, StateCharts, SyncCharts

Synchronous languages descend from CSP, CCS, TLA, etc., languages,
allow the functional specification of potential parallelism (concurrence)
and the management of time.

They have the following features:

I ESTEREL, STATECHARTS, SYNCCHARTS: Imperative, control
flow, functional clock calculus, given maximal clock (Tick),

I LUSTRE, SCADE : Declarative, data flow, functional clock calculus,
given maximal clock (Tick),

I SIGNAL: declarative, data flow, relational clock calculus, synthetized
maximal clock.

19

Synchronous language SIGNAL
Relations 1/4
SIGNAL is a synchronous data flow language for specifying relations
between valued events, each event belongs to an infinite set of events
called a signal and takes its values in a set such that real, integer,
boolean, etc.

A signal is associated to each input (resp. output) of the control system,
corresponding to the output (resp. intput) of a sensor (resp. actuator). A
signal is also associated to each input and output of the other operations
that specify the control system.
There are four types of relation:

1. a precedence relation between two events of the same signal to
associate a logical instant to each value. It is a strict total order
relation that can be represented by a logical timing diagram:

S

e1 e4 e5e2 e3 e6 e7 e8

e1 < e2 < e3 < e4 < e5 < e6 < e7 < e8

5 3 8 5 6 14 211

Synchronous language SIGNAL
Relations 2/4

2. a synchronism relation between two events of two different signals.
When two events are synchronous they are called present at the
same logical instant. If one of the event is present while no other
synchronous event on the other signal, that other event is said
absent. This is an equivalence relation (reflexive, symmetric,
transitive).

S2

S1

ordre partiel
The synchronism equivalence relation between two events of two different
signals combined with the strict total order relation between two events of
the same signal, does not lead to a strict total order on the events of two
different signal, but only to a partial order.

20

Synchronous language SIGNAL
Relations 3/4

3. a synchronism relation between two signals when every two events
of these signals are synchronous, i.e. are present at the same logical
instants (extension previous relation). It is also an equivalence
relation. The set of the synchronous signal defines an equivalence
class on the signal set, called their clock. These signals have the
same clock.
It is possible to define a total order relation ≥ on the clocks. The
maximal clock defines the logical time of the system.

S2

S1

S3

S1 and S2 have the same clock because they are synchronous. Some
events of S1 and S2 are absent relatively to S3 whose clock is
different from the clock of S3 which, such, is the greatest.

Synchronous language SIGNAL
Relations 4/4

4. input-output relations defining 4 types of instruction.
For example the immediate function between input and output
signals of an operation, extension to signal of a classical function.

a1 a2 a3

b1 b2 b3

S1

S2

S3F
S1

S2

S3

c1=F(a1,b1) c2=F(a2,b2) c3=F(a3,b3)

Synchronous language hypothesis: the output signals of an
immediate function are synchronous with the input signals, that
must also be sychronous. Such function is causale for each logical
instant. A function is not causale if one of its output depends on
itself (cycle). The hardware architecture is not considered during
the functional specification. The notion of duration exists only by
counting the events of a signal.

21

Synchronous language SIGNAL
Signal clock

The clock of a signal X is denoted by P(X). It is an ordered set of
boolean values that are True when X is present and False when X is
absent, relatively to other signals.

Two clocks can be compared with the total order relation ≥.

Thus, a boolean signal B with values True or False has a clock P(B)
which can also take values True or False. T (B) denotes the clock of the
boolean signal B when B is True. For example we have
P(X) ≥ T (X < 0).

Since a clock is a boolean set, by denoting ∩ by “ ” and ∪ by “+” one
can define the following basic relations on the clocks:
P(X) = P(Y)P(Z) P(X) = P(Y) + P(Z) P(X) ≥ P(Y)

A SIGNAL program or process corresponds to the composition with the
character “|” of instructions or elementary processes and/or processes
(encapsulation, modularity). The name identities between output names
and input names of instructions, induce precedences which define a partial
order on the instruction execution.

Synchronous language SIGNAL
Four elementary processes

Syntax Clock equation I/O Relation Types

Immediate function P(y1) =... P(yn) y = f(x)

(y1,..,yn) := f(x1,..,xm) = P(x1) =... P(xm) indifferent types

Delay zx(t) = x(t-1) pour n=1

zx := x $ n zx init k P(zx) = P(x) x zx mêmes types

Under-sampling y = x if b present true

y := x when b P(y) = P(x) T(b) x indifferent type boolean b

Priority merge y = x0 if x1 absent

y := x0 default x1 P(y) = P(x0) + P(x1) y = x1 if x0 absent

y = x0 si x0 et x1 present

x0 x1 same types

(| y1 := e when e<=0 %P(y1)=P(e)T(e<=0)=T(e<=0) as P(e)>=T(e<=0)%

| y2 := e when e>0 %P(y2)=P(e)T(e>0)=T(e>0) as P(e)>=T(e>0)%

| y3 := y1 + y2 %compilation error as T(e<=0)#T(e>0)%

|)
22

Synchronous language SIGNAL
Data flow graph of a process

A SIGNAL process can be can represented by a factorized conditioned
repeated data flow graph such that:

I every vertex with input and output ports, represents an elementaty
SIGNAL process, associated to a clock equation defining the clocks
of the output signals according to the clocks of the input signals,

I every edge or data dependence, between an input port and an
output port, represents a signal auquel, associated to a clock,

I an edge sequence whose first vertex and the last vertex are identical
lead to a cycle in the graph and thus to a non causal program.
Cycles are forbiden. It is necessary to introduce at least a delay
every the cycle ;

| c := a + b

| b := d * c
+ *

a

c
b

d

⇒
+ *

a

c

d

$

b

I an elementary process is executed according to the presence and
absence of its input clocks defined by its clock equations.

Synchronous language SIGNAL
Compiler

The compiler performs some verifications:

I usual on values (type, table indices, division by zero, etc.),
I formal, guaranteeing temporal logic properties:

I it verifies that every cycle contains a delay,
I it verifies wether the clock equation system is correct, i.e. it tries to

determine the clocks of the output signals according to the clocks of
the input signal.
If it is not possible to solve the clock equation system, there is two
cases:
- too much constraints (the clock calculus is redundant),
- not enough constraints: a clock must be given to signals with
undetermined clocks using a specific clock constraint instruction: ^ =,
P(X) = P(Y) is associated to X ^ = Y.

Finally, it generates a sequential program, for example in C, that allows a
functional and temporal logic simulation guaranteeing the correct
order of events for each output signal according to each input signal.

23

Synchronous language SIGNAL
Logical timing diagrams of signals 1/3

Process · · · SIGNAL program control system: ⊥= absent

X > 1.0
Y > ⊥
Z > 2.5

Elementary processes that do not modify clocks

X := A + B (X somme de A et B)

A : 2 1 5 4 3
B : 2 1 5 4 3
X : 4 2 10 8 6

Synchronous language SIGNAL
Logical timing diagrams of signals 2/3

ZX := X $ 1 (ZX delayed of 1 logical instant w.r.t. X)

X : 2 1 5 4 3
ZX : 0 2 1 5 4 ZX initialized to 0

^X (Clock of X: type event signal true=present false=absent)

The type event is useful when one considers only the clock of a signal
without considering the values of its events.

X : 1 2 3 4 5

^X : T T T T T

X ^= Y => P(X)=P(Y) (clock constraint) X, Y type event

The indermined clock X takes the determined clock of Y
24

Synchronous language SIGNAL
Logical timing diagrams of signals 3/3

Elementary processes that modify clocks: ⊥= absent

X := A when B (subsampling of A by B true)

A : 1 2 3 4 ⊥ 5 6 ⊥ 7 8
B : F T ⊥ T T F T F ⊥ T
X : ⊥ 2 ⊥ 4 ⊥ ⊥ 6 ⊥ ⊥ 8

Y := X0 default X1 (merge of X0 and X1, priority X0)

X0 : 1 3 ⊥ 5 6 ⊥ 8 9
X1 : ⊥ 2 4 2 ⊥ 7 9 6
Y : 1 3 4 5 6 7 8 9

Synchronous language SIGNAL
Constant signals

The clock of a constant signal is determined by its context.

No problem with immediat function and when:

X := A + 1 => P(X)=P(A)=P(1)

X := 1 when B => P(X)=P(1)T(B) : X value 1 clock B true

Because the right signal of a default has the priority WARNING:

Y := X0 default 1 => P(Y)=P(X0)=P(1) : Y=X0 clock of X0

Y := 1 default X1 => P(Y)=P(X1)=P(1) : Y=1 clock of X1

25

Synchronous language SIGNAL
Simplification rules used by the compiler

The clock set of a SIGNAL program with the partial order relation ≥, the
binary relation union, additively noted defining the upper bound of two
clocks and the binary relation intersection, multiplically noted defining the
lower bound of two clocks, define a lattice with the following properties:

Commutativite : P(X)+P(Y) = P(Y)+P(X); P(X)P(Y) = P(Y)P(X)

Idempotence : P(X)+P(X) = P(X); P(X)P(X) = P(X)

Absorption : P(X)(P(X)+P(Y)) = P(X); P(X)+(P(X)P(Y)) = P(X)

One can deduce the following properties:

P(X)+P(Y) = P(X) <=> P(X) >= P(Y)

P(X)P(Y) = P(X) <=> P(Y) >= P(X)

P(X)+P(Y) >= P(X) et P(X)+P(Y) >= P(Y)

P(X)P(Y) <= P(X) et P(X)P(Y) <= P(Y)

B boolean P(B) >= T(B) and, for example P(X) >= T(X=0)

P(X)P(Y)=P(X) if P(Y) >= P(X); P(X)+P(Y)=P(X) if P(X) >= P(Y)

Synchronous language SIGNAL
Syntax of processes or programs 1/3

Underlined elements of the language (keywords) are terminal, bracketed
elements “[. . .]” are optional, “/” means an alternative.

process = process name = [{ parameters }]
(? input-signals ! output-signals)
body
[where local-signals

[process ; process . . .]
] end

process = function name = (? input-signals ! output-signals)

26

Synchronous language SIGNAL
Syntax of processes or programs 2/3

parameters = type name , name . . . ; type name , name . . .
input-signals = output-signals = type name , . . . ; type name , . . .
local-signals = type name [init val / expr-tableau] , name . . . ; . . .
type = [[val , . . .]] scalar-type
scalar-type = event / boolean / integer / real / dreal
body = (| inst | inst | . . . |)
inst = name := expr
inst = (name , . . .) := subprocess-call
inst = name := array-expr
inst = process-array
expr = expression with elementary process and subprocess calls
subprocess-call = name [{ val , . . . }] (expr , . . .)
nom = sequence of alpha-numerical characters
val = expression containing only constants and/or parameters

Synchronous language SIGNAL
Syntax of processes or programs 3/3

% comments between percent %

In an expression several elementary processes can be directly combined
taking into account that an immediate function has a greater priority than
a when which has a greater priority than a default.
Example :

y := a when b > 0 default z + 1 <=>

y := (a when (b > 0)) default (z + 1)

The composition instruction “|” induces only a partial order on the process
executions. Data dependences are deduced from the signal names. An
ouptut signal is connected to an input signal with the same name, or to
several input signals with the same names (data diffusion). Several output
signals cannot be connected to a same input signal (data confusion
forbidden).

27

Synchronous language SIGNAL
Syntax example

process EXAMPLE = {}

(? integer A,B,C,D ! real W)

(| X := BID{2}(C) %process BID parameter 2 P(X)=P(C)%

| J := A+B %P(J)=P(A)=P(B)%

| T := (X+Y)/J when A>5 %P(T)=P(A)T(A>5)=T(A>5)%

| Y := BID{5}(D) %process BID parameter 5 P(Y)=P(D)%

%P(A)=P(B)=P(C)=P(D)%

| ZW := W $ 1 %P(ZW)=P(W)%

| W := T default ZW + 1 %P(W)=T(A>5)+P(W) => P(W)>=T(A>5) (1)%

| W ^= ^A |) %P(W)=P(A) verifie (1)%

where

integer J, X, Y, ZW init 0 ; real T ;

process BID = {integer PARAM}

(? integer X ! integer Y)

(| Y := X*PARAM |)

end

A parameter is an input constant signal that is internal/external to the
process.

Synchronous language SIGNAL
Data flow graph of the process EXAMPLE

Signal program ⇔ Data flow graph.

0 1Rang 2 3 4 5 6

A

D

when T
C

B

+

BID{2}

BID{5}

/

default W

>5

+
J

+ 1 $
ZW

X

Y

Vertices without predecessors A, B, C, D (resp. without successors W)
represent sensors (resp. des actuators) connected to other vertices by
signals with same names as these sensors and actuators. Clock
constraints are not considered.

Potential parallelism: {A,B,C ,D,+1} and {> 5,+,BID2,BID5}
5 processors can be potentially in parallel.

28

Synchronous language SIGNAL
Process example 1/4

% Infinite counter on signal top %

process cpt = {}

(? event top ! integer n)

(| zn := n $ 1 % P(zn)=P(n) %

| n := zn + 1 % P(n)=P(zn) %

| n ^= top % P(n)=P(top) %

|)

where integer zn init 0

end

Synchronous language SIGNAL
Process example 2/4

% Memorization of signal e with another signal m %

% output s takes values of input e when e %

% is present and takes the previous value of s %

% when e is absent %

% the clock of s must be greater than the clock of %

% the memorizing signal m %

process mem = {}

(? integer e; event m ! integer s)

(| zs := s $ 1 % P(zs)=P(s) %

| s := e default zs % P(s)=P(e)+P(zs) => P(s)>=P(e) (1) %

| s ^= ^e default m % P(s)=P(e)+P(m) verifie (1) %

|)

where integer zs init 0

end
29

Synchronous language SIGNAL
Process example 3/4

% Counter on signal top, reset to zero on raz true %

process cptRaz = {}

(? event top; boolean raz ! integer n)

(| zn := n $ 1 % P(zn)=P(n) %

| n := (0 when raz) default (zn +1) % P(n)=T(raz)+P(zn)

=> P(n)>=T(raz) (1) %

| n ^= ^(when raz) default top % P(n)=P(top)+T(raz)

|) verifies (1) %

where integer zn init 0

end

Synchronous language SIGNAL
Process example 4/4

1 2

m

a

a

m

% Automaton 2 states start (1) and stop (2), two inputs %

process automaton = {}

(? event m, a ! integer x)

| x := 1 when m default 2 when a % P(x)=T(m)+T(a) %

|)

30

Multicomponent architecture
specification

General issues
Distributed, parallel, multiprocessor, multicore architectures

These architectures are composed of several processors, connected by
point-to-point or multi-point (bus) media, that communicate with
distributed memories through message passing or with shared
memories. Four possible pairs:

I distributed: communications are performed through message
passing, processors are of different types (GRID),

I parallel: communications are performed with shared memories,
processors are of same types,

I multiprocessor: communications are performed with shared
memories, processors are of same or different types,

I multicore: processors are located on the same chip and communicate
with shared memories and/or network on chip.

The way processors and media are connected leads to different
topologies: ring, star, mesh, hypercube, totally connected, etc. A route
is a chain starting and ending with a processor, including alternatively a
processor then a communication medium.

31

General issues
Parallelism, multicomponent architecture
Parallelism types (Flynn’s classification 1996):

I control: (MIMD) processors execute different on different data, it is
limited by dependences,

I data: (SIMD, SPMD) processors execute the same computation on
different data,

I flow: (MISD) pipe-line, processeurs execute different computation on
the same data.

Multicomponent architecture: heterogeneous, including processors of
different types and specific integrated circuits of different types. They are
connected by communication media of different types, offering different
types of parallelism.

I Processor: programmable component which executes sequentially
instructions of a program.

I Specific integrated circuit (ASIC, FPGA): non programmable
component which executes only one operation.

I Communication medium: point-to-point or multi-point (bus)
connections.

Multicomponent architecture model
RTL

RTL model: Register Transfert Level
Data transfers between registers through a combinatorial circuit (CC).

Registre1

CC

Registre2

I Computation - CC

I Memory (cache, extern) - Register

I Communication medium - Data path - −→
32

Multicomponent architecture model
Sequential machine

A Multicomponent architecture is based on the notion of sequential
machine.

I Finite automaton (acceptor or recognizer): finite state machine
(FSM) (E ,X , i , f , t)

E finite set of input symbols (input events)
X finite set of states, initial states i ⊂ X , final states f ⊂ X
X is associated to a memory containing the past of the automaton
t transition function t : E × X → X xt+1 = t(e, xt)

I Finite automaton with outputs (transductor): sequential machine
in digital electronic device domain (E ,X , i , f , t,S , s)

S finite set of output symbols (output events)
t transition function, s output function which executes the CC
Mealy s : E ×X → S w = s(e, xt) Moore s : X → S w = s(xt)

Multicomponent architecture model
Processor

Processor = two sequential machines connected: sequencer and ALU.
The sequencer reads the state produced by the ALU, reads an instruction
in the program memory and writes an operation code in the ALU.
The ALU reads an operation code and executes the corresponding
operation which reads and writes data in the data memory.

Mem

Séquenceur

d’instructions

Programme
Mem

Données

Status

Code Op

ALU

Sortie

Entrée

Processeur

33

Multicomponent architecture model
Simple model of distributed or parallel architecture

Two processors, composed each of them of two sequential machines,
connected by point-to-point links, constitute a parallel architecture.

Processeur 1 Processeur 2

Entree

Sortie

Sortie

Entree

ALU ALUSequenceur Sequenceur

Abstraction
⇓

Processeur 1 Processeur 2

Une architecture multicomposant est spécifiée à l’aide d’un
modèle de graphe orienté.

Multicomponent architecture model
AAA multicomponent model 1/2

I vertex: atomic sequential machine of four types :
1. operator sequences operations (ALU, FPU . . .) and data dependences

when there is no communicator,
2. communicator sequences data dependences (DMA . . .),
3. memory :

I random access (RAM):
- data (D) or program (P),
- for data communications shared by the communicators,

I sequential (SAM): for data communications only, distributed on the
communicators, by message passing point-to-point or multi-point
(bus), with or without diffusion.

4. mux, demux:
I mux: access of several operators and/or communicators to a shared

memory => arbitration,
I demux: access of one operator and/or one communicator to several

memories => routing.

I edge: bidirectional connection between two vertices, composed of two
opposite direction directed edges, such connection cannot connect
two vertices of the same type except for mux/demux vertex type.

34

Multicomponent architecture model
AAA multicomponent model 1/2 and abstraction 1/2

Processor: graph with of only one operator and several mux/demux,
RAM P, RAM D, communicators, SAM.
Specific integrated circuit: graph with of only one operator and several
mux/demux, RAM D, communicators, SAM.
Message passing medium: graph with communicator, SAM, mux, demux
Shared memory medium: graph with communicators, RAM.
Bus: connection of several processors.
Router: connection of a processor and several routers (N,S,E,O).

Abstraction

A processor or an integrated circuit subgraph can be abstracted in a
unique operator vertex. Data and program memories are hiden. A medium
subgraph can be abstracted in a unique operator medium. For the
message passing media each communicator with its distributed SAM is
represented by a port of the operator, the mux/demux is kept. For the
shared memory media only each communicator is represented by a port of
the operator.

Multicomponent architecture model examples
Abstraction 2/2

COM1 SAM SAM COM1 RAM
 D/P

RAM
 D/P

COM2 COM2

OPR1

MD

OPR2

Processeur 2Processeur 1

MD

mux

mux−demux

M

M

RAM

Médium passages de messages

Médium mémoire partagée

Abstraction
⇓
MD

PROC1 PROC2

RAM

Abstraction leads to a smaller graph thus to a faster but less accurate
optimizations.

35

Multicomponent architecture model examples
TMS320C40

S6

S5

S4

S3

S2

S1

R0

R1

C6

C5

C4

C3

C2

C1

S1 à S6 : mémoires SAM
C0 à C6 : communicateurs

Rloc

loc glob

b1

b3

b2

b4

b5

b6

b9

b10

b7

b8

b1 à b8, b10 : demux

b12 globR

b11

b9, b11, b12 : mux

R ,R : mémoires RAM externes partagées
R0,R1 : mémoires RAM internes partagées

opérateur

29 vertices in the architecture graph

Multicomponent architecture model examples
Four TMS320C40 connected by point-to-point and multi-point media

S6

Rloc

globR

S1

S6

S1

R0

R1

C6

C5

C4

C3

C2

C1

S5

S4

S3

S2 S2

S3

S4

S5

C1

C2

C3

C4

C5

C6

R0

R1

Rloc

C6

C5

C4

C3

C2

C1

R1

R0

locR

S5

S4

S3

S2 S2

S3

S4

S5

C1

C2

C3

C4

C5

C6

R1

R0

TMS320C40 − 1 TMS320C40 − 2

TMS320C40 − 3TMS320C40 − 4

Rloc

opérateur

opérateur opérateur

opérateur

109 vertices

Abstraction
⇓

Opérateur Opérateur

Opérateur Opérateur

S1

S6 S6

S1

Rglob

(D/P) and mux/demux
are hiden,

communicators are
operator ports.

9 vertices

36

Multicomponent architecture model examples
Three processors and a specific integrated circuit connected by point-to-point and
multi-point media

COM1

SAM COM1 RAM
 D/P

RAM
 D

RAM
 D/P

COM4

COM5

RAM
 D

RAM
 D

SAM SAMSAM

SAMCOM1
RAM
 D/P

OPR1 OPR3OPR2

COM2 COM3

OPR4

Processeur 2Processeur 1 Processeur 3

Circuit intégé spécifique

Médium passage de messages

Médium passage de messages

Médium mémoire partagée

MD

MDMD MD

M

MMD mux−demux M mux

Multicomponent architecture model examples
Four processors connected by a network

RAM
 D/P

RAM
 D/P

RAM
 D/P

RAM
 D/P

MD1 MD2

MD3 MD4
MD

mux

mux−demux

Processeur1

Processeur3 Processeur4

SAM1

Processeur2

OPR1

COM1 COM2

OPR1

SAM2

SAM4COM4

OPR4OPR3

COM3 SAM3

M

routeur N, S, E, O

Médium passages de messages

M M

M M

Message passing medium {(com1, sam1), (sam1,md1), (com2, sam2),
(sam2,md2), (com3, sam3), (sam3,md3), (com4, sam4), (sam4,md4),
(md1,md2), (md1,md3), (md2,md4), (md3,md4)}

37

Optimized implementation

General issues
Distribution and scheduling 1/2

The implementation is achieved from the functional and non-functional
(multicomponent architecture, timing characteristics dependent or
independent from the architecture) specifications. It consists of a
distribution and a scheduling of the algorithm on the architecture.

The distribution allocates operations to operators (computation resources)
and data dependences to media (communication resources). The
distribution is also called: allocation, partitioning or placement.

For each operator, the scheduling consists in determining in which order
the operations will be executed on this operator, and for each medium in
which order the data dependences will be executed on this medium.

The scheduling must preserve the partial order related to dependences
and must guarantee real-time constraints are met.

38

General issues
Distribution and scheduling 2/2

Distribution and scheduling can be achieved online, during the execution
of the application, or offline before the execution of the application.

Online approaches can take into account operations whose timing
characteristics are not totally known during the specification, however they
have an important overhead, and are not deterministic.

Offline approaches require an accurate knowledge of the algorithm
operations and of the multicomponent architecture, however they have a
small overhead and are deterministic, well suited to critical hard real-time.

Later on we shall favour the offline approaches whose results can be used
to generate automatically dedicated executives that, possibly, may call a
resident executive.

Uniprocessor real-time scheduling
Classical approach 1/9

The classical preemptive task model, proposed by Liu and Layland in 1973,
is based on the utilization of an inline executive for which each task i is
the repetition of an “instance” or “job” indexed by k = 1..∞.

A task is an operation with the following characteristics:
I release time rk

i , time when the task is activated, possibly periodic
(infinite repetition) with period Ti , thus rk

i = r0
i + kTi ,

I first release time or offset r0
i ,

I start time of execution sk
i 6= rk

i ,
I worst case execution time WCET Ci , to which is added an

approximation of the executive cost,
I relative deadline or critical delay Di , duration from rk

i , before the
task i must be completed,

I absolute deadline from the time origin dk
i = rk

i + Di ,
I response time Rk

i , duration from rk
i where the task i is completed,

I laxity lki (t) = dk
i − (t + Ci (t)), difference between the absolute

deadline and the duration that is already executed.
39

Uniprocessor real-time scheduling
Classical approach 2/9

Ti Ti Ti

CiTi Ci Ci2Ci1

ri,k+3

di,k di,k+2

échéance non satisfaite

ri,k+1 si,k+1
ri,k+2
si,k+2

di,k+1

Modèle de tâche de Liu et Layland

Ri,k+1 Ri,k+2Ri,ksi,kri,k

A task is schedulable if all its instances satisfy their deadline.
A set of tasks is schedulable if every task is schedulable.
The scheduler of the executive executes a, possibly, preemptive real-time
scheduling algorithm based on priorities.
The preemption allows a task to be interrupted by another task with a
higher priority. It increases the number of possible schedulings, but it is
necessary to account carrefully its cost inside the cost of the executive in
order to garantee that the schedulability conditions are satisfied.
Fixed priorities are used by the scheduler to choose the next task to
execute do not change during the execution.
Dynamic priorities may change when a task is activated or when it
completes, leading to a higher scheduler cost.

Uniprocessor real-time scheduling
Classical approach 3/9

The scheduler is composed of an automaton for each task and a
specific automaton that manages task automata

ACTIVER

EXECUTER

PASSIVE

TERMINER

PRETE

PREEMPTER

EXECUTION

ACTIVE

BLOQUEE
BLOQUERDEBLOQUER

A task automaton has four states:

PRETE to be executed because it just has
beeen activated (released),
EXECUTION executing,
BLOQUEE waiting for a resources,
PASSIVE waiting for an activation.

A task automaton has six input events:

ACTIVER: produced by the external interrupt associated to the task,
TERMINER: produced by the task itself when it completes,
EXECUTER, PREEMPTER: produced by the manager automaton,
BLOQUER, DEBLOQUER: produced by the manager automaton.

40

Uniprocessor real-time scheduling
Classical approach 4/9

Only one of the task automata is in the state EXECUTION

Fixed priority scheduling

When the event ACTIVER of a task occurs, this task goes from the state
PASSIVE to PRETE, the manager automaton or an hardware device
external to the processor compares it priority to the priority of the task
being executed, the only task to be in the state EXECUTION.

If the priority of the activated task is greater to the one of the task being
executed, the manager automaton saves its context, and then produces
the event PREEMPTER for its automaton which goes from the state
EXECUTION to PRETE, it produces an event EXECUTER for the
automaton of the activated task which goes from the state PRETE to
EXECUTION and finally executes the activated task.

Uniprocessor real-time scheduling
Classical approach 5/9

When the event TERMINER, produced by the task being executed, occurs
then this task goes from the state EXECUTION to PASSIVE, the
manager automaton compares the priorities of the tasks in the state
PRETE and produces the event EXECUTER for the automaton of the task
with the highest priority which goes from the state PRETE to
EXECUTION. If this task has been preempted the manager automaton
restores its context and resumes its execution, otherwise it starts a new
execution of an instance.

The manager automaton produces the event BLOQUER when a task
cannot access to a shared resource already used by another task. It
produces the event DEBLOQUER when the blocked task can access the
resource, and goes from the state BLOQUEE to PRETE.

41

Uniprocessor real-time scheduling
Classical approach 6/9

The feasibility analysis of a real-time task set consists in finding
conditions such that all the tasks satify their constraints. The
schedulability analysis consists in finding such conditions but with a
given scheduling algorithm.

We consider a set of n preemptive periodic independent tasks whose
scheduler and preemption costs are approximated in the WCET, the
utilization factor is U =

∑n
i=1 Ci/Ti and the density is ∆ =

∑n
i=1 Ci/Di .

Here are the schedulability conditions according to the better known
scheduling algorithms:

I fixed priorities (do not change during the task execution):
I RM (Rate Monotonic) algorithm: priority inversely proportional to the

period, the tasks are schedulable if U ≤ n(21/n − 1), Di = Ti ,
I DM (Deadline Monotonic) algorithm: priority inversely proportional to

the deadline, the tasks are schedulable if ∆ ≤ n(21/n − 1), Di ≤ Ti ,

Uniprocessor real-time scheduling
Classical approach 7/9

I dynamic priorities (determined at activation and completion times):
I EDF (Earliest Deadline First) algorithm: priority to the task with the

smallest absolute deadline, dynamic between instances, fixed inside an instance,
the tasks are schdedulable if and only if: U ≤ 1, Di = Ti ,
the tasks are schdedulable if: ∆ ≤ 1, Di ≤ Ti ,

I LLF (Least Laxity First) algorithm: priority to the task with the
smallest laxity, dynamic between instances, dynamic inside an instance,
the tasks are schdedulable if same conditions than EDF.

When considering dependent tasks, dependences are due to:
- precedences only, this case can be reduced to the non dependent tasks
case by adding new constraints that modify release times and dealines,
- data transfers, in addition to the precedence constraint, it is necessary
to manage data shared between the producer task and the consumer task,
as well as the data exchanges according to the respective values of their
periods.

42

Uniprocessor real-time scheduling
Classical approach 8/9

Preemptions may involve priority inversions when several dependent
tasks share a data. The automaton of a task accessing a shared data,
goes in the state BLOQUEE while this one is not available. If several
tasks are in this state, some deadlocks may occur.
This problem can be solved with two protocols:

I priority inheritance: the task which is executing while accessing a
data, inherits the highest priority of the tasks which share this data
such that it releases the data as soon as possible, thus it is possible to
compute its maximum blocking time,

I priority ceiling: in order to prevent deadlocks, the previous protocol
is extended by adding a priority to each data equal to the highest
priority (ceiling) of the tasks which share this data, such that a task
cannot access a data only if the priority of this data is higher than the
priorities of the other data that the other tasks may access.

Uniprocessor real-time scheduling
Classical approach 9/9

EDF and LLF algorithms can be used to schedule a set of aperiodic tasks.

It is also possible to use the following algorithms:

I background: tasks are scheduled when the processor has no periodic
tasks to execute,

I task server: tasks are scheduled by an additional periodic task which
executes some parts of the aperiodic tasks,

I slack stealing: tasks are scheduled during laxities of the periodic
tasks.

43

Uniprocessor real-time scheduling
AAA 1/3

Critical real-time applications are composed of tasks corresponding to
sensors, actuators, and control processes which must not have jitter. It is
the reason why they must have a strict period and must be non
preemptive such that their response time do not vary being equal to their
WCET. In order to simplify the problem we consider that all the tasks
have these characteristics following the “AAA” model where a task oi ,
called operation, is infinitely repeated with a stric period with a WCET
Ci including a fixed cost of the executive.

Ti Ti

Ti Ci

Ti Ti Ti
Di

CiTi Ci Ci2Ci1

Modèle d’opération AAA

Ti

Di Di

ri,k+2
si,k+2ri,k si,k ri,k+1 si,k+1 ri,k+3

Modèle de tâche de Liu et Layland

si,k

Ci Ci

si,k+1 si,k+2 si,k+3

Uniprocessor real-time scheduling
AAA 2/3

In this model an operation oi has no release time but only a start time
sk

i = sk−1
i + Ti = s0

i + k ∗ Ti for every instance k . Its relative deadline is
equal to its period imposing that Ci ≤ Ti .

At every release and completion of a task, the executive cost is composed
of:

I the scheduler cost:
I offline: reading in a table the task to execute,
I online: choice of task by comparing their priorities,

I cost of the preemptions able to involve other preemptions
I offline: no preemption,
I inline: store and restore of every task context.

We choose the non preemptive case even though schedulability analyses
are more complicated and it reduces the scheduling possibilities, because
the preemption cost is equal to zero. In addition we choose offline
executive because the scheduler cost is smaller than the cost of inline
executive.

44

Uniprocessor real-time scheduling
AAA 3/3

Aperiodic operations are made periodic by pooling the events that trigger
them at a period which is smaller than the minimum delay between two of
their occurences.

We want to solve a non preemptive uniprocessor scheduling problem of
operations that must satisfy constraints of dependence and deadline equal
to its strict period.

Sufficient feasibility condition (Korst 1991 for two tasks, Kermia-Sorel
2009 for more than two tasks): a dependence graph of n non preemptive
operations oi with WCET Ci and strict period Ti is schedulable if∑n

i=1 Ci ≤ GCD(Ti).

Multiprocessor real-time scheduling
classical approach

There are two main approaches that minimize the utilization factor U:
I global: a unique scheduler for all the processors which can migrate

tasks from one to another processor. The migration cost is very high
with the current processors. This is a theoretical problem solved when
preemption and migration costs are equal to zero with an optimal
algorithm called “Pfair”,

I partitioned: one scheduler for each processor where some tasks were
distributed such that these tasks are schedulable. Minimizing the
utilization factor is an NP-hard problem equivalent to a “Bin
Packing” problem which consists in filling bins of same size with
objects of different sizes. This problem can be solved in a reasonable
time only with heuristics that procuce non optimal (approximated)
solutions. “First Fit”, “Next Fit”, “Best Fit”, “Worst Fit”, heuristics
distribute the tasks on the processors while verifying classical
schedulability conditions (RM, DM, etc.). Generally, the scheduling of
the interprocessor communications is achieved separately, often
without accounting their cost. 45

Multiprocessor real-time scheduling
AAA

Due to the prohibitive cost of migration, we choose the partitioned
scheduling approach. We have to solve a distribution problem for the
different processors and for each processor a non preemptive scheduling
problem of operations (tasks) that must verify dependence constraints
and deadline equal to a strict period constraints. In addition, we want
to minimize the total execution time (makespan) while considering the
interprocessor communication costs.

A distribution and a scheduling is obtained by transforming the algorithm
graph according to the architecture graph, assuming that all the possible
routes are known. This amounts to reduce the potential parallelism of
the algorithm (scheduling) such that it corresponds to the actual
parallelism of the architecture (distribution).

An optimized implementation is obtained by seeking among all the
possible transformations, one which minimizes the total execution time
called “application latency” = Max(input-output latencies).

Formalization of the AAA implementation
Algorithm graph transformations according to the architecture graph

The algorithm graph is transformed as follows:

I partition the operation set in as many elements as there are
operators in the architecture graph,

I replace edges relating different partition elements by as many new
communication vertices and edges as there are media in the route
on which these communication operations are distributed,

I add precedence edges between operations distributed on a processor
but not yet related by data dependences,

I add precedence edges between communication operations distributed
on a medium but not yet related by data precedences.

46

Formalization of the AAA implementation
AAA distribution and scheduling example

SAM1

SAM2

P1 P2

c1

c2 c3

$

$

Sub

FiltA

Filt

Adap

Out

In

flot de données frontière du partitionnement

communication inter−processeurs

retard (mémoire d’état)opération de calcul

{In, Filt, Out} distributed on P1 and {FiltA, sub, Adap} distributed on P2.

{c1} distributed on SAM1 and {c2, c3} distributed on SAM2

Formalization of the AAA implementation
Principles

The AAA implementation (distribution and scheduling) is a graph
transformation formalized by the composition of three relations each
of them relating two pairs of graphs (algorithm, architecture):

I routing: complete connection of the architecture graph,

I distribution of the algorithm operations on the operators,

I distribution of the communication operations induced by the
previous distribution on the media,

I scheduling of the operations on the operators where they were
distributed, and of the communication operations due to data
dependences relating operations distributed on different operators, on
the media where they were distributed.

The number of distributions and the number of schedulings obtained from
a given pair (algorithm, architecture) may be very large but it is finite.
This relation composition preserves temporal logic properties
guaranteed during formal verifications of the functional specification.

47

Formalization of the AAA implementation
Routing relation

Routing

Determination of all the paths. A path (routes) in the architecture
graph is a sequence of vertices related by edges, involving a total order.

P = set of processors, Card(P) = p
L = set of communication media, Card(L) = l
X = set of connections, x = (p, l) ou (l , p), p ∈ P et l ∈ L,
R = set of paths of (P ∪ L,X), r = (p, l , p′, l ′, p′′), p, p′, p′′ ∈ P et
l , l ′ ∈ L

(P ∪ L,X)
routing−→ (P ∪ L,R)

Formalization of the AAA implementation
Distribution relation 1/2

Distribution

O = set of operations, Card(O) = n
D = set of data dependences, d = (o, o ′), o, o ′ ∈ O

Distribution of operations on operators = partition of the n operations
of O in p elements, n > p. The number of possible partitions is

computable equal to:

p∑
k=0

(−1)k (p − k)n

(p − k)!k!

For example with n = 4, p = 2 we have 7 possible partitions, with n = 12,
p = 3 we have 86 526 and with n = 12, p = 5 we have 1 379 400.

O ⊃ Op = set of operations executed on processor p
D ⊃ Dp = set of data dependences between operations executed by p
D ⊃ Dr = set of inter-partition data dependence

((O,D), (P ∪ L,R))
distrib−→ (GdR, (P∪L,R)) GdR =

⋃
p∈P

(Op,Dp),Dr

48

Formalization of the AAA implementation
Distribution relation 2/2

Distribution of communication operations on media = partition of Dr

in Card(L) elements whose number is computable.

Every inter-partition dependence (oi pi , oj pj), with oi on pi , oj on pj , is
transformed in a path (total order) including a vertex for each medium m
of the route on which it was distributed:
∀r ∈ R,∀dr ∈ Dr dr

com−→
(
oipi

, ol1 , ol2 , . . . olk−1
, olk , . . . olm , ojpj

)
A vertex ol is a new communication operation distributed on the
medium l . An edge (olk−1

, olk) = cp is a data dependence distributed on
the processor p.
We group the ol of a same l ∈ L in the set Ol and the cp of a same p ∈ P
in the set Cp with Cp = Cp(calc,com) ∪ Cp(com,com) ∪ Cp(com,calc)

GdR
com−→ GdL =

⋃
p∈P

(Op,Dp ∪ Cp),
⋃
l∈L
Ol

Formalization of the AAA implementation
Scheduling relation
The addition of communication operations ol and their distribution on the
media do not modify the partial order D of the algorithm graph. The
number of vertices and edges increases according to the number of media.

Scheduling

On each processor p, a scheduling of the computation operations is a total
order D̄p which includes the partial order Dp, Dp ⊆ D̄p

Similarly on each medium, a scheduling of the communication operations
is a total order D̄l which includes the partial order Dl ,Dl ⊆ D̄l

GdL
sched−→ Gs =

⋃
p∈P

(Op, D̄p ∪ Cp),
⋃
l∈L

(Ol , D̄l)

The number of edges increases according to the number of non dependent
operations. The number of total orders, obtained from a partial order, is

computable and equal to C 2
n =

n!

2!(n − 2)!
for n non dependent

operations. We have C 2
10 = 45. 49

Formalization of the AAA implementation
Composition of three relations

Implementation = Routing o Distribution o Scheduling

The implementation (distribution and scheduling) is the graph
transformation dist/sched formalized by the composition of the relations:

((O,D), (P ∪ L,X))
routing−→ ((O,D), (P ∪ L,R))

((O,D), (P ∪ L,R))
distrib−→ (GdR, (P ∪L,R))

com−→ (GdL, (P ∪L,R))
sched−→ (Gs , (P ∪L,R))

((O,D), (P ∪ L,R))
dist/sched−→ (Gs , (P ∪ L,R))

Since the number of partitions and the number of total orders obtained
from a partial order is computable, thus the number of possible
implementations is computable.

Formalization of the AAA implementation
External composition law

When assuming that all the possible routes of an architecture is known,
this composition of three relations may be seen as an external composition
law denoted ∗. Let Gal be the algorithm graph set and let Gar be the
architecture graph set, thus we have:

Gal × Gar −→ Gal gal ∗ gar = g ′al

We choose among all the possible graph transformations, the ones which
correspond to valid implementations, that is, for which the resulting
partial order is compatible with the initial partial order of the algorithm
graph, and which do not introduce cycles in a path of computation
vertices that do not contain a delay vertex. This situation could lead to a
deadlock. On the other hand, cycles on communication operations are
allowed if they do not introduce cycles on computation operations.
“compatible with the initial partial order of the algorithm graph” means
that no vertex and no edge were suppressed, that only edges were added,
and finally that vertices and edges were added as paths (total order), only
to replace inter-partition edges.

50

Formalization of the AAA implementation
Example 1/3

a1

a3

a4

d34d13

d14

a2

a5

d54d15

d12
d24

Algorithm graph

L1 L2

3L
1

2

3P

P

P

Architecture graph

Formalization of the AAA implementation
Example 2/3

L2

L3

L1 L2

L1

L1L2

P2

P1 P3
1

3

2

4o

o

o

o

o5

Distribution of operations and data dependences
51

Formalization of the AAA implementation
Example 3/3

2

c /P
21

c /P
2 2

c /P
34

c /P
3 3

c /P
14

d
13

d /L
1 1

d /L
1 2

c /P
13

P
3

P
1

c /P
24

c /P
11

c /P
32

P
2

c /P
6 2

c /P
25

c /P
36

c /P
15

2 2
o /P

5 2
o /P

1 1
13

3

4 3
o /P o /P

o/L

o /P

o’/L1

o’’/L1 o’’/L

o’/L
2

2

o’’’/L2o’’’/L1

Scheduling of computation and communication operations

Optimized implementation: adequation
Principles 1/3

Among a number of valid implementations that can be very large, we have
to seek manually or automatically an optimized implementation called
adequation.

The automatic optimization problem consists, first, in choosing among the
valid implementations, the ones such that each operation satisfies data
dependences constraints as well as deadline equal to the period
constraints, and then in minimizing the latency of the algorithm
implemented on the architecture. Moreover, for example, the number of
components of the architecture could be minimized.

In order to choose among the valid implementations, every operation and
data dependence of the algorithm graph must be characterized in term of
execution time relatively to the architecture, and possibly in terms of
period and deadline equal to this period. This leads to an algorithm
graph labelled with these characteristics.

52

Optimized implementation: adequation
Principles 2/3

The optimal implementation problem is equivalent to a “Bin Packing”
problem. It belongs to the NP-hard complexity class which contains
problems more difficult than those of the NP-complete class, which
contains the more difficult problems of the NP class. This latter contains
problems that can be solved on a Non deterministic Turing machine by an
algorithm in polynomial time relatively to the size of the problem. Thus,
NP does not means “Non Polynomial”. These problems can be solved by
listing all the solutions, each of them being tested in polynomial time.
The P class contains problems that can be solved with a deterministic
Turing machine by an algorithm in Polynomial time. Deterministic (resp.
non deterministic) means that from any state of the Turing machine, there
is one (resp. several) possible transition. NP-hard problems are optimally
solved in exponential time.

For small size problems, exact optimal algorithms can be used like linear,
dynamic or constraint programming, branch and bound, branch and cut,
etc.

Optimized implementation: adequation
Principles 3/3

For realistic size problems, heuristics can be used that provide solutions which
are empirically close to the optimal solution. Approximation algorithms find
solutions close to the optimal one with a factor ε.

There are two types of heuristics:

I without backtracking: very fast, called greedy. They do not start with an
initial solution, and search at every step for a locally optimal solution to
build a final solution which is not necessarily globally optimal. They perform
deterministic choices, generally in a list. They are adapted to specific
problems;

I with backtracking: slower, called local search. They start from an initial
solution that they iteratively transform to improve it by searching in the
neighbouring of the current solution. They can perform non deterministic
choices to jump out from local minima. They give results that are
empirically closer of the optimal solution than greedy heuristics. Since they
solve generic problems they are called metaheuristics: simulated anealing,
tabu search, genetic algorithm, ant colony, etc.

53

Optimized implementation: adequation
Critical path
The implementation while minimizing the latency is based on the
computation of the critical path (CP) of the algorithm labelled only with
execution times of the computation operations. Communication costs are
not considered. A segment of length equal to its execution time, is
associated to every operation. This segment is positioned at its earliest
start date according to its predecessors allowing to determine its latest
start date according to its successors. A CP corresponds to a path of
segments without schedule flexibility, i.e. such that each segment has its
earliest start date equal to its latest start date. The CP is equal to the
Max of the CP when there exist several ones.

C

A

D

B

10

20

A

F

B

G

20

20

30

20

10

F

G
E

0 10 30 40 6020

D

E

C

3 CC : (A, D, F, G) = 60, (A, E, F, G) = 60 et (A, C) = 40, CC=60, un chemin non critique (B, G) car B a de la marge

Optimized implementation: adequation
Operation and data dependence characterization

Every operation is characterized relatively to the different operators
that are able to execute it. Every data dependence is characterized
relatively to the different media that are able to execute it.

I operator and communicator
operation name → execution time (without arbitration)
data transfered → execution time (without arbitration)

ASICfft C40alu C40dma
fft256 15 fft256 1250 logical 9=3+6

mul10 14 integer 9=3+6
add10 14 [10]real 63=3+10*6

I mux (arbitration) operator1 is slowed down when operator2 is active

C40link DMA-I DMA-O

DMA-I - 50%
DMA-O 50% -

Input and output DMA are 50%
slowed down because they access to
a shared memory.

54

Optimized implementation: adequation
Heuristic minimizing the latency = input rate = strict period 1/4

We use a greedy heuristic for a fast distribution and scheduling which is
of low complexity Card(O)Card(P).

In order to satify the partial order defined by the data dependences
between operations of the algorithm graph, the heuristic chooses at step i
an operation in the subset of operations whose predecessors were already
distributed and scheduled, called candidates, which optimizes a local cost
function. The chosen operation is removed from the initial set of
operations. The cost function, called schedule pressure, is defined by
σ(o, p) = P − F with:

I F the difference between the earliest start date and the latest start
date, called schedule flexibility,

I P the lengthening of the critical path caused by the communication
costs, called schedule penalty. It corresponds to a partial execution
time or partial latency.

Optimized implementation: adequation
Heuristic minimizing the latency = input rate = strict period 2/4

R

0

P(o3)

S(o3)

o1

o2

o3 o3

o4

o3

o4

F(o3) P(o3)

− F(o3)

S(o3)S(o3)

o1 → (o2, o3) → o4

S(o3) earliest start date of o3
S(o3) latest start date of o3
E (o3) = S(o3) + C earliest end date
F (o3) flexibility of o3
R partial latency

The earliest start date of o4 is
moved back because of the duration
of the communication due to o1 →
o3 which is greater than the schedule
flexibility F (o3) of o3, lengthening
the partial latency R.

55

Optimized implementation: adequation
Heuristic minimizing the latency = input rate = strict period 3/4

Candidates Ci ⊆ O at step i are the subset of O whose predecessors were
already distributed and scheduled.

MONO-PERIOD AAA HEURISTIC

1: i = 0,V0 = O operations of the algorithm graph
While Vi 6= ∅

i = i + 1
For all oj ∈ Ci ⊂ Vi

For all pk ∈ P compute σ(oj , pk)
(oj , pk) = min

(o′j ,p
′)∈Ci×P

σ(o ′j , p
′)

(oj , p) = max
(o′j ,p

′)∈Ci×P
σ(o ′j , p

′)

compute the partial latency, Vi = Vi−1 − {oj}
End while
If latency (last partial latency) ≤ latency constraint End
Else modify distribution/scheduling constraints and/or
increase the potential parallelism of the algorithm O = O′ Go to 1

Optimized implementation: adequation
Heuristic minimizing the latency = input rate = strict period 4/4

P1 M P2

O3

O1

O2

O4

Chaque processeur contient un opérateur et un communicateur

O1 O2 O4P1

C

O3

C

P2

M C

O4

Execution time P1 or P2: o1=10, o2=30, o3=10, o4=10, M: integer=5
i (o, p) σ(o, p) minσ max(minσ) V0 = {o1, o2, o3, o4}
1 (o1,P1) 10 (o1,P1) (o1,P1) V1 = {o2, o3, o4}
2 (o2,P1) 10+30=40 (o2,P1) (o2,P1) V2 = {o3, o4}

(o2,P2) (10+5)+30=45
(o3,P1) 10+10=20 (o3,P1)
(o3,P2) (10+5)+10=25

3 (o3,P1) 40+10=50
(o3,P2) (10+5)+10=25 (o3,P2) (o3,P2) V3 = {o4}

4 (o4,P1) (40+0)+10=50 (o4,P1) (o4,P1) V4 = {∅}
o3 flexibility E(o3)+5 < S(o4)

(o4,P2) (40+5)+10=55

Uniprocessor 60, CP = 50, latency = 50, maximal acceleration without
comm. = 60/50 = 1.2, acceleration with comm. = 60/50 = 1.2

56

Optimized implementation: adequation
Adequation result: scheduling table

Equalizer implemented on two processors, each containing an operator
and one communicator in parallel and a point-to-point medium.

S

R S

R

S = Send R= Receive

Synchronisations calcul communication

S R

MD

Sub

Adap

time

FiltA

In

Filt

Out

P1 P2

I The result of the adequation is an implentation
graph whose partial order is compatible with the
initial partial order of the algorithm. It allows the
production of a scheduling table.

I Every communication operation composed of a
send S and a reception R of a data message, is
executed on processors P1 and P2 by the
communicators. Identically, for write and read of a
shared memory.

I For every processor and medium of the
architecture graph, the implementation graph gives
start dates and end dates of the computation
and communication operations. Their length is
proportional to their duration.

Optimized implementation: adequation
Strict multi-period heuristic minimizing the latency

To every operation oi of the algorithm is associated a strict period Ti ,
independent of the processor Pj and an execution time Ci dependent of
the processor Pj . The LCM of the periods Ti is called hyperperiod.

MULTI-PERIOD AAA HEURISTIC

1 Assignment: For all operations oi

For all processors Pj

If oiPj
schedulable Then j + 1 Else End

(sufficient feasibility condition:
∑n

i=1 CiPj
≤ GCD(Ti))

2 Unrolling: For all operations, duplicate it as many times as
the ratio between the hyperperiod and the period of the operation and
add the necessary edges

3 Scheduling: For all operations assigned and unrolled on a processor,
compute its earlieast start date while taking into account
inter-processor communication costs
If an operation was assigned to several processors
Then choose the one minimizing the latency

57

Optimized implementation: adequation
Heuristic minimizing the input rate, acceleration

Heuristic minimizing the input rate

I Search for critical cycles

I Retiming associated to the delays

I Increase the latency

Acceleration for an homogeneous architecture

Maximal acceleration = sum of all the execution times of operations
critical path duration without communications

dMaximal acceleratione = [Card(P)] =

Maximal number of identical
processors put in actual parallelism
necessary to exploit the potential
parallelism while taking into
account execution times.

processors in actual parallelism ≤ processors in potential parallelism

Optimized implementation: adequation
Heuristic for minimizing the number of processors

We can minimize the number of processors initially given. We use a
meta-heuristic (different from metaheuristic) which calls a heuristic.

AAA META-HEURISTIC

nbProc = Initial number of processors = [Card(P)]
Call AAA HEURISTIQUE

While the latency constraint is satified
nbProc = nbProc − 1
Call AAA HEURISTIQUE

EndWhile

58

Code generation
General issues 1/2

Since real-time systems are specified according to a LTT approach, we
favour implementations on TT architectures (periodic polling of
sensors)rather than ET architectures (interruptions provided by sensors).
The polling of the sensors, the execution of one infinite repetition of the
algorithm, and the writing on the actuators, can be triggered by:

I a periodic time base,
I a loop of known duration, called auto-triggered.

From now on we assume to be in this latter case.

On every processor the executive code is offline if optimization choices
and decisions are taken before the execution of the system and online if
the choices and decisions are taken during the execution. For hard
real-time systems the offline approach is favoured since it is consistent
with the TT approach.

In this case the executive reads the scheduling table containing the
sequence of operations, of waiting operations and of communication
operations, to infinitely repeat.

Code generation
General issues 2/2

I The executive code is composed of system instructions which
control (scheduling, conditioning, repetition) the applicative code
associated to every operation specified in the algorithm.

I The executive code is automatically custom synthetized according
to the application. It benefits at best from application characteristics
and induces a low overhead easy to determine and, as such,
deterministic.

I The custom synthetized executive may call a resident executive
code which is generic and partially benefits from application
characteristics. The resident executive code is generally dynamic
involving a higher overhead, that is difficult to determine but has the
advantage to be “standard”.

I The cost of the executive code must be taken into account as
precisely as possible, so that the schedulability analysis is reliable.

I For every processor a pseudo code is automatically generated such
that it is architecture independent. It is called macro-code and
composed of a macro-executive and applicative macros.59

Code generation
Macro-code generation from adequation result 1/2

Every macro-code is composed of an infinite loop sequencing:
I system macros composing the macro-executive:

I conditioning: choice of operations according to a condition,
I wainting (wait): delay after some operation to guarantee its period,
I inter-processor communication: for the SAM send a data message

from a communicator (send) and reception of this message by a
communicator (recv), and for the RAM write of a data (write) and
read (read) of this data,

I synchronization intra-processor and inter-processor.

I applicative macros actually performing operations distributed and
scheduled on this processor, a buffer is associated to each output.

Synchronizations guarantee that even if there are variations on operation
execution times their partial order of execution will be compatible with
the initial partial order of the algorithm graph. Such designs are called
latency insensible (LID).

Code generation
Macro-code generation from adequation result 2/2

TT architecture composed of 2 processors P1 and P2, each containing an
operator and one communicator in parallel and a point-to-point medium.

S = Send R= Receive

Synchronisations calcul communication

S R

S

R S

R

MD

Wait

Wait

time

FiltA

In

Filt

Out

P1 P2

Adap

Sub

Operator of P1: macro-loop of tasks, macros (In,
Filt, Out, Wait).
Communicator of P1: macro-loop of
communications, macros (send, send et recv).
Operator of P2: macro-loop of tasks, macros
(FiltA, Sub, Adap, Wait).
Communicateur de P2: macro-loop of
communications, macros (recv, recv, send).
Every task loop of an operator and every
communication loop of a communicator, contains
additional macros for synchronizing operator and
communicator.
The wait macros garantee an auto-triggering, at a
given period, greater than the optimized latency.

60

Code generation
Synchronizations in the macro-code: principles 1/2

Intra-processor synchronizations of two types:
I intra-repetition: to guarantee the parallel execution, correct

according to the initial partial order, of the unique computation
sequence and of the communication sequences, inside an infinite
repetition,

I inter-repetition: to guarantee that infinite repetitions correctly
succeed each other. An infinite repetition must be completed before
the next one starts, thus every sent message must have been received
before sending the next one, using the corresponding SAM, or that
every data written in the shared memory must have been read, using
the corresponding RAM.

Synchronization macros atomically perform a read-modify-write in a
semaphore as follows:

I intra-repetition: Pre full, Succ full: signal full buffer, wait buffer
full,

I inter-repetition: Pre empty, Succ empty: signal empty buffer, wait
empty buffer.

Code generation
Synchronizations in the macro-code: principles 2/2

Inter-processor synchronizations perform synchronizations between
communicators macro-loops of several processors, using for:

I message passing:
I point-to-point medium: no synchronization message since the FIFO

already performs the synchronisation,
I multi-point diffusing medium: send the data to all the processors,

received with a sync by the processor which does not use it,
I multi-point non diffusing medium: send synchronization messages

send synchro and receive synchronization messages recv synchro,
for the corresponding processors,

I shared memory an additional semaphore:
I PreR full, SuccR full: signal full memory, wait full memory,
I PreR empty, SuccR empty: signal empty memory, signal empty

memory.

61

Code generation
Synchronizations: ABCD algorithm and architecture graphs, scheduling table

A

C

B

D A

C

B
send
BD

rcv
BD

D

/com1
 /opr1

send
CD rcv

CD

 /opr1

/com1
 /opr2

 /opr1

/com2

/com2

R1 Com1Opr1 S Com2 R2 Opr2
processor1 processor2

R1 and R2 memories contain buffers in which operations B and C (resp.
D) produce (resp. consume) their data.

Code generation
Intra-processor synchronizations: adequation, point-to point message passing
communication, ABCD algorithm

62

Code generation
Intra-processor synchronizations: point-to point message passing communication, B-Send
and Receive-D

send BD

B

pre_full

suc_empty

pre_empty

suc_full

B

send BD

R1 Com1Opr1
processor1

time

R1 Com1Opr1
processor1 Intra-repetition synchro.

(Pre full, Suc full): buffer full
before execution of send.
Inter-repetition synchro.
(Suc empty, Pre empty):
buffer empty before sent of
data.

pre_full

suc_empty

pre_empty
time

R2Opr2Com2

rcv BD

R2

D

rcv BD

suc_full

D

Com2 Opr2
processor2 processor2 Intra-repetition synchro.

(Pre full, Suc full): buffer full
before execution of recv.
Inter-repetition synchro.
(Suc empty, Pre empty):
buffer empty before reception
of data.

Code generation
Intra-processor synchronizations: point-to point message passing communication, ABCD
algo

pre_full

suc_empty
pre_full

B

suc_empty

pre_empty
suc_full

send CD

send BD

suc_full

pre_empty
pre_full
rcv CD

suc_empty
pre_full

rcv BD

suc_empty

suc_full
suc_full

D
pre_empty
pre_empty

Loop Loop Loop Loop

EndLoopEndLoopEndLoopEndLoop

C

time

A

R1 Com1Opr1 S Com2 R2 Opr2

processor2processor1

63

Code generation
Intra-processor synchronizations: shared memory communication, algorithme ABCD

R1 R R2

A

B

Pre1 full
Suc0 empty

C
Pre1 full

Suc1 full

write BD
PreR1 full

Suc1 full
Pre0 empty

SucR1 empty

SucR1 empty

write CD
PreR1 full
Pre0 empty

Suc1 empty
SucR1 full

read BD
PreR1 empty

Pre0 full
Suc1 empty
SucR1 full
read CD

PreR1 empty
Pre0 full

EndLoop EndLoop

Pre1 empty
Pre1 empty

D
Suc0 full
Suc0 full

EndLooptime

Suc0 empty

BD

CD

EndLoop

processor1 processor2

Opr1 Com1 Com2 Opr2

Loop Loop LoopLoop

Code generation
Macro-code generation: intra-processeur synchronization
Point-to-point message passing communication, ABCD algorithm, processor1

64

Code generation
Inter-processor synchronizations: adequation, diffusing multi-point message passing
communication, ABCD algorithm, 3 processors

Code generation
Macro-code generation: Inter-processor synchronizations
diffusing multi-point message passing communication, ABCD algorithm, 3 processors

65

Code generation
Distributed embedded real-time executable code generation 1/2
The macro-code of every processor is macro-processed with:

I an executive kernel which is architecture independent and
possibly a resident executive, for example VxWorks, Osek,
Linux/RTAI, Linux/Xenomai, Windows/RTX, etc. Every kernel
contains the information describing how each macro-instruction will
be translated in a compilable source code;

I an applicative kernel which is architecture dependent containing
the macro-operations corresponding to the operations of the
algorithm graph. Every applicative kernel contains the informations
describing how each macro-operation will be translated in a
compilable source code.

The source codes are compiled to produce the executable codes.

The obtained executable codes are such that synchronizations guarantee
that the initial partial order of the algorithm graph is preserved during the
automatic code generation producing a real-time execution without any
deadlock.

Code generation
Distributed embedded real-time executable code generation 2/2

66

SynDEx software
Features 1/2

SynDEx implements the AAA methodology

SynDEx is an interactive graphical software which provides aids for the
implementation of signal and image processing with control on
multicomponent architectures while taking into account real-time
constraints. It offers the following features:

I functional specifications,
I algorithm graph spcification with a proprietary language,
I interface with domain specific languages (DSL): Synchronous

languages (ESTEREL/SYNCCHARTS, SIGNAL) (formal verifications
and real-time simulation), SCICOS (modelling/simulation of hybrid
systems), UML2/MARTE (UML profile OMG standard for embedded
real-time), etc., producing this proprietary language,

I non functional specifications,
I multicomponent graph specification,
I timing characterization,

SynDEx software
Features 2/2

I adéquation,
I distributed real-time schedulability analysis producing a scheduling

table,
I optimizations and choice of an implementation that preserves the

properties of the functional specification,
I vizualisation of a timing diagram of the distributed execution giving

simulated performance measures,

I automatic generation of distributed real-time executives without
deadlock that are custom synthetized from executive kernels:

I for processors Analog Device ADSP21060, Texas Instrument
TMS320C40, Microchip PIC182680, Intel ix86, i8051, i80C196,
Motorola MC68332, MPC555, Transputer T80x,

I possibly calling resident executives: Linux, Linux/RTAI,
Linux/Xenomai, Windows Windows/RTX working stations Intel ix86
communicating with TCP/IP,

I real-time performances measures with software probes introduced
automatically during the automatic generation of executives.

67

SynDEx software
CyCab example 1/2

Logiciel SynDEx
CyCab example 2/2

68

SynDEx software
Utilization

The user specifies with the graphical user interface algorithm and
architecture graphs, strict periods, WCET of operations and WCCT of
data dependences, or he imports them through a .sdx file produced by
the compiler of some DSL.

The AAA heuristic performs the schedulability analysis and computes the
start time of every computation operation and of every communication
operation from their period, WCET and WCCT. Then, the code generator
produces as many macro-code files as there are of processors in the
architecture.

The WCCT d of a message passing communication operation, executed by
the two communicators (send, recv) of two processors, is computed
from a simple model, for example: d = τ + δ ∗ n, where δ denotes the
elementary WCCT for transfering one data element, n the number of data
elements (depending of the data type), τ the time necessary to establish
the communication.

SynDEx software
Execution time measures

Using the option “Code generation with
timers” during the code generation, adds for
every computation or communication
operation a first timer macro-code which
gives the date before the operation execution
and a second timer macro-code which gives
the date after its execution.

The considered algorithm application is
executed on a uniprocessor architecture and
the difference between the two previous dates
gives the execution time of each computation
operation.

A minimal application A → B executed on
two processors, connected by the different
possible media, gives the elementary WCCT
of each communication operation.

?

-�

? ?

?

?

?

? ?

??

?

? ?

?

?
6

�

? ?

durées comm.durées calculs

appli
test

mono
proc

exec
chrono

lib
appli

mini
appli

bi
proc

exec
chrono

lib
exec

OPT
dist/ord

OPT
dist/ord

compilation
exécution

compilation
exécution

exec
final

OPT
dist/ord

Dimensionnement

lib
exec

compilation
exécution

lib
appli

Algorithme
Graphe

Architecture
Graphe

69

SynDEx software
GUI V4

SynDEx software
GUI V5

70

SynDEx software
GUI V6

SynDEx software
GUI V7 (Simple algorithm: input 30ms, compute and output 60ms)

71

SynDEx software
GUI V7 (Automatic driving of CyCab: TI 100ms, ctrl-x 10ms)

Conclusion

72

Conclusion
I In order to perform an optimized implementation, we must master

links between control theory and computer science.

I Embedded real-time systems must be reactive, satisfy timing
constraints and minimize resources.

I The functional specification with some DSL allows formal
verifications.

I The SIGNAL DSL verifies that the order of the output events is
consistent with the order of the input events.

I The non functional specification allows the description of hardware
resources and timing characteristics.

I The AAA methodology based on functional and non functional
specifications, allows the formalization of implementations in terms of
graph transformations, the study of implementations which are valid
in terms of schedulability, the minimization of timing and resource
criteria, and finally the generation of safe by construction
embedded real-time executives.

I The SynDEx software implements the AAA methodology.

Conclusion

Safe by construction design

Optimized implementation: Adequation

Reduced development life cycle

73

	Context and goals
	System approach
	Definitions
	Application domains
	Functional specification
	Non functional specification
	Optimized implementation: AAA methodology

	Algorithm specification
	General issues
	Algorithm model
	Functional specification languages
	Synchronous language SIGNAL

	Multicomponent Architecture specification
	General issues
	Multicomponent architecture model
	Multicomponent architecture model examples

	Optimized implementation: Adequation
	General issues
	Uniprocessor real-time scheduling
	Multiprocessor real-time scheduling
	Formalization of the AAA implementation
	Optimized implementation: adequation
	Code generation
	SynDEx software

	Conclusion

